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Abstract. A hypergraph G = (V,E) is called R-graph if R = {|e| : e ∈ E}. The spectral radius of G is the
maximum modulus of eigenvalues of its adjacency tensor. LetGn,r be the class of connected {k, k−1}-graphs
of n vertices with r pendent vertices. In this paper, we characterize the hypergraphs with the maximum
spectral radius in Gn,r for n − r ≥ k, n − r = 2, k − 1, respectively.

1. Introduction

It is well known that hypergraphs are generalizations of graphs. At present, hypergraphs have a wide
range of applications, such as obtaining multidimensional relationships [11] and constructing relational
networks (protein-protein interaction, coauthorship, film actor/actress) [9]. In recent years, research on
spectral theory of hypergraphs has attracted extensive attention. There are many results on uniform
hypergraphs, see [2, 5–7, 10, 12, 13]. However, there are only few results on general hypergraphs, such
as [4, 14]. The purpose of this paper is to study the spectral extremal problems for a class of general
hypergraphs.

Let G = (V,E) be a hypergraph with V = [n] = {1, 2, . . . ,n} and E ⊆ P(V), where P(V) is the power set of
V. The rank r(G) = max{|e| : e ∈ E}. For each edge e ∈ E, we name an ordered sequence µ = (i1, i2, . . . , ik) as
an k-expanded edge from e (e-expanded edge), denoted by e ≺ µ, if the set of distinct vertices in µ is e. Let
S(e) = {µ : e ≺ µ} and S(G) = ∪e∈ES(e). Furthermore, let Si(e) = {µ ∈ S(e) : i be the first element of ordered
sequence µ} and Si(G) = ∪e∈Ei Si(e), where Ei = {e : i ∈ e ∈ E}. If |Ei| = 1, then vertex i is called pendent vertex.
For each edge e ∈ E satisfying i ∈ e and |e| = s, we have |S(e)| = s|Si(e)| and

|S(e)| =
∑

k1,...,ks≥1;k1+···+ks=k

k!
k1!k2! · · · ks!

.

The adjacency tensorAG = (ai1i2···ik ) of G is defined as follows

ai1i2···ik =

 |e|
|S(e)| := a(e), if e ≺ (i1, . . . , ik) for some e ∈ E,
0, otherwise.
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For a vector x = (x1, x2, . . . , xn)T
∈ Cn and an k-expanded edge µ = (i1, i2, . . . , ik), we write ai1i2···ik = aµ,

x(µ) = xi1 + xi2 + · · · + xik , xµ = xi1 xi2 · · · xik and xµ−im = xi1 · · · xim−1 xim+1 · · · xik . Then

(AGx)i =

n∑
i2,··· ,ik=1

aii2···ik xi2 · · · xik =
∑
µ∈Si(G)

aµxµ−i =
∑
e∈Ei

a(e)
∑
µ∈Si(e)

xµ−i. (1.1)

If AGx = λx[k−1] and x , 0, then λ is called an eigenvalue of AG and x is its corresponding eigenvector,
where x[k−1] = (xk−1

1 , x
k−1
2 , . . . , x

k−1
n )T. The spectral radius of AG is the largest modulus of the eigenvalues

of AG. If G is connected, then AG is weakly irreducible [14]. Further by the Perron-Frobenious theorem
for weakly irreducible tensor [3], there is a unique eigenvector x satisfying ||x||k = 1 associated with ρ(AG),
is called Perron vector of AG. The maximum and minimum entries of x are denoted by xmax and xmin,
respectively. We call γ := xmax

xmin
Perron ratio ofAG.

A hypergraph G = (V,E) is called R-graph if R = {|e| : e ∈ E}. For a set S and integer i, let
(S

i
)

be the family
of all i-subsets of S. A R-graph G with vertex set [n] and edge set

⋃
i∈R
([n]

i
)

is called complete R-graph. In
particular, if R = {k}, then G is k-uniform hypergraph (k-graph). A hypergraph is non-uniform if |R| ≥ 2.
For a vertex i, let R(i) = {|e| : e ∈ Ei} [4]. In 1986, Brualdi and Solheid [1] posed the following problem:

Problem 1.1. Maximizing the spectral radius and determining the extremal 2-graph for a given class of 2-graphs.

Generally, we may ask a similar problem for R-graphs as Problem 1.1.

Problem 1.2. Maximizing the spectral radius and determining the extremal R-graph for a given class of R-graphs.

For R = {k}, that is the case for uniform hypergraphs. For |R| ≥ 2, Problem 1.2 becomes more difficult
because of more complex structure of general hypergraphs. In this paper, we will study the spectral
extremal problems of {k, k − 1}-graphs. Let Gn,r be the class of connected {k, k − 1}-graphs of n vertices with
r pendent vertices.

2. Preliminaries

In this section, we present some notations and lemmas which will be used in our proof.

Lemma 2.1. For a connected general hypergraph G = (V,E) with rank k, let x be its Perron vector and u, v ∈ V(G).
If i ∈ e implies j ∈ e for each e ∈ E, then x j ≥ xi. Moreover, if there is an edge e0 such that j ∈ e0 but i < e0, then
x j > xi.

Proof. Since G is connected, ρ(G) > 0 and x ∈ Rn
++. Let A1 = {e ∈ E : i, j ∈ e} and A2 = {e ∈ E : j ∈ e, i < e},

then E j = A1 ∪ A2, A1 ∩ A2 = ∅ and A1 = Ei. By (1.1), we have

(AGx)i =
∑
e∈Ei

a(e)
∑
µ∈Si(e)

xµ−i = ρ(G)xk−1
i ,

(AGx) j =
∑
e∈Ei

a(e)
∑
µ∈S j(e)

xµ− j +
∑
e∈A2

a(e)
∑
µ∈S j(e)

xµ− j = ρ(G)xk−1
j .

Then

ρ(G)(xk
j − xk

i ) =
∑
e∈A2

a(e)
∑
µ∈S j(e)

xµ ≥ 0,

so x j ≥ xi. If there is an edge e0 ∈ A2, we have ρ(G)(xk
j − xk

i ) > 0 and x j > xi.

For a general hypergraph G, its weighted incidence matrix M = (M(u, e′))|V|×|S(G)| is defined as following:

M(u, e′)

> 0, for u ∈ e and e-expanded edge e′,
= 0, otherwise.
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Definition 1. [14] A general hypergraph G = (V,E) with rank k is called β-normal, if it has a weighted incidence
matrix M such that the following conditions hold.

(1)
∑

e′∈Si(G) a(e)M(v, e′) = 1, for any i ∈ V and any e-expanded edge e′.
(2)
∏

v∈e′ M(v, e′) = β, for any e-expanded edge e′.
(3) M(u, e′1) =M(u, e′2), if e′1 is deferent from e′2 only their order.

Furthermore, M is referred as consistent if for any cycle u0e1u1e2 · · · ul(ul = u0) and any ei-expanded edge e′i ,

l∏
i=1

M(ui, e′i )
M(ui−1, e′i )

= 1.

In this situation, G is named consistently β-normal.

Lemma 2.2. [14] The spectral radius of a general hypergraph G = (V,E) with rank k is ρ(G) if and only if G is
consistently ρ(G)−k-normal.

Definition 2. A general hypergraph G = (V,E) with rank k is called β-subnormal, if it has a weighted incidence
matrix M such that the following conditions hold.

(1)
∑

e′∈Si(G) a(e)M(v, e′) ≤ 1, for any i ∈ V and any e-expanded edge e′.
(2)
∏

v∈e′ M(v, e′) ≥ β, for any e-expanded edge e′.
(3) M(u, e′1) =M(u, e′2), if e′1 is deferent from e′2 only their order.

Furthermore, β-subnormal hypergraph G is referred as strictly if it isn’t β-normal.

Lemma 2.3. For a general hypergraph G = (V,E) with rank k, if it is β-subnormal, then ρ(G) ≤ β−
1
k . Furthermore,

for strict β-subnormal hypergraph G, ρ(G) < β−
1
k .

Proof. Assume that M be a weighted incidence matrix satisfying the conditions in Definition 2. Then for
any unit positive vector x = (x1, x2, . . . , xn)T, we have

AGxk =
∑
e∈E

∑
e′∈S(e)

a(e)
∏
v∈e′

xv

≤
1
β1/k

∑
e′∈S(G)

a(e)
∏
v∈e′

(M
1
k (v, e′)xv)

≤
1
β1/k

∑
e′∈S(G)

∑
v∈e′ a(e)(M(v, e′)xk

v)
k

=
1
β1/k

k
∑

v
∑

e′∈Sv(G) a(e)(M(v, e′)xk
v)

k

≤

∑
v xk

v

β1/k
=

1
β1/k
.

Then ρ(G) ≤ β−
1
k , and if β-subnormal hypergraph G is strictly, ρ(G) < β−

1
k .

Lemma 2.4. [14] If G is a subgraph of H with r(G) = r(H), then ρ(G) ≤ ρ(H).

Lemma 2.5. [14] Suppose that H is a connected general hypergraph with r(H) = k and H′ is the hypergraph obtained
from H by moving edges (e1, . . . , er) from (v1, . . . , vr) to u, where vi ∈ ei, u < ei and H′ contains no multiple edges. If
x ∈ Rn is the Perron eigenvector of H and xu ≥ max1≤i≤r{xvi }, then ρ(H′) > ρ(H).

Lemma 2.6. [14] If H is the hypergraph with the maximum spectral radius among connected general hypergraphs
with fixed number of edges, then H contains a vertex adjacent to all the other vertices.
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3. {k, k − 1}-graphs with the maximum spectral radius

Denote the complete {k, k − 1}-graph with order n by Kn(k, k − 1). If n − r ≥ k, let Ar
n(k, k − 1) be the

general hypergraph obtained from Kn−r(k, k − 1) by adding r new edges and r new pendent vertices, each
of new edge contains exactly the same k − 1 distinct vertices in V(Kn−r(k, k − 1)) and a new pendent vertex.
See Figure 1. Obviously, A0

n(k, k − 1) � Kn(k, k − 1).

( , 1)
n r
k k k

-
-

1k -

r

( , 1)r

n
A k k -
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( , 1)r

n
B k k -

0e

Figure 1: The hypergraph Ar
n(k, k − 1) and Br

n(k, k − 1)

Theorem 3.1. If H ∈ Gn,r and n − r ≥ k, then ρ(H) ≤ ρ(Ar
n(k, k − 1)) with equality if and only if H � Ar

n(k, k − 1).

Proof. Let G = (V(G),E(G)) be the {k, k− 1}-graph with maximum spectral radius in Gn,r, and V be the set of
pendent vertices in G. According to Lemma 2.4, we claim that G[V(G)\V] is a complete {k, k−1}-hypergraph.
Let

E = {e ∈ E(G) : e ∩ V , ∅} = {e1, . . . , es},

and Vi = ei ∩V for i ∈ [s]. Obviously, s ≤ r and V = V1 ∪V2 ∪ · · · ∪Vs. Suppose that |e1| − |V1| ≥ |e2| − |V2| ≥

. . . ≥ |es| − |Vs|. Let F(Vi) = ei\Vi, then |F(Vi)| = |ei| − |Vi| for i ∈ [s] and

|F(V1)| ≥ |F(V2)| ≥ · · · ≥ |F(Vs)| (3.1)

Let x be the Perron vector ofAG, and γ = xmax
xmin

be Perron ratio ofAG. Then

ρ(G) =
∑

e∈E(G)

a(e)
∑
µ∈S(e)

xµ.

Fact 1. F(Vs) ⊆ · · · ⊆ F(V2) ⊆ F(V1).
If there have two vertices vi, v j satisfy that vi ∈ F(Vi), v j ∈ F(V j) and vi < F(V j), v j < F(Vi). Without loss

of generality, we assume that xvi ≥ xv j . Let H1 be the hypergrph obtained from G − e j by adding the edge
(e j − v j) ∪ {vi}. Then by Lemma 2.5, ρ(H1) > ρ(G), a contradiction. Thus F(Vi) ⊇ F(V j) or F(Vi) ⊆ F(V j).
Further by (3.1), we have Fact 1.

Let V0 = V(G) − (V ∪ F(V1)), F(Vi) = F(Vi)\F(Vi+1) for i = 1, 2, . . . , s − 1 and F(Vs) = F(Vs). Obviously,
|V0| + |F(V1)| = n − r ≥ k and |V1| + |F(V1)| ≤ k, then |V0| ≥ |V1|.

By Lemma 2.1, we have xu1 = xu2 if u1,u2 ∈ Vi, F(Vi) (i = 1, . . . , s) or V0. For i = 1, 2, . . . , s, let xu := xi for
any u ∈ Vi, xu := xi for any u ∈ F(Vi), and xu := x0 for u ∈ V0.

Fact 2. If there exists some i ∈ [s − 1] such that F(Vi) is not empty, then xi < xi < xi+1 and xs > xs.
It is easy to see that xi > xi for i ∈ [s] by Lemma 2.1.
Assume that xi ≥ xi+1. Let v ∈ Vi+1, u ∈ F(Vi), e∗i+1 = (ei+1 − v) ∪ {u} and e0 be the edge containing v and

any k− 1 vertices of V(G)−V. Obviously, |ei+1| = |e∗i+1| and |S(ei+1)| = |S(e∗i+1)|. It is easy to see that there exists
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a bijection φ : S(ei+1) → S(e∗i+1), for any µ ∈ S(ei+1), φ(µ) = µ′ ∈ S(e∗i+1) obtained from µ by replacing v by u
and keeping its number of times unchanged. Then xµ ≤ xµ′ .

Now let H2 be the hypergraph obtained from G by deleting ei+1 and adding edges e∗i+1 and e0. Obviously,
H2 ∈ Gn,r , and E(H2) = (E(G) − ei+1) ∪ {e∗i+1, e0}. Furthermore

ρ(H2) ≥

∑
e∈E(H2)

a(e)
∑
µ∈S(e)

xµ

=
∑

e∈E(G)−ei+1

a(e)
∑
µ∈S(e)

xµ + a(e∗i+1)
∑
µ∈S(e∗i+1)

xµ + a(e0)
∑
µ∈S(e0)

xµ

≥

∑
e∈E(G)−ei+1

a(e)
∑
µ∈S(e)

xµ + a(ei+1)
∑
µ∈S(ei+1)

xµ + a(e0)
∑
µ∈S(e0)

xµ

>
∑

e∈E(G)−ei+1

a(e)
∑
µ∈S(e)

xµ + a(ei+1)
∑
µ∈S(ei+1)

xµ = ρ(G),

a contradiction.
Fact 3. |Vi| = 1 for any i ∈ [s].
Assume that |Vi| > 1 for some i ∈ [s]. Note that n− r ≥ k > |ei| − 1. Set v0 ∈ Vi, V(G)\V = {v1, v2, . . . , vn−r},

and xv1 ≥ xv2 ≥ · · · ≥ xvn−r . For any u ∈ V(G)\{V ∪ F(Vi)}, let e1
i = (ei\{v0}) ∪ {u}, e2

i contain v0 and the first
|ei| − 1 vertices of {v1, v2, . . . , vn−r}. Obviously, |ei| = |e2

i | and |S(ei)| = |S(e2
i )|. Similar to Fact 2, there exists a

bijection φ1 : S(ei)→ S(e2
i ), for any µ ∈ S(ei), φ1(µ) = µ′ ∈ S(e2

i ) is obtained from µ by replacing ei\{v0} by the
first |ei| − 1 vertices of {v1, v2, . . . , vn−r} and keeping its number of times unchanged. Then xµ ≤ xµ′ .

Now let H3 be the hypergraph obtained from G by deleting ei and adding edges e1
i and e2

i . Obviously,
H3 ∈ Gn,r, and E(H3) = (E(G) − ei) ∪ {e1

i , e
2
i }. Furthermore

ρ(H3) ≥

∑
e∈E(H3)

a(e)
∑
µ∈S(e)

xµ

=
∑

e∈E(G)−ei

a(e)
∑
µ∈S(e)

xµ + a(e1
i )
∑
µ∈S(e1

i )

xµ + a(e2
i )
∑
µ∈S(e2

i )

xµ

≥

∑
e∈E(G)−ei

a(e)
∑
µ∈S(e)

xµ + a(ei)
∑
µ∈S(ei)

xµ + a(e1
i )
∑
µ∈S(e1

i )

xµ

>
∑

e∈E(G)−ei

a(e)
∑
µ∈S(e)

xµ + a(ei)
∑
µ∈S(ei)

xµ = ρ(G),

a contradiction.
By Fact 3, we have s = r and k − 2 ≤ |F(Vi)| ≤ k − 1.
Fact 4. |ei| = k for any i ∈ [s].
By Fact 1 and Fact 3, we have k ≥ |e1| ≥ |e2| ≥ · · · ≥ |es| ≥ k − 1. Without loss of generality, we assume

that |e1| = · · · = |es1 | = k and |es1+1| = · · · = |es| = k − 1, where 1 ≤ s1 ≤ s. Let the spectral radius ρ(G) = ρ of G.
Note that x be the Perron vector of G. Define a weighted incidence matrix M as follows:

M(u, e′) =


∏

v∈e′ xv

ρxk
u
, for u ∈ e′,

0, otherwise.

Obviously, if e′1 is deferent from e′2 only their order, then M(u, e′1) =M(u, e′2).
Then for any e′ ∈ S(G) have∏

u∈e′
M(u, e′) =

∏
u∈e′

∏
v∈e′ xv

ρxk
u
= ρ−k = β,
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for any u ∈ V(G), according to the eigenequation, we have

∑
e′∈Su(G)

a(e)M(u, e′) =
∑

e′∈Su(G)

a(e)
∏

v∈e′ xv

ρxk
u

= 1,

and for any cycle u0e1u1e2 · · · ul(ul = u0) and any k-expanded edge e′i have

l∏
i=1

M(ui, e′i )
M(ui−1, e′i )

=

l∏
i=1

xk
ui−1

xk
ui

= 1.

So M satisfies Definition 1.

Since a(e) = |e|
|S(e)| , we have

a(e) =

 1
(k−1)! , for |e| = k,
2(k−1)

k! , for |e| = k − 1.

Next, we analyze the edges as follows:

(i) For an (k − 1)-edge e that contains v, we can extend it into k − 1 different k-edge if we don’t consider
the order of the vertices, for convenience, denoted them as e(1){v}, e(2){v}, . . . , e(k−1){v}, where e(k−1){v}
contains two v. For each of e(i){v}, i ∈ [k − 1], if e(i){v} contains only one v, there are (k−1)!

2 k-expanded
edges in Sv(e); if e(i){v} contains two v, there are (k − 1)! k-expanded edges in Sv(e).

(ii) For an k-edge e, there are (k − 1)! k-expanded edges in Sv(e) for any v ∈ e.

Suppose (es1\es1+1) ∩ F(Vs1 ) = {w}, v ∈ F(Vs1+1), v0 ∈ V, u ∈ V0.

• Let {e∗1, . . . , e
∗
c1
, . . . , e∗c} ⊆ E(G[V(G)\V]) such that w ∈ e∗i , i = 1, 2, . . . , c, and |e∗1| = · · · = |e

∗
c1
| = k, |e∗c1+1| =

· · · = |e∗c| = k − 1;

• Let {e′1, . . . , e
′

c′1
, . . . , e′c′ } ⊆ E(G[V(G)\V]) such that v ∈ e′i , i = 1, 2, . . . , c′, and |e′1| = · · · = |e

′

c′1
| = k, |e′c′1+1| =

· · · = |e′c′ | = k − 1;

• Let {e′′1 , . . . , e
′′

c′′1
, . . . , e′′c′′ } ⊆ E(G[V(G)\V]) such that u ∈ e′′i , i = 1, 2, . . . , c′′, and |e′′1 | = · · · = |e

′′

c′′1
| = k, |e′′c′′1 +1| =

· · · = |e′′c′′ | = k − 1.
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Now we may write:

(1)
s1∑

i=1

M(w, ei) +
c1∑

i=1

M(w, e∗i ) +
c∑

i=c1+1

[
1
k

k−2∑
j=1

M(w, e∗i,( j){w}) +
2
k

M(w, e∗i,(k−1){w})] = 1;

(2)
s1∑

i=1

M(v, ei) +
s∑

i=s1+1

[
1
k

k−2∑
j=1

M(v, ei,( j){v}) +
2
k

M(v, ei,(k−1){v})] +
c′1∑

i=1

M(v, e′i )+

c′∑
i=c′1+1

[
1
k

k−2∑
j=1

M(v, e′i,( j){v}) +
2
k

M(v, e′i,(k−1){v})] = 1;

(3)
c′′1∑
i=1

M(u, e′′i ) +
c′′∑

i=c′′1 +1

[
1
k

k−2∑
j=1

M(u, e′′i,( j){u}) +
2
k

M(u, e′′i,(k−1){u})] = 1;

(4) M(v0, ei) = 1, for v0 ∈ ei, i = 1, 2, . . . , s1;

(5)
1
k

k−2∑
j=1

M(v0, ei,( j){v0}) +
2
k

M(v0, ei,(k−1){v0}) = 1, for v0 ∈ ei, i = s1 + 1, . . . , s;

(6)
∏
v∈ei

M(v, ei) = β, for i = 1, 2, . . . , s1;

(7)
∏

v∈ei,( j){v}

M(v, ei,( j){v}) = β, for any j ∈ [k − 1], i = s1 + 1, . . . , s.

For es1 , for convenience, we set M(w, es1 ) =
xk−2

v xv0

ρxk−1
w

:= x0 and M(v, es1 ) =
xwxv0

ρx2
v

:= y0. Note that M(v0, es1 ) =
xwxk−2

v xv0

ρxk
v0
=

xwxk−2
v

ρxk−1
v0
= 1, and xmax = xv, xmin = xv0 by Lemma 2.1, then

y0 =
xwxv0

ρx2
v

= (
xv0

xv
)k = (

1
γ

)k.

Let es1 = es1\w and H4 = G − es1 + es1 . Construct a weighted incidence matrix M′ of H4 as following:

M′(v, e′) =


M(v, e′), for e′ < S(es1 ),
β

1
k−1 , e′ = es1,( j){v0}, v = v, for i = 1, . . . , k − 2,
β

1
k−2 , e′ = es1,(k−1){v0}, v = v,

1, v ∈ e′ ∈ S(es1 ), d(v) = 1.

where v0 ∈ es1 . For some pendent vertex v′0 ∈ e ∈ {e1, . . . , es}, we have

ρxk−1
v′0
= a(e)

∑
µ∈Sv′0

(e)

xµ−v′0 ,

that is

ρ = a(e)
∑
µ∈Sv′0

(e)

xµ−v′0

xk−1
v′0

≤ kγk−1.

So, we have

k − 2
k
β

1
k−1 +

2
k
β

1
k−2 =

k − 2
k
ρ−

k
k−1 +

2
k
ρ−

k
k−2

≤
k − 2

k
(kγk−1)−

k
k−1 +

2
k

(kγk−1)−
k

k−2
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= (k − 2)k−
2k−1
k−1 γ−k + 2k−

2k−2
k−2 γ−

k(k−1)
k−2

≤
k − 2

k
2k−1
k−1

γ−k +
2

k
2k−2
k−2

γ−k

≤ γ−k = y0.

Now for es1 , it has

(1)
s1−1∑
i=1

M′(w, ei) +
c1∑

i=1

M′(w, e∗i ) +
c∑

i=c1+1

[
1
k

k−2∑
j=1

M′(w, e∗i,( j){w}) +
2
k

M′(w, e∗i,(k−1){w})]

= 1 −M(w, es1 ) < 1;

(2)
1
k

k−2∑
j=1

M′(v, es1,( j){v}) +
2
k

M′(v, es1,(k−1){v}) =
k − 2

k
β

1
k−1 +

2
k
β

1
k−2 ≤ y0 =M(v, es1 );

(3)
1
k

k−2∑
j=1

M′(v0, es1,( j){v0}) +
2
k

M′(v0, es1,(k−1){v0}) = 1, for v0 ∈ es1 ;

(4)
∏

v∈es1 ,( j){v0}

M′(v, es1,( j){v0}) = β, for v0 ∈ es1 , 1 ≤ j ≤ k − 2;

(5)
∏

v∈es1 ,(k−1){v0}

M′(v, es1,(k−1){v0}) = β, for v0 ∈ es1 .

So H4 is strictly β-subnormal. By Lemma 2.3, ρ(H4) < β−
1
k = ρ(G). Then |ei| = k, i ∈ [s] and F(v1) = F(v2) =

· · · = F(vs). So G � Ar
n(k, k − 1).

Let n−r = k−1 and r ≥ 2, let Br
n(k, k−1) be the general hypergraph obtained from edge e0 = {u1,u2, . . . ,uk−1}

by adding r new pendent vertices and r new edges, each of new edges consists of all vertices in e0 and a
new pendent vertex. See Figure 1.

Theorem 3.2. If H ∈ Gn,r, n − r = k − 1 and r ≥ 2, then ρ(H) ≤ ρ(Br
n(k, k − 1)) with equality if and only if

H � Br
n(k, k − 1).

Proof. Let G = (V(G),E(G)) be the {k.k − 1}-graph with maximum spectral radius in Gn,r, and V be the set
of pendent vertices in G. Let V0 = V(G)\V = {u1,u2, . . . ,uk−1} and E = {e ∈ E : e ∩ V , ∅} = {e1, . . . , es}. Let
Vi = ei ∩V, then V = V1 ∪V2 ∪ · · · ∪Vs. Obviously, we have e0 = {u1,u2, . . . ,uk−1} ∈ E(G) and E(G) = {e0} ∪E.
Without loss of generality, suppose that

|e1| − |V1| ≥ |e2| − |V2| ≥ · · · ≥ |es| − |Vs|.

Let x be the Perron vector of G. Similar to the proof of Facts 1-3 in Theorem 3.1, we have |Vi| = 1 for any
i ∈ [s] and s = r.

Fact 5. |ei| = k for any i ∈ [r].
Noting that k = |e1| ≥ |e2| ≥ · · · ≥ |er| ≥ k−1, without loss of generality, we assume that |e1| = · · · = |es2 | = k,

|es2+1| = · · · = |er| = k − 1, then F(V1) = · · · = F(Vs2 ) = V0, where 1 ≤ s2 ≤ r. Let ρ(G) = ρ = β−
1
k . Define a

weighted incidence matrix M1 as follows:

M1(u, e′) =


∏

v∈e′ xv

ρxk
u
, for u ∈ e′,

0, otherwise.

Then M1 satisfies Definition 1.
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Suppose es2\es2+1 = w, v ∈ F(Vs2+1), v0 ∈ V. Now we may write:

(1)
s2∑

i=1

M1(w, ei) +
1
k

k−2∑
j=1

M1(w, e0,( j){w}) +
2
k

M1(w, e0,(k−1){w}) = 1;

(2)
s2∑

i=1

M1(v, ei) +
s∑

i=s2+1

[
1
k

k−2∑
j=1

M1(v, ei,( j){v}) +
2
k

M1(v, ei,(k−1){v})]

+
1
k

k−2∑
j=1

M1(v, e0,( j){v}) +
2
k

M1(v, e0,(k−1){v}) = 1;

(3) M1(v0, ei) = 1, for v0 ∈ ei, i = 1, 2, . . . , s2;

(4)
1
k

k−2∑
j=1

M1(v0, ei,( j){v0}) +
2
k

M1(v0, ei,(k−1){v0}) = 1, for v0 ∈ ei, i = s2 + 1, . . . , s;

(5)
∏
v∈ei

M1(v, ei) = β, for i = 1, 2, . . . , s2;

(6)
∏

v∈ei,( j){v}

M1(v, ei,( j){v}) = β, for any j ∈ [k − 1], i = s2 + 1, . . . , s;

(7)
∏

v∈e0,( j){v}

M1(v, e0,( j){v}) = β.

For es2 , for convenience, we set M1(w, es2 ) =
xk−2

v xv0

ρxk−1
w

:= x0, M1(v, es2 ) =
xwxv0

ρx2
v

:= y0. Note that M1(v0, es2 ) =
xwxk−2

v xv0

ρxk
v0
=

xwxk−2
v

ρxk−1
v0
= 1, and xmax = xv, xmin = xv0 by Lemma 2.1, then

y0 =
xwxv0

ρx2
v

= (
xv0

xv
)k = (

1
γ

)k.

Let H5 = G − es2 + es2 , where es2 = es2\w. Construct a weighted incidence matrix M′

1 for H5 as following:

M′

1(v, e′) =


M1(v, e′), e′ < S(es2 ),
β

1
k−1 , e′ = es2,( j){v0}, v = v, for i = 1, . . . , k − 2,
β

1
k−2 , e′ = es2,(k−1){v0}, v = v,

1, v ∈ e′ ∈ S(es2 ), d(v) = 1.

where v0 ∈ es2 . Similar to Theorem 3.1, we have

k − 2
k
β

1
k−1 +

2
k
β

1
k−2 ≤ γ−k = y0.
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Now for es2 , it has

(1)
s2−1∑
i=1

M′

1(w, ei) +
1
k

k−2∑
j=1

M′

1(w, e0,( j){w}) +
2
k

M′

1(w, e0,(k−1){w}) = 1 −M1(w, es2 ) < 1;

(2)
1
k

k−2∑
j=1

M′

1(v, es2,( j){v}) +
2
k

M′

1(v, es2,(k−1){v}) =
k − 2

k
β

1
k−1 +

2
k
β

1
k−2 ≤ y0 =M1(v, es2 );

(3)
1
k

k−2∑
j=1

M′

1(v0, es2,( j){v0}) +
2
k

M′

1(v0, es2,(k−1){v0}) = 1, for v0 ∈ es2 ;

(4)
∏

v∈es2 ,( j){v0}

M′

1(v, es2,( j){v0}) = β, for v0 ∈ es2 , 1 ≤ j ≤ k − 2;

(5)
∏

v∈es2 ,(k−1){v0}

M′

1(v, es2,(k−1){v0}) = β, for v0 ∈ es2 .

So M′

1 is strictly β-subnormal. Also by Lemma 2.3, ρ(H5) < β−
1
k = ρ(G). Then |ei| = k, i = 1, 2, . . . , r and

F(v1) = F(v2) = · · · = F(vr) = V0. Thus we get that G � Br
n(k, k − 1).

Let n − r = 1, Ca,b
n,n−1(k, k − 1) be the hypergraph in Gn,r with a k-edges and b (k − 1)-edges. See Figure 2.

Obviously, each of k-edges contains k−1 pendent vertices, each of (k−1)-edges contains k−2 pendent vertices,
then a(k− 1)+ b(k− 2) = r. According to Theorem 4.3 in [2], we know that Ca1,b1

n,n−1(k, k− 1) have the maximum
spectral radius in Gn,n−1, where b1 is the maximum solution of congruence (n− b1(k− 2)− 1) ≡ 0(mod k− 1).

1k -

1k -

2k -

2k -

a
b

,

, 1( , 1)a b

n n
C k k

-
-

Figure 2: The hypergraph Ca,b
n,n−1(k, k − 1)

For n − r = 2, let

• k1-edge be an edge consisting of two non-pendent vertices and k − 2 pendent vertices;
• k2-edge be an edge consisting of a non-pendent vertex and k − 1 pendent vertices;
• (k − 1)1-edge be an edge consisting of two non-pendent vertices and k − 3 pendent vertices;
• (k − 1)2-edge be an edge consisting of a non-pendent vertex and k − 2 pendent vertices.

Let Da,b,c,d
n,n−2(k, k− 1) be a {k, k− 1}-graph inGn,r with a k1-edges, b (k− 1)1-edges, c k2-edges, d (k− 1)2-edges,

and a(k − 2) + b(k − 3) + c(k − 1) + d(k − 2) = n − 2. See Figure 3. For convenience, let

• E1 be the set of k1-edges in Da,b,c,d
n,n−2(k, k − 1);

• E2 be the set of k2-edges in Da,b,c,d
n,n−2(k, k − 1);

• E3 be the set of (k − 1)1-edges in Da,b,c,d
n,n−2(k, k − 1);

• E4 be the set of (k − 1)2-edges in Da,b,c,d
n,n−2(k, k − 1).
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Figure 3: The hypergraph Da,b,c,d
n,n−2(k, k − 1)

Then E(Da,b,c,d
n,n−2(k, k − 1)) = E1 ∪ E2 ∪ E3 ∪ E4.

By Lemma 2.6, we may assume that k2-edges and (k − 1)2-edges of Da,b,c,d
n,n−2(k, k − 1) have a non-pendent

vertex in common.

Lemma 3.3. Suppose that Da1,b1,c,d
n,n−2 (k, k−1) and Da2,b2,c,d

n,n−2 (k, k−1) are two {k, k−1}-graphs with a1(k−2)+b1(k−3) =

a2(k − 2) + b2(k − 3) and b1 < b2. Then ρ(Da1,b1,c,d
n,n−2 (k, k − 1)) < ρ(Da2,b2,c,d

n,n−2 (k, k − 1)).

Proof. Let u1,u2 be the two non-pendent vertices in V(Da2,b2,c,d
n,n−2 (k, k − 1)) and E(Da2,b2,c,d

n,n−2 (k, k − 1)) = E1 ∪ E2 ∪

E3 ∪ E4. According to the definition of Da,b,c,d
n,n−2(k, k − 1), without loss of generality, we set u1 ∈ e ∈ E3 ∪ E4.

Clearly, |E1| = a2, |E2| = b2, |E3| = c, |E4| = d.

Let G := Da2,b2,c,d
n,n−2 (k, k − 1) and ρ(Da2,b2,c,d

n,n−2 (k, k − 1)) = β−
1
k , by Lemma 2.2, there is a weighted incidence

matrix M2 which satisfies the following conditions:


∑

e′∈Sv(G) a(e)M2(v, e′) = 1, ∀ v ∈ V(G) and any e-expanded edge e′,∏
v∈e′ M2(v, e′) = β, ∀ e′ ∈ S(G),

M2(v, e′1) =M2(v, e′2), e′1 is deferent from e′2 only their order.
(3.2)

For an (k − 1)1-edge e, we may extend it into k − 1 different k-edge if we don’t consider the order of the
vertices, denoted by e(1){u1}, e(2){u1}, . . . , e(k−2){u1}, e(k−1){u1}. We may suppose that e(k−2){u1} contains a u1 and
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two u2, and e(k−1){u1} contains two u1 and a u2. Now we may write:

(1)
∑
e∈E1

M2(u1, e) +
∑
e∈E2

[
1
k

k−2∑
i=1

M2(u1, e(i){u1}) +
2
k

M2(u1, e(k−1){u1})]

+
∑
e∈E3

M2(u1, e) +
∑
e∈E4

[
1
k

k−2∑
i=1

M2(u1, e(i){u1}) +
2
k

M2(u1, e(k−1){u1})] = 1;

(2)
∑
e∈E1

M2(u2, e) +
∑
e∈E2

[
1
k

k−2∑
i=1

M2(u2, e(i){u1}) +
2
k

M2(u2, e(k−1){u1})] = 1;

(3)
1
k

k−2∑
i=1

M2(v, e(i){v}) +
2
k

M2(v, e(k−1){v}) = 1, for v ∈ e ∈ E2 ∪ E4, d(v) = 1;

(4) M2(v, e) = 1, for v ∈ e ∈ E1 ∪ E3, d(v) = 1;

(5)
∏
v∈e

M2(v, e) =M2(u1, e)M2(u2, e) = β, for e ∈ E1;

(6)
∏

v∈e(i){u1}

M2(v, e(i){u1}) = β, for e ∈ E2 ∪ E4;

(7) M2(u1, e) = β, for e ∈ E3.

(3.3)

For any e ∈ E2, for convenience, we may write M2(u1, e(i){u1}) := x, M2(u1, e(k−2){u1}) := x1, M2(u1, e(k−1){u1}) :=
x2, M2(u2, e(i){u1}) := y, M2(u2, e(k−2){u1}) := y1, M2(u2, e(k−1){u1}) := y2, where i = 1, . . . , k − 3. Then according
to (6) of (3.3), we have


xy = β,
x1y2

1 = β,

x2
2y2 = β.

Note that x > β, y > β, x1 > β, y2 > β.
Choose b2 − b1 edges in E2, and let E′2 be the set containing all these edges. Further let E′1 be a set having

(b2−b1)(k−3)
k−2 = a1−a2 edges, each edge in E′1 consists of u1,u2 and (k−2) pendent vertices. Then Da1,b1,c,d

n,n−2 (k, k−1)

may be obtained from Da2,b2,c,d
n,n−2 (k, k − 1) by deleting the edges in E′2 and adding the edges in E′1.

Define a weighted incidence matrix M′

2 for Da1,b1,c,d
n,n−2 (k, k − 1):

M′

2(v, e′) =


M2(v, e′), for e′ < S(E′1),
x0, v ∈ e′ ∈ S(E′1), v = u1,

y0, v ∈ e′ ∈ S(E′1), v = u2,

1, v ∈ e′ ∈ S(E′1), d(v) = 1.

where 0 < x0, y0 < 1 and x0, y0 satisfy


x0 < 1

a1−a2

∑
e∈E′2

[ k−3
k x + 1

k x1 +
2
k x2],

y0 ≤
1

a1−a2

∑
e∈E′2

[ k−3
k y + 1

k y1 +
2
k y2],

x0y0 ≥ β.
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where x0, y0 may be taken because

( 1
a1−a2

∑
e∈E′2

[ k−3
k x + 1

k x1 +
2
k x2])( 1

a1−a2

∑
e∈E′2

[ k−3
k y + 1

k y1 +
2
k y2])

β

=
(b2 − b1)2[ k−3

k x + 1
k x1 +

2
k x2][ k−3

k y + 1
k y1 +

2
k y2]

(a1 − a2)2β

>
[ k−3

k x + 1
k x1 +

2
k x2][ k−3

k y + 1
k y1 +

2
k y2]

β

> [
k − 3

k
+

1
k
+

2
k

x2

β
][

k − 3
k
+

1
k

y1

β
+

2
k

]

= [
k − 3

k
+

1
k
+

2
k

( βy2
)

1
2

β
][

k − 3
k
+

1
k

( βx1
)

1
2

β
+

2
k

]

= [
k − 2

k
+

2
k

(
1
βy2

)
1
2 ][

k − 1
k
+

1
k

(
1
βx1

)
1
2 ]

> 1.

For each edge in E′1, it has

(1)
∑
e∈E′1

M′

2(u1, e) = (a1 − a2)x0 <
∑
e∈E′2

[
1
k

k−2∑
i=1

M2(u1, e(i){u1}) +
2
k

M2(u1, e(k−1){u1})];

(2)
∑
e∈E′1

M′

2(u2, e) = (a1 − a2)y0 ≤

∑
e∈E′2

[
1
k

k−2∑
i=1

M2(u2, e(i){u1}) +
2
k

M2(u2, e(k−1){u1})];

(3)
∏
v∈e

M′

2(v, e) =M′

2(u1, e)M′

2(u2, e) = x0y0 ≥ β, for e ∈ E′1;

(4) M′

2(v, e) = 1, for v ∈ e ∈ E′1, d(v) = 1.

So M′

2 is strictly β-subnormal. By Lemma 2.3, ρ(Da1,b1,c,d
n,n−2 (k, k − 1)) < ρ(Da2,b2,c,d

n,n−2 (k, k − 1)).

Lemma 3.4. Suppose that Da,b,c1,d1
n,n−2 (k, k−1) and Da,b,c2,d2

n,n−2 (k, k−1) are two {k, k−1}-graphs with c1(k−1)+d1(k−2) =

c2(k − 1) + d2(k − 2) and d1 < d2. Then ρ(Da,b,c1,d1
n,n−2 (k, k − 1)) < ρ(Da,b,c2,d2

n,n−2 (k, k − 1)).

Proof. Let u1,u2 be the two non-pendent vertices in V(Da,b,c2,d2
n,n−2 (k, k − 1)) and E(Da,b,c2,d2

n,n−2 (k, k − 1)) = E1 ∪ E2 ∪

E3 ∪ E4. According to the definition of Da,b,c,d
n,n−2(k, k − 1), without loss of generality, we set u1 ∈ e ∈ E3 ∪ E4.

Clearly, |E1| = a, |E2| = b, |E3| = c2, |E4| = d2.

Let ρ(Da,b,c2,d2
n,n−2 (k, k− 1)) = β−

1
k , by Lemma 2.2, there is a weighted incidence matrix M3 which satisfies the

following conditions:


∑

e′∈Sv(G) a(e)M3(v, e′) = 1, ∀ v ∈ V(G) and any e-expanded edge e′,∏
v∈e′ M3(v, e′) = β, ∀ e′ ∈ S(G),

M3(v, e′1) =M3(v, e′2), e′1 is deferent from e′2 only their order.
(3.4)
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Now we may write:

(1)
∑
e∈E1

M3(u1, e) +
∑
e∈E2

[
1
k

k−2∑
i=1

M3(u1, e(i){u1}) +
2
k

M3(u1, e(k−1){u1})]

+
∑
e∈E3

M3(u1, e) +
∑
e∈E4

[
1
k

k−2∑
i=1

M3(u1, e(i){u1}) +
2
k

M3(u1, e(k−1){u1})] = 1;

(2)
∑
e∈E1

M3(u2, e) +
∑
e∈E2

[
1
k

k−2∑
i=1

M3(u2, e(i){u1}) +
2
k

M3(u2, e(k−1){u1})] = 1;

(3)
1
k

k−2∑
i=1

M3(v, e(i){v}) +
2
k

M3(v, e(k−1){v}) = 1, for v ∈ e ∈ E2 ∪ E4, d(v) = 1;

(4) M3(v, e) = 1, for v ∈ e ∈ E1 ∪ E3, d(v) = 1;

(5)
∏
v∈e

M3(v, e) =M3(u1, e)M3(u2, e) = β, for e ∈ E1;

(6)
∏

v∈e(i){u1}

M3(v, e(i){u1}) = β, for e ∈ E2 ∪ E4;

(7) M3(u1, e) = β, for e ∈ E3.

(3.5)

Choose d2 − d1 edges in E4, and let E′4 be the set containing all these edges. Further let E′3 be a set having
(d2−d1)(k−2)

k−1 = c1 − c2 edges, each edge in E′3 contains (k − 1) pendent vertices and u1. Then Da,b,c1,d1
n,n−2 (k, k − 1)

may be obtained from Da,b,c2,d2
n,n−2 (k, k − 1) by deleting the edges in E′4 and adding edges in E′3.

Define a weighted incidence matrix M′

3 for Da,b,c1,d1
n,n−2 (k, k − 1):

M′

3(v, e′) =


M3(v, e′), for e′ < S(E′3),
β, v ∈ e′ ∈ S(E′3), v = u1,

1, v ∈ e′ ∈ S(E′3), d(v) = 1.

For each edge in E′3, it has

(1)
∑
e∈E′3

M′

3(u1, e) = (c1 − c2)β <
∑
e∈E′4

[
1
k

k−2∑
i=1

β +
2
k
β] <

∑
e∈E′4

[
1
k

k−2∑
i=1

β +
2
k
β

1
2 ]

=
∑
e∈E′4

[
1
k

k−2∑
i=1

M3(u1, e(i){u1}) +
2
k

M3(u1, e(k−1){u1})];

(2)
∏
v∈e

M′

3(v, e) =M′

3(u1, e) = β, for e ∈ E′3;

(3) M′

3(v, e) = 1, for v ∈ e ∈ E′3, d(v) = 1.

So M′

3 is strictly β-subnormal. By Lemma 2.3, ρ(Da,b,c1,d1
n,n−2 (k, k − 1)) < ρ(Da,b,c2,d2

n,n−2 (k, k − 1)).

Lemma 3.5. Suppose that Da,b3,c,d3
n,n−2 (k, k−1) and Da,b4,c,d4

n,n−2 (k, k−1) are two {k, k−1}-graphs with b3(k−3)+d3(k−2) =

b4(k − 3) + d4(k − 2) and b3 > b4. Then ρ(Da,b3,c,d3
n,n−2 (k, k − 1)) > ρ(Da,b4,c,d4

n,n−2 (k, k − 1)).

Proof. Let u1,u2 be the two non-pendent vertices in Da,b3,c,d3
n,n−2 (k, k−1) and E(Da,b3,c,d3

n,n−2 (k, k−1)) = E1∪E2∪E3∪E4.

According to the definition of Da,b,c,d
n,n−2(k, k − 1), without loss of generality, we set u1 ∈ e ∈ E3 ∪ E4. Clearly,

|E1| = a, |E2| = b3, |E3| = c, |E4| = d3.
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Let ρ(Da,b3,c,d3
n,n−2 (k, k− 1)) = β−

1
k , by Lemma 2.2, there is a weighted incidence matrix M4 which satisfies the

following conditions:
∑

e′∈Sv(G) a(e)M4(v, e′) = 1, ∀ v ∈ V(G) and any e-expanded edge e′,∏
v∈e′ M4(vli , e

′) = β, ∀ e′ ∈ S(G),
M4(v, e′1) =M4(v, e′2), e′1 is deferent from e′2 only their order.

(3.6)

Now we may write:

(1)
∑
e∈E1

M4(u1, e) +
∑
e∈E2

[
1
k

k−2∑
i=1

M4(u1, e(i){u1}) +
2
k

M4(u1, e(k−1){u1})]

+
∑
e∈E3

M4(u1, e) +
∑
e∈E4

[
1
k

k−2∑
i=1

M4(u1, e(i){u1}) +
2
k

M4(u1, e(k−1){u1})] = 1;

(2)
∑
e∈E1

M4(u2, e) +
∑
e∈E2

[
1
k

k−2∑
i=1

M4(u2, e(i){u1}) +
2
k

M4(u2, e(k−1){u1})] = 1;

(3)
1
k

k−2∑
i=1

M4(v, e(i){v}) +
2
k

M4(v, e(k−1){v}) = 1, for v ∈ e ∈ E2 ∪ E4, d(v) = 1;

(4) M4(v, e) = 1, for v ∈ e ∈ E1 ∪ E3, d(v) = 1;

(5)
∏
v∈e

M4(v, e) =M4(u1, e)M4(u2, e) = β, for e ∈ E1;

(6)
∏

v∈e(i){u1}

M4(v, e(i){u1}) = β, for e ∈ E2 ∪ E4;

(7) M4(u1, e) = β, for e ∈ E3.

(3.7)

Similar to Lemma 3.3, for any e ∈ E2, we may write M4(u1, e(i){u1}) := x, M4(u1, e(k−2){u1}) := x1,
M4(u1, e(k−1){u1}) := x2, M4(u2, e(i){u1}) := y, M4(u2, e(k−2){u1}) := y1, M4(u2, e(k−1){u1}) := y2, where i =
1, . . . , k − 3. Then according to (6) of (3.7), we have

xy = β,
x1y2

1 = β,

x2
2y2 = β.

Note that x > β, y > β, x1 > β, y2 > β.
Choose b3 − b4 edges in E2, and let E′2 be the set containing all these edges. Further let E′4 be a set having

(b3−b4)(k−3)
k−2 = d4 − d3 edges, each edge in E′4 contains (k − 2) pendent vertices and {u1}. Then Da,b4,c,d4

n,n−2 (k, k − 1)

may be obtained from Da,b3,c,d3
n,n−2 (k, k − 1) by deleting the edges in E′2 and adding edges in E′4.

Define a weighted incidence matrix M′

4 for Da,b4,c,d4
n,n−2 (k, k − 1):

M′

4(v, e′) =


M4(v, e′), for e′ < S(E′4),
β, e′ = e(i){u1}, e ∈ E′4, v = u1, for i = 1, . . . , k − 2,
β

1
2 , e′ = e(k−1){u1}, e ∈ E′4, v = u1,

1, v ∈ e′ ∈ S(E′4), d(v) = 1.
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We can get

∑
e∈E′2

[
k − 3

k
x +

1
k

x1 +
2
k

x2] − (d4 − d3)[
k − 2

k
β +

2
k
β

1
2 ]

= (b3 − b4)[
k − 3

k
x +

1
k

x1 +
2
k

x2] − (d4 − d3)[
k − 2

k
β +

2
k
β

1
2 ]

> [
k − 3

k
x +

1
k

x1 +
2
k

x2] − [
k − 2

k
β +

2
k
β

1
2 ]

>
2
k

(x2 − β
1
2 ) =

2
k

((
β

y2
)

1
2 − β

1
2 )

> 0.

For each edge in E′4, it has

(1)
∑
e∈E′4

[
1
k

k−2∑
i=1

M′

4(u1, e(i){u1}) +
2
k

M′

4(u1, e(k−1){u1})]

<
∑
e∈E′2

[
1
k

k−2∑
i=1

M4(u1, e(i){u1}) +
2
k

M4(u1, e(k−1){u1})];

(2)
∑
e∈E1

M′

4(u2, e) +
∑

e∈E2\E′2

[
1
k

k−2∑
i=1

M′

4(u2, e(i){u1}) +
2
k

M′

4(u2, e(k−1){u1})] < 1;

(3)
1
k

k−2∑
i=1

M′

4(v, e(i){v}) +
2
k

M′

4(v, e(k−1){v}) = 1, for v ∈ e ∈ E′4, d(v) = 1;

(4)
∏

v∈e(i){u1}

M′

4(v, e(i){u1}) =M′

4(u1, e(i){u1}) = β, for e ∈ E′4, i = 1, . . . , k − 2;

(6)
∏

v∈e(k−1){u1}

M′

4(v, e(k−1){u1}) = (M′

4(u1, e(k−1){u1}))2 = β.

So M′

4 is strictly β-subnormal. By Lemma 2.3, ρ(Da,b4,c,d4
n,n−2 (k, k − 1)) < ρ(Da,b3,c,d3

n,n−2 (k, k − 1)).

Lemma 3.6. Suppose that Da5,b,c5,d
n,n−2 (k, k−1) and Da6,b,c6,d

n,n−2 (k, k−1) are two {k, k−1}-graphs with a5(k−2)+ c5(k−1) =

a6(k − 2) + c6(k − 1) and a5 > a6. Then ρ(Da5,b,c5,d
n,n−2 (k, k − 1)) > ρ(Da6,b,c6,d

n,n−2 (k, k − 1)).

Proof. Let u1,u2 be the two non-pendent vertices of Da5,b,c5,d
n,n−2 (k, k−1) and E(Da5,b,c5,d

n,n−2 (k, k−1)) = E1∪E2∪E3∪E4.

According to the definition of Da,b,c,d
n,n−2(k, k − 1), without loss of generality, we set u1 ∈ e ∈ E3 ∪ E4. Clearly,

|E1| = a5, |E2| = b, |E3| = c5, |E4| = d.
Let ρ(Da5,b,c5,d

n,n−2 (k, k− 1)) = β−
1
k , by Lemma 2.2, there is a weighted incidence matrix M5 which satisfies the

following conditions:


∑

e′∈Sv(G) a(e)M5(v, e′) = 1, ∀ v ∈ V(G) and any e-expanded edge e′,∏
v∈e′ M5(v, e′) = β, ∀ e′ ∈ S(G),

M5(v, e′1) =M5(v, e′2), e′1 is deferent from e′2 only their order.
(3.8)
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Now we may write:

(1)
∑
e∈E1

M5(u1, e) +
∑
e∈E2

[
1
k

k−2∑
i=1

M5(u1, e(i){u1}) +
2
k

M5(u1, e(k−1){u1})]

+
∑
e∈E3

M5(u1, e) +
∑
e∈E4

[
1
k

k−2∑
i=1

M5(u1, e(i){u1}) +
2
k

M5(u1, e(k−1){u1})] = 1;

(2)
∑
e∈E1

M5(u2, e) +
∑
e∈E2

[
1
k

k−2∑
i=1

M5(u2, e(i){u1}) +
2
k

M5(u2, e(k−1){u1})] = 1;

(3)
1
k

k−2∑
i=1

M5(v, e(i){v}) +
2
k

M5(v, e(k−1){v}) = 1, for v ∈ e ∈ E2 ∪ E4, d(v) = 1;

(4) M5(v, e) = 1, for v ∈ e ∈ E1 ∪ E3, d(v) = 1;

(5)
∏
v∈e

M5(v, e) =M5(u1, e)M5(u2, e) = β, for e ∈ E1;

(6)
∏

v∈e(i){u1}

M5(v, e(i){u1}) = β, for e ∈ E2 ∪ E4;

(7) M5(u1, e) = β, for e ∈ E3.

Choose a5 − a6 edges in E1, and let E′1 be the set containing all these edges. Further let E′3 be a set having
(a5−a6)(k−2)

k−1 = c6 − c5 edges, each edge in E′3 contains (k − 1) pendent vertices and {u1}. Then Da6,b,c6,d
n,n−2 (k, k − 1)

may be obtained from Da5,b,c5,d
n,n−2 (k, k − 1) by deleting the edges in E′1 and adding edges in E′3.

Define a weighted incidence matrix M′

5 for Da5,b,c5,d
n,n−2 (k, k − 1):

M′

5(v, e′) =


M5(v, e′), for e′ < S(E′3),
M5(u1, e0), v ∈ e′ ∈ S(E′3), v = u1,

1, v ∈ e′ ∈ S(E′3), d(v) = 1.

where e0 ∈ E1. For each edge in E′3, it has

(1)
∑
e∈E′3

M′

5(u1, e) = (c6 − c5)M5(u1, e0) <
∑
e∈E′1

M5(u1, e) = (a5 − a6)M5(u1, e0);

(2)
∑

e∈E1\E′1

M′

5(u2, e) +
∑
e∈E2

[
1
k

k−2∑
i=1

M′

5(u2, e(i){u1}) +
2
k

M′

5(u2, e(k−1){u1})] < 1;

(3)
∏
v∈e

M′

5(v, e) =M′

5(u1, e) =M5(u1, e0) > β, for e ∈ E′3;

(4) M′

5(v, e) = 1, for v ∈ e ∈ E′3, d(v) = 1.

So M′

5 is strictly β-subnormal. By Lemma 2.3, ρ(Da6,b,c6,d
n,n−2 (k, k − 1)) < ρ(Da5,b,c5,d

n,n−2 (k, k − 1)).

Lemma 3.7. Suppose that Da7,b,c,d7
n,n−2 (k, k−1) is a {k, k−1}-hypergraph. Thenρ(Da7,b,c,d7

n,n−2 (k, k−1)) > ρ(Da7−1,b,c,d7+1
n,n−2 (k, k−

1)).

Proof. Let u1,u2 be the two non-pendent vertices of Da7,b,c,d7
n,n−2 (k, k−1) and E(Da7,b,c,d7

n,n−2 (k, k−1)) = E1∪E2∪E3∪E4.

According to the definition of Da,b,c,d
n,n−2(k, k − 1), without loss of generality, we set u1 ∈ e ∈ E3 ∪ E4. Clearly,

|E1| = a7, |E2| = b, |E3| = c, |E4| = d7.
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Let ρ(Da7,b,c,d7
n,n−2 (k, k − 1)) = ρ = β−

1
k and x be the Perron vector of Da7,b,c,d7

n,n−2 (k, k − 1). Define a weighted
incidence matrix M6 as follows:

M6(u, e′) =


∏

v∈e′ xv

ρxk
u
, for u ∈ e′,

0, otherwise.

Then M6 satisfies Definition 1.
Now we may write:

(1)
∑
e∈E1

M6(u1, e) +
∑
e∈E2

[
1
k

k−2∑
i=1

M6(u1, e(i){u1}) +
2
k

M6(u1, e(k−1){u1})]

+
∑
e∈E3

M6(u1, e) +
∑
e∈E4

[
1
k

k−2∑
i=1

M6(u1, e(i){u1}) +
2
k

M6(u1, e(k−1){u1})] = 1;

(2)
∑
e∈E1

M6(u2, e) +
∑
e∈E2

[
1
k

k−2∑
i=1

M6(u2, e(i){u1}) +
2
k

M6(u2, e(k−1){u1})] = 1;

(3)
1
k

k−2∑
i=1

M6(v, e(i){v}) +
2
k

M6(v, e(k−1){v}) = 1, for v ∈ e ∈ E2 ∪ E4, d(v) = 1;

(4) M6(v, e) = 1, for v ∈ e ∈ E1 ∪ E3, d(v) = 1;

(5)
∏
v∈e

M6(v, e) =M6(u1, e)M6(u2, e) = β, for e ∈ E1;

(6)
∏

v∈e(i){u1}

M6(v, e(i){u1}) = β, for e ∈ E2 ∪ E4;

(7) M6(u1, e) = β, for e ∈ E3.

For e1 ∈ E1, let v0 ∈ e1 and d(v0) = 1. For convenience, we set M6(u1, e1) =
xu2 xk−2

v0

ρxk−1
u1

:= y0. Note that

M6(v0, e1) =
xu1 xu2 xk−2

v0

ρxk
v0
=

xu1 xu2

ρx2
v0
= 1, and xmax = xu1 , xmin = xv0 by Lemma 2.1, then

y0 =
xu2 xk−2

v0

ρxk−1
u1

= (
xv0

xu1

)k = (
1
γ

)k.

Let e′1 = e1\u2 and Da7−1,b,c,d7+1
n,n−2 (k, k− 1) = Da7,b,c,d7

n,n−2 (k, k− 1)− e1 + e′1. Construct a weighted incidence matrix

M′

6 of Da7−1,b,c,d7+1
n,n−2 (k, k − 1) as following:

M′

6(v, e′) =


M6(v, e′), for e′ < S(e′1),
β, e′ = e′1,( j){u1}, v = u1, for i = 1, . . . , k − 2,

β
1
2 , e′ = e′1,(k−1){u1}, v = u1,

1, v ∈ e′ ∈ S(e′1), d(v) = 1.

Similar to Theorem 3.1, we have

k − 2
k
β +

2
k
β

1
2 =

k − 2
k
ρ−k +

2
k
ρ−

k
2

≤
k − 2

k
(kγk−1)−k +

2
k

(kγk−1)−
k
2

= (k − 2)k−k−1γ−k(k−1) + 2k−
k
2−1γ−

k(k−1)
2
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≤
k − 2
kk+1
γ−k +

2

k
k
2+1
γ−k

≤ γ−k = y0.

Now for e′1, it has

(1)
1
k

k−2∑
i=1

M′

6(u1, e′1,(i){u1}) +
2
k

M′

6(u1, e′1,(k−1){u1}) =
k − 2

k
β +

2
k
β

1
2 ≤ y0 =M6(u1, e1);

(2)
∑

e∈E1\e′1

M′

6(u2, e) +
∑
e∈E2

[
1
k

k−2∑
i=1

M′

6(u2, e(i){u1}) +
2
k

M′

6(u2, e(k−1){u1})] < 1;

(3)
∏

v∈e′1,( j){u1}

M′

6(v, e′1,( j){u1}) =M′

6(u1, e′1,(i){u1}) = β, for 1 ≤ j ≤ k − 2;

(4)
∏

v∈e′1,(k−1){u1}

M′

6(v, e′1,(k−1){u1}) = (M′

6(u1, e′1,(k−1){u1}))2 = β.

So M′

6 is strictly β-subnormal. By Lemma 2.3, ρ(Da7−1,b,c,d7+1
n,n−2 (k, k − 1)) < ρ(Da7,b,c,d7

n,n−2 (k, k − 1)).

Theorem 3.8. Among all {k, k − 1}-graphs in Gn,n−2. The hypergraph Da0,b0,c0,0
n,n−2 (k, k − 1) has uniquely the maximum

spectral radius, where c0 = min{c | a(k− 2)+ b(k− 3)+ c(k− 1) = n− 2, a, b ≥ 1} and b0 is the maximum solution of
congruence

(
(n − c0(k − 1)) − b0(k − 3) − 2

)
≡ 0 (mod k − 2).

Proof. Let H be the {k, k − 1}-hypergraph with maximum spectral radius in Gn,n−2. By Lemma 3.6, the more
k1-edge, the bigger the spectral radius of H; By Lemma 3.5, the more (k − 1)1-edge, the bigger the spectral
radius of H. Thus H has as many k1-edge and (k − 1)1-edge as possible.

By Lemmas 3.4 and 3.6, we get H has as few k2-edge as possible. By Lemmas 3.3 and 3.7, we have
H � Da0,b0,c0,0

n,n−2 (k, k− 1), where c0 = min{c | a(k− 2)+ b(k− 3)+ c(k− 1) = n− 2, a, b ≥ 1} and b0 is the maximum

solution of congruence
(
(n − c0(k − 1)) − b0(k − 3) − 2

)
≡ 0 (mod k − 2).
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