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On the families of numbers with respect to Orlicz functions
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Abstract. Summable families of numbers were defined by E. H. Moore ([11, 12]), who also showed that
an infinite series of real or complex numbers converges unconditionally if and only if it is summable.
In this paper, we introduce an extension of power series methods in the sense of summable families. As
applications, we construct the spaces of families of numbers with respect to Orlicz functions and study some
expansions of P-strongly convergent and P-statistically convergent series with respect to Orlicz functions.
Our results are natural extensions of the sequence spaces defined by Orlicz, which are introduced in [13]
and [14, 15].

1. Introduction

A family of numbers (xi)i∈I is a set of real or complex numbers, xi, which correspond in a unique
way to the elements i of an index set I. The great advantage of the previous concept is that it can also be
applied to uncountable families. In this paper, we study some natural extensions of sequence spaces in the
context of families of numbers. Our results are followed by the same vein of the works [1, 2, 7, 8, 13, 15]
and the references given therein. More precisely, in Section 3, we introduce an extension of power series
methods in the context of summable families. As applications, we have obtained extensions of the P-
strongly convergent and P-statistically convergent concepts. They are studied in more detail in Section
6. We note that power series methods play an important role in the theory of summable sequences (see
[4–6]). In Section 4, in view of the results in [13], we study some properties of number families with
respect to Orlicz functions and examine their linear structure and paranorms. In Section 5, we construct
the p-Banach structure for spaces of number families. In particular, we obtain some interesting conclusions
about degenerate Orlicz functions. In Section 6, as previously mentioned, we improve the result published
by Şahin B. N. in [15] by using power series methods in the context of summable families.

2. Preliminaries

Let I be a nonempty set. A family of numbers (xi)i∈I (in short (xi)) is a set of real or complex numbers
xi that correspond in a unique way to the elements i of an index set I. Clearly, if I is countable, then (xi)i∈I
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is a sequence. If we denote the collection of all finite subsets I of by F (I), then for each family of numbers
(xi), the finite partial sums

σJ =
∑
i∈J

xi with J ∈ F (I). (1)

form a directed system, where set-theoretic inclusion J1 ≤ J2 is used as the ≥ relation. The system (σJ)J∈F (I)
is called convergent to σ if for every ε > 0, there exists J0 ∈ F (I) such that∣∣∣∣∑

i∈J

xi − σ
∣∣∣∣ < ε (2)

for every J ∈ F (I) with J0 ≤ J. By these means, we denote

lim σJ = σ.

In this paper, we denote that |J| is the number of elements of J ∈ F (I)..

Definition 2.1. ([12]) Let {xi}i∈I be a family of numbers. The family {xi}i∈I is said to be summable if the system
{σJ}J∈F (I) converges to σ, and we write

σ =
∑
i∈I

xi.

Definition 2.2. ([12]) Let {xi}i∈I be a family of numbers.
1) The family {xi}i∈I is said to be convergent to 0 if for every ε > 0, there exists J0 ∈ F (I) such that

|xi| < ε (3)

for every i ∈ I \ J0.
2) The family {xi}i∈I is said to be convergent to L ∈ K if for every ε > 0, there exists J0 ∈ F (I) such that

|xi − L| < ε (4)

for every i ∈ I \ J0.

Definition 2.3. ([12]) Let {xi}i∈I be a family of numbers. The family {xi}i∈I is said to be bounded if there exists M > 0
such that

|xi| <M (5)

for every i ∈ I.

Definition 2.4. 1) The family
(
σJ

)
J∈F (I)

⊂ R is said to be increasing if

σJ1 ≤ σJ2

for every J1, J2 ∈ F (I) and J1 ≤ J2.

2) The family
(
σJ

)
J∈F (I)

⊂ R is said to be decreasing if

σJ1 ≥ σJ2

for every J1, J2 ∈ F (I) and J1 ≤ J2.

The following fact may be non-original:
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Lemma 2.5. 1) If the family
(
σJ

)
J∈F (I)

⊂ R is increasing and C = supJ∈F (I) σJ < +∞, then

lim σJ = C.

2) If the family
(
σJ

)
J∈F (I)

⊂ R is decreasing and C = infJ∈F (I) σJ > −∞, then

lim σJ = C.

Proof. Let ε > 0 be arbitrary. Since C = supJ∈F (I) σJ < +∞, we can find J0 ∈ F (I) such that

C − ε < σJ0 ≤ C.

It follows from the increasing property of
(
σJ

)
that

C − ε < σJ0 ≤ σJ ≤ C.

for every J ≥ J0. This yields that
lim σJ = C.

This proves 1). By the same argument, we obtain 2).

Lemma 2.6. Suppose that x = (xi)i∈I is a summable family of numbers. Then, x = (xi) converges to 0.

Proof. Since x = (xi)i∈I is summable, we have that SJ =
∑

i∈J∈F (I) xi converges to S ∈ K. Let ε > 0; then, there
exists J0 ∈ F (I) such that

|SJ − S| <
ε
2

(6)

for all J ≥ J0. For each i ∈ I \ J0, we set J1 = J0 ∪ {i}, which implies that J1 ∈ F (I) and J1 ≥ J0. It follows from
(6) that

|SJ1 − S| <
ε
2
. (7)

Combining (6) and (7), we arrive at

|xi| = |SJ1 − SJ | = |SJ1 − S + S − SJ |

≤ |SJ1 − S| + |S − SJ | <
ε
2
+
ε
2
= ε

for all i ∈ I \ J0. This proves that x = (xi) converges to 0.

Throughout the paper, we let

l∞(I) =
{
x = (xi)i∈I ⊂ K : (xi) is bounded

}
;

C0(I) =
{
x = (xi)i∈I ⊂ K : (xi) converges to 0

}
;

C(I) =
{
x = (xi)i∈I ⊂ K : (xi) is convergent

}
,

and

lp(I) =
{
x = (xi)i∈I ⊂ K :

∑
i∈I

|xi|
p < +∞

}
with p > 0. We have the following inclusions:

lp(I) ⊂ C0(I) ⊂ C(I) ⊂ l∞(I).
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l∞(I) is a Banach space with respect to the operations

(xi)i∈I + (yi)i∈I = (xi + yi)i∈I and λ(xi)i∈I = (λxi)i∈I

with the norm
∥x∥ = sup

i∈I
|xi|

for all x ∈ l∞(I). Moreover, it is not difficult to check that C(I),C0(I) are closed subspaces of l∞(I). If p ≥ 1,
then lp(I) is a Banach space with respect to the norm

∥x∥ =
(∑

i∈I

|xi|
p
) 1

p

for all x = (xi) ∈ lp(I). In particular, if p = 2, then l2(I) is a Hilbert space with respect to the scalar product

(x|y) =
∑
i∈I

xiyi

for all x = (xi), y = (yi) ∈ l2(I).

Definition 2.7. ([7]) An Orlicz function M is a continuous nondecreasing and convex function defined for t ≥ 0
such that M(0) = 0 and lim

t→+∞
M(t) = +∞. If M(t) = 0 for some t > 0, M is said to be a degenerate Orlicz function.

Definition 2.8. ([7]) An Orlicz function M is said to satisfy the ∆2-condition at zero if lim
t→0

sup
M(2t)
M(t)

< +∞.

Remark 2.9. 1) It is easily checked that the ∆2-condition at 0 implies that, for every positive number q > 0,

lim
t→0

sup
M(qt)
M(t)

< +∞ (this condition is sometimes called the ∆q-condition).

2) It is easy to check that an Orlicz function M satisfies the ∆2-condition at zero if there exists a constant
K > 0 such that

M(2t) ≤ KM(t)

for all t ≥ 0. This condition is equivalent to the condition

M(qt) ≤ KM(t)

for all t ≥ 0 and q ≥ 1.

Definition 2.10. ([3]) Let 0 < p ≤ 1. A p−norm on a vector space E over K is a mapping ∥.∥ from E to [0,+∞)
satisfying

(i) ∥x∥ = 0 if and only if x = 0;
(ii) ∥λx∥ = |λ|p∥x∥, for every λ ∈ K and x ∈ E;
(iii) ∥x + y∥ ≤ ∥x∥ + ∥y∥ for every x, y ∈ E.
Then, (E, ∥.∥) is said to be a p-normed space.

It is easy to see that the 1-normed space is a normed space. A p-normed space E is called to be a p-Banach
space if it is complete according to the metric

d(x, y) = ∥x − y∥

for all x, y ∈ E.
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Example 2.11. It is easy to check that l∞(I) is a p-Banach space with p−norm

∥x∥ = sup
i∈I
|xi|

p

for all x = (xi) ∈ l∞(I), where 0 < p ≤ 1. Moreover, C(I) and C0(I) are closed subspaces of l∞(I).

The following definition is due from [10].

Definition 2.12. Two p-norms ∥.∥1 and ∥.∥2 on a K- vector space E are said to be equivalent if there are C1,C2 > 0
such that

C1∥x∥2 ≤ ∥x∥1 ≤ C1∥x∥2

for every x ∈ E.

It is easy to see that this is equivalent to requiring that the identity map idE : (E, ∥.∥1) → (E, ∥.∥2) is an
isomorphism.

Definition 2.13. ([9]) Let X be a linear space over field K and 1 be a function from X to the set R of real numbers.
Then, the pair (X, 1) is called a paranormed space and 1 is a paranorm for X, if the following axioms are satisfied for
all elements x, y ∈ X

a) 1(θ) = 0 if x = θ where θ is the zero element of X;
b) 1(x) ≥ 0;
c) 1(−x) = 1(x);
d) 1(x + y) ≤ 1(x) + 1(y) (triangle inequality);
e) If (αn) is a sequence of scalars with αn → α as n → ∞ and (xn) is a sequence in X with 1(xn − x) → 0 as

n→∞ then 1(αnxn − αx)→ 0 as n→∞ (continuity of multiplication by scalars).
A paranorm 1 is said to be total, if 1(x) = 0 implies x = θ.

3. An extension of power series methods

Let ω(I) be the set of families of complex numbers. Let p = (pi)i∈I be any family of nonnegative real
numbers and the map φ : I→ [0,∞). We define the corresponding power sum of (pi) and φ

pφ(t) =
∑
i∈I

pitφ(i)

for t ∈ R. We say that pφ(t) is convergent at t0 if the family
(
pit
φ(i)
0

)
i∈I

is summable, that is,∑
i∈I

pit
φ(i)
0 < +∞.

If pφ(t) is not convergent at t0, then it is said to be divergent at t0.
It is easy to see that pφ(t) becomes a normal power series when I = N and φ(n) = n for all n ∈ N. We

have the following facts about pφ(t):

Proposition 3.1. 1) If pφ(t) is convergent at t0 > 0, then it is convergent at 0 ≤ t < t0.
2) If pφ(t) is divergent at t0 > 0, then it is divergent at t > t0.

Proof. 1) Since pφ(t) is convergent at t0 > 0, we have

0 ≤
∑
i∈I

pit
φ(i)
0 = K < +∞.
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Moreover,
SJ :=

∑
i∈J

pitφ(i)
≤

∑
i∈J

pit
φ(i)
0 ≤ K < +∞

for every 0 ≤ t ≤ t0 and J ∈ F (I). Since pi is nonnegative and t ≥ 0, we can conclude that (SJ)J∈F (I) is
increasing. In view of Lemma 2.5, we infer that (SJ) is convergent and so∑

i∈I

pitφ(i) < +∞.

2) Since pφ(t) is divergent at t0 > 0, we have∑
i∈I

pit
φ(i)
0 = +∞.

Hence, for each n ∈N, there exist Jn ∈ F (I) such that

SJn =
∑
i∈Jn

pitφ(i)
≥

∑
i∈Jn

pit
φ(i)
0 ≥ n

for every t ≥ t0. This implies that supJ∈F (I) SJ = +∞. We obtain∑
i∈I

pitφ(i) = +∞.

The proof is complete.

Now, we set

R = sup{t0 ∈ [0,+∞) : pφ(t) is convergent at t0}. (8)

By the previous proposition, we can conclude that R exists and that pφ(t) is convergent on [0,R) and
divergent on (R,+∞). We said that R is the radius of convergence of pφ(t). It is easy to see that R is the
radius of convergence of the power series when I =N and φ(n) = n for all n ∈N.

Next, we assume that pφ has the radius of convergence R > 0. Let

Cpφ :=
{

f : (−R,R)→ R : lim
t→R−

f (t)
pφ(t)

exists
}
. (9)

and

CPpφ
:=

{
x = (xi) : px

φ :=
∑
i∈I

pitφ(i)xi has the radius of convergence ≥ R and px
φ ∈ Cpφ

}
. (10)

The functional Pφ − lim : CPpφ
→ R defined by

(Pφ − lim)(x) = lim
0<t→R−

1
p(t)

∑
i∈I

pitφ(i)xi (11)

is called a power-summable family method, and the family x = (xi) is said to be Pφ−convergent.
Now, by means of the summable family method and following the ideas of Unver and Orhan ([16]),

we introduce the concepts of strong summability and statistical convergence with respect to the power-
summable family method. We set the following notations:

W0(Pφ, I) =
{
x ∈ ω(I) : lim

0<t→R−

1
p(t)

∑
i∈I

pitφ(i)
|xi| = 0

}
(12)

and

W(Pφ, I) = {x ∈ ω(I) : x − Le ∈W0(Pφ), for some L}, (13)

where e = (ei), ei = 1 for every i ∈ I. When x ∈W(Pφ, I), we say that x is Pφ-strongly convergent to L.
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Definition 3.2. A power-summable family method is called regular if

(Pφ − lim)x = lim x

for every x ∈ C(I).

The following proposition is derived from Boos’s result.

Proposition 3.3. A power-summable family method is called regular if only if

lim
0<t→R−

pitφ(i)

p(t)
= 0 (14)

for all i ∈ I.

Proof. Suppose that the summable family method is called regular. Clearly, if pi = 0, then lim
0<t→R−

pitφ(i)

p(t)
= 0.

Hence, we can reduce to pi > 0 for all i ∈ I. Since the summable family method is called regular, we infer
that the family of numbers

(
1

p(t)
∑

i∈I pitφ(i)xi

)
i∈I

is summable for each t < R. It follows from Proposition 1.1.5

in [12] that
(

1
p(t)

∑
i∈I pitφ(i)xi

)
i∈I

contains at most countably many nonvanishing terms. This yields that the

family (xi

)
i∈I

contains at most countably many nonvanishing terms. Hence, applying Theorem 3.6.6 in [4],
we can conclude that

lim
0<t→R−

pitφ(i)

p(t)
= 0

for all i ∈ I.

Definition 3.4. The family x = (xi) is said to be Pφ-statistical convergent to L if χK(x−Le,ε) is contained in W0(Pφ)
for every ε > 0, where χK(x,ε) is the characteristic function of the set

K(x, ε) = {i ∈ I : |xi| ≥ ε}.

By st(Pφ, I), we denote the space of all Pφ-statistically convergent families.
Next, we introduce the concept of an Pφ-uniformly integrable family, which is a natural extension of the

concept of the P-uniformly integrable sequence introduced by Unver and Orhan [16].

Definition 3.5. Let Pφ be a power-summable family method and x = (xi) be a family of numbers. Then, x is called
Pφ-uniformly integrable if there exists 0 ≤ t0 < R such that

lim
c→∞

sup
t∈[t0,R]

1
pφ(t)

∑
i∈I,|xi |≥c

pitφ(i)
|xi| = 0. (15)

It is easy to see that every bounded family is Pφ-uniformly integrable. In [16], the authors proved that
a sequence x is P−strongly convergent if and only if it is P− statistically convergent and P-uniformly
integrable. In the same vein, we have obtained the following fact:

Theorem 3.6. Let Pφ be a power-summable family method. A family x = (xi) is Pφ−strongly convergent if and only
if it is Pφ− statistically convergent and Pφ-uniformly integrable.
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4. Families of numbers with respect to Orlicz functions

Let ω(I) be the set of all families of complex numbers. Let p = (pi)i∈I be any family of positive real
numbers and M be an Orlicz function. According to the idea from [13], we define the following spaces:

lM(p, I) =
{
x ∈ ω(I) :

∑
i∈I

(
M
|xi|

ρ

)pi
< ∞, for some ρ > 0

}
; (16)

hM(p, I) =
{
x ∈ ω(I) :

∑
i∈I

(
M
|xi|

ρ

)pi
< ∞, for every ρ > 0

}
; (17)

W0(p,M, I) =
{
x ∈ ω(I) : yJ :=

1
|J|

∑
i∈J

(
M
|xi|

ρ

)pi
→ 0, for some ρ > 0, J ∈ F (I)

}
; (18)

W(p,M, I) =
{
x ∈ ω(I) : yJ :=

1
|J|

∑
i∈J

(
M
|xi − L|
ρ

)pi
→ 0, for some ρ > 0 and L ∈ C, J ∈ F (I)

}
; (19)

W∞(p,M, I) =
{
x ∈ ω(I) : sup

J∈F (I)

1
|J|

∑
i∈J

(
M
|xi|

ρ

)pi
< ∞ for some ρ > 0

}
. (20)

When pi = 1 for all i ∈ I, then lM(p, I) becomes lM(I). When M(x) = x, then the above sets of num-
ber families are denoted by l(p, I), h(p, I), [C, 1, p, I], [C, 1, p, I]0 and [C, 1, p, I]∞, respectively. We denote
W(p,M, I),W0(p,M, I) and W∞(p,M, I) as W(M, I),W0(M, I) and W∞(M, I) when pi = 1 for all i.

Next, we always assume that (pi) is bounded and set H := supi∈I pi.

Theorem 4.1. lM(p, I) is a linear subspace of l∞(I).

Proof. We first show that lM(p, I) ⊂ l∞(I). Suppose that lM(p, I) ⊊ l∞(I). Then, we can seek x = (xi) ∈ lM(p, I)
such that x = (xi) is unbounded. Hence, for each n = 1, 2, ... there exists xin ∈ {xi : i ∈ I} such that |xin | > n.
Since x ∈ lM(p, I), we can find ρ > 0 such that

∑
i∈I

(
M

( |xi|

ρ

))pi

< ∞.

By Lemma 2.6, we can deduce that the family[(
M

( |xi|

ρ

))pi
]

i∈I

(21)

converges to 0.
Since M(t) is nondecreasing and limt→∞M(t) = ∞, we can seek t0 ∈ [0,∞) such that M(t0) ≥ 1. It follows

from lim
n→∞
|xin | = ∞ that there is n0 satisfying

|xin0
|

ρ
> t0. Hence,

M
( |xin0

|

ρ

)pin0 >
(
M(t0)

)pin0
≥ 1.
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This implies that

lim
n→∞

M
( |xin |

ρ

)in
, 0.

We have obtained a contradiction to (21). Therefore, lM(p, I) ⊂ l∞(I).
Now, we claim that lM(p, I) is a linear subspace of l∞(I). Let x, y ∈ lM(p, I) and α, β ∈ K. Therefore, there

exists ρ1, ρ2 such that ∑
i∈I

(
M

( |xi|

ρ1

))pi
= L1 < +∞

and ∑
i∈I

(
M

( |yi|

ρ2

))pi
= L2 < +∞.

Hence,

0 ≤
∑
i∈J

(
M

( |xi|

ρ1

))pi
≤ L1

and

0 <
∑
i∈J

(
M

( |yi|

ρ2

))pi
≤ L2

for every J ∈ F(I).
If α , 0 and β , 0, then we set ρ3 = max{2|α|ρ1, 2|β|ρ2}. Since M is nondecreasing and convex,∑

i∈J

(
M

( |αxi + βyi|

ρ3

))pi
≤

∑
i∈J

(
M

( |αxi| + |βyi|

ρ3

))pi

≤

∑
i∈J

(
M

( |αxi|

ρ3
+
|βyi|

ρ3

))pi
≤

∑
i∈J

(
M

( |xi|

2ρ1
+
|βyi|

2ρ2

))pi

=
∑
i∈J

(1
2

M
( |xi|

ρ1

)
+M

( |βyi|

ρ2

))pi
=

∑
i∈J

1
2pi

(
M

( |xi|

ρ1

)
+M

( |βyi|

ρ2

))pi

≤ C
∑
i∈J

(
M

( |xi|

ρ1

))pi
+ C

∑
i∈J

(
M

( |yi|

ρ2

))pi
≤ C(L1 + L2) < +∞

for every J ∈ F (I), where C = max{1, 2H−1
}. Applying Lemma 2.5, we can deduce that∑

i∈I

(
M

( |αxi + βyi|

ρ3

))pi
< +∞.

This proves that αx + βy ∈ lM(p, I).
By the same argument, we can claim that αx, βy ∈∈ lM(p, I) for all α, β ∈ K. Hence, lM(p, I) is a linear

subspace of l∞(I).

Theorem 4.2. lM(p, I) is the total paranormed space with

1(x) = inf
{
ρ

pi
H > 0 :

(∑
i∈I

M
( |xi|

ρ

)pi
) 1

H

≤ 1, i ∈ I
}
, (22)

where H = max{1, supi∈I pi}.
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Proof. The rest of the proof closely follows the lines from [13] with minor differences based on the technical
details related to summable families. We only repeat a different statement for the reader’s convenience. It
is easy to see that 1(x) = 1(−x). By using Theorem 4.1 for α = β = 1, we infer that 1(x + y) ≤ 1(x) + 1(y) for
every x, y ∈ lM(p, I).Moreover, 1(x) = 0 if and only if x = 0.

Next, we need to claim that scalar multiplication is continuous. Since

1(λx) = inf
{
ρ

pi
H > 0 :

(∑
i∈I

M
( |λxi|

ρ

)pi
) 1

H

≤ 1, i ∈ I
}
,

we have that

1(λx) = inf
{(
λr

) pi
H > 0 :

(∑
i∈I

M
( |xi|

r

)pi
) 1

H

≤ 1, i ∈ I
}
,

where r =
p
λ
. It follows from |λ|pi ≤ max{1, |λ|H} that

|λ|
pi
H ≤

(
max{1, |λ|H}

) 1
H
.

Hence,

0 ≤ 1(λx) ≤
(

max{1, |λ|H}
) 1

H inf
{(
λr

) pi
H > 0 :

(∑
i∈I

M
( |xi|

r

)pi
) 1

H

≤ 1, i ∈ I
}

=
(

max{1, |λ|H}
) 1

H
1(x).

This implies that 1(λx) converges to zero as 1(x) converges to zero. Now assume that (λk)k∈N converges to
0 and x ∈ lM(p, I). For each sufficiently small ε > 0, we can seek J0 ∈ F (I) such that∑

i∈I\J0

[
M

( |xi|

ρ

)]pi
<
ε
2

for some ρ > 0. Hence, ( ∑
i∈I\J0

[
M

( |xi|

ρ

)]pi
) 1

H

≤
ε
2
.

Moreover, since M is continuous on [0,∞), we infer that

f (t) =
∑
i∈J0

M
( |txi|

ρ

)
is right continuous at 0. Hence, there exists 0 < δ < 1 such that

| f (t)| <
ε
2

for 0 < t < δ. Since lim
k→∞
λk = 0, we can find k0 ∈N such that

|λk| < δ

for every k ≥ k0.

f (λk) =
∑
i∈J0

M
( |λkxi|

ρ

)
<
ε
2

(23)
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for every k ≥ k0. On the other hand, using the convexity of M, we can deduce that∑
i∈I\J0

[
M

( |λkxi|

ρ

)]pi
≤

∑
i∈I\J0

[
M

( |δxi|

ρ

)]pi

≤ δ
[
M

( |xi|

ρ

)]pi
<

(ε
2

)H
.

(24)

for every k ≥ k0. Hence,( ∑
i∈I\J0

[
M

( |λkxi|

ρ

)]pi
) 1

H

<
ε
2
. (25)

for every k ≥ k0. Combining (23) and (25), we can deduce that

(1(λkx) =
(∑

i∈I

[
M

( |λkxi|

ρ

)]pi
) 1

H

< ε

for k ≥ k0. This implies that 1(λkx) converges to 0 as k→∞. The theorem is proved.

The following result is similar to that in sequence spaces (see [13]). We omit their proofs.

Theorem 4.3. Let p = (pi)i∈I be a bounded family of positive numbers. Then, W0(p,M, I),W(p,M, I) and W∞(p,M, I)
are linear spaces.

Theorem 4.4. Let p = (pi)i∈I be a bounded family of positive numbers. Then, W0(p,M, I) is a linear topological space
paranormed by 1′ and defined as

1′(x) = inf
{
ρ

pi
H

[ 1
|J|

∑
i∈J

(
M
|xi|

ρ

)pi]1/H
≤ 1, J ∈ F (I)

}
, (26)

where H = supi∈I pi.

Theorem 4.5. Let M be an Orlicz function that satisfies the∆2-condition. Then, W(I) ⊂W(M, I), W0(I) ⊂W0(M, I)
and W∞(I) ⊂W∞(M, I).

Proof. Let x ∈W(I); then, the family (SJ)J∈F (I) converges to 0, where

SJ =
1
|J|

∑
i∈J

|xi − l|

for some l ∈ K. Let ε > 0; then, we can seek J0 ∈ F (I) such that

0 < SJ < ε (27)

for every J ≥ J0. Now, choose δ with 0 < δ < 1 such that M(t) < ε for every 0 ≤ t ≤ δ.Write yi = |xi − l| and
consider

1
|J|

∑
i∈J

M(yi) =
1
|J|

(∑
yi≤δ

M(yi) +
∑
yi>δ

M(yi)
)
. (28)

It is easy to see that

1
|J|

∑
yi≤δ

M(yi) ≤
1
|J|

∑
i∈J

ε ≤ ε. (29)
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If yi > δ, then yi < 1 +
yi

δ
. Since M is nondecreasing and convex, we obtain that

M(yi) <M
(
1 +

yi

δ

)
≤

1
2

M(2) +
1
2

M
(2yi

δ

)
.

Since M satisfies ∆2 conditions, we can find K > 0 such that

M(2t) ≤ KM(t)

for all t > 0. Hence,

M(yi) <
K
2

M(2) +
M
2δ

yiM(2) <
K
δ

M(2)yi.

Therefore,
1
|J|

∑
yi>δ

M(yi) ≤
K
δ|J|

M(2)
∑
i∈J

yi.

Combined with (27), we can deduce that

1
|J|

∑
yi>δ

M(yi) ≤
KM(2)
δ
ε (30)

for all J ≥ J0. It follows from (27), (28), (29) and (30) that

1
|J|

∑
i∈J

M(yi) =
1
|J|

∑
i∈J

M
(
|xi − l|

)
<

(
1 +

KM(2)
δ

)
ε

for every J ≥ J0. This proves that x ∈W(M, I).
By the same arguments, we have that W0(I) ⊂W0(M, I) and W∞(I) ⊂W∞(M, I).

Due to [13], we also obtain the following statements:

Theorem 4.6. 1) If 0 < infi∈I pi ≤ pi ≤ 1 for all i ∈ I, then

W(p,M, I) ⊂W(M, I).

2) If 1 ≤ pi for all i ∈ I, then W(M, I) ⊂W(p,M, I).

Proof. Let x = (xi) ∈W(p,M, I). Then, there are l ∈ K and ρ > 0 such that the family

SJ =
1
|J|

∑
i∈J∈F (I)

(
M

(
|xi − l|
ρ

))pi

(31)

converges to 0. Let 0 < ε < 1; then, there exists J0 ∈ F (I) such that

SJ =
1
|J|

∑
i∈J

(
M

(
|xi − l|
ρ

))pi

< ε

for every J ≥ J0. This implies that (
M

(
|xi − l|
ρ

))pi

< ε < 1

for all i ∈ J ≥ J0. Since 0 < infi∈I pi < pi ≤ 1 for all i ∈ I, we infer that

M
(
|xi − l|
ρ

)
≤

(
M

(
|xi − l|
ρ

))pi
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for all i ∈ J. Hence,
1
|J|

∑
i∈J

M
(
|xi − l|
ρ

)
≤

∑
i∈J

(
M

(
|xi − l|
ρ

))pi

= SJ

for all J ≥ J0. It follows from (31) that the family

zJ :=
1
|J|

∑
i∈J∈F (I)

M
(
|xi − l|
ρ

)
converges to 0. Therefore, x ∈W(M, I).

2) Suppose that 1 ≤ pi ≤ supi∈I pi < +∞ for all i ∈ I. Let x ∈ W(M, I). Then, for each 0 < ε < 1, we can
find J0 ∈ F (I) such that

1
|J|

∑
i∈J

M
(
|xi − l|
ρ

)
< ε < 1

for every J ≥ J0, with some l ∈ K and ρ > 0. This implies that

1
|J|

∑
i∈J

(
M

(
|xi − l|
ρ

))pi
≤

1
|J|

∑
i∈J

M
(
|xi − l|
ρ

)
< ε

for all J ≥ J0. This means that the family

SJ =
1
|J|

∑
i∈J∈F (I)

(
M

(
|xi − l|
ρ

))pi

converges to 0. Hence, x ∈W(p,M, I). The theorem is proved.

Theorem 4.7. Let p = (pi)i∈I and q = (qi)i∈I be families of positive real numbers. Assume that 0 < pi < qi for all i ∈ I

and
(qi

pi

)
i∈I

is bounded. Then,

W(q,M, I) ⊂W(p,M, I).

Proof. Let x = (xi) ∈W(q,M, I). Then, there are l ∈ K and ρ > 0 such that the family

SJ =
1
|J|

∑
i∈J∈F (I)

(
M

(
|xi − l|
ρ

))qi

(32)

converges to 0. Write

ti =

(
M

(
|xi − l|
ρ

))qi

and λi =
qi

pi
. Take 0 < λ < λi. Define

ui =

ti, if ti ≥ 1
0, otherwise,

and

vi =

0, if ti ≥ 1
ti, otherwise.

Hence, ti = vi + ui for each i ∈ I. Moreover,

tλi
i = uλi

i + vλi
i
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for every i ∈ I. It follows that
uλi

i ≤ ui ≤ ti and vλi
i ≤ vλi .

Therefore,
1
|J|

∑
i∈J

tλi
i ≤

1
|J|

∑
ti +

(
1
|J|

∑
i∈J

vi

)λ
1
|J|

∑
ti +

(
1
|J|

∑
i∈J

ti

)λ
for all J ∈ F (I). It follows from (32) that the family

1
|J|

∑
i∈J

tλi
i =

1
|J|

∑
i∈J

(
M

(
|xi − l|
ρ

))pi

converges to 0. This means that x = (xi) ∈W(p,M, I). The proof is complete.

5. p-Banach structure

In this section, we construct the p-Banach structure of lM(q, I). We also give some properties of
a subspace hM(q, I) of lM(q, I). In particular, we have obtained some of their descriptions when M is a
degenerate Orlicz function. As in the previous section, we always assume that q = (qi)∈I is a bounded
family of positive real numbers and that H = supi∈I qi.

Theorem 5.1. Suppose that P := inf{qi : i ∈ I} ≥ 1 and p :=
P
H
. Then, lM(q, I) is a p-normed space with the p-norm

∥x∥ = inf
{
ρ

P
H > 0 :

(∑
i∈I

M
( |xi|

ρ

)P
) 1

H

≤ 1
}
. (33)

Proof. Clearly

∥x∥ = inf
{
ρ

P
H > 0 :

(∑
i∈I

M
( |xi|

ρ

)P
) 1

H

≤ 1
}
≥ 0

for each x ∈ lM(q, I). We claim that x = 0 if only if ∥x∥ = 0. Indeed, if x = 0, then xi = 0 for every i ∈ I. Hence,

M(
|xi|

ρ
) =M(

0
ρ

) = 0 for every ρ > 0. This implies that

∥x∥ = inf{ρ
P
H > 0} = 0.

If x , 0, we need to show that ∥x∥ , 0. Suppose that x , 0 and ∥x∥ = 0. Since x = (xi) , 0, we can seek
i0 ∈ I such that xi0 , 0. Therefore, |xi0 | > 0. It follows from lim

t→∞
M(t) = ∞ that there exists t0 > 0 such that

M(t0) > 1. Since

inf
{
ρ

P
H > 0 :

(∑
i∈I

M
( |xi|

ρ

)P
) 1

H

≤ 1
}
= 0,

we can find

ρ0 ∈

{
ρ

P
H > 0 :

(∑
i∈I

M
( |xi|

ρ

)P
) 1

H

≤ 1
}
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such that
|xi0 |

ρ0
> t0. Therefore, (

M(
|xi0 |

ρ0
)
)P

≥

(
M(t0)

)P
> 1.

This yields that

(∑
i∈I

M
( |xi|

ρ

)P
) 1

H
> 1.

We arrive at a contradiction to

ρ0 ∈

{
ρ

P
H > 0 :

(∑
i∈I

M
( |xi|

ρ

)P
) 1

H

≤ 1
}
.

Hence, x , 0 implies ∥x∥ , 0.
Now, we claim that ∥λx∥ = |λ|p∥x∥ for every x ∈ lM(q, I) and λ ∈ K. If λ = 0 or x = 0, then our claim is

obvious. If λ , 0 and x , 0 then

∥λx∥ = inf
{
τ

P
H > 0 :

(∑
i∈I

M
( |λxi|

τ

)P
) 1

H

≤ 1
}

= inf
{
τ

P
H > 0 :

(∑
i∈I

M
(
|xi|

τ
|λ|

)P) 1
H

≤ 1
}
.

Set ρ =
τ

|λ|
.We have

∥λx∥ = inf

(ρ|λ)|
P
H :

(∑
i∈I

(
M

(
|xi|

ρ

) )P
) 1

H

≤ 1


= |λ|

P
H inf{ρ

P
H :

(∑
i∈I

(
M

(
|xi|

ρ

) )P
) 1

H

≤ 1}

= |λ|
P
H ∥x∥.

Next, we need to claim that∑
i∈I

M
( |xi|

∥x∥
H
P

)
≤ 1. (34)

for every x , 0. Indeed, for every ε > 0, there exists ρ′ = ρ
P
H > 0 such that ∥x∥ ≤ ρ′ ≤ ∥x∥ + ε and(∑

i∈I

M
( |xi|

ρ′
H
P

)P
) 1

H

≤ 1.

We have
|xi|

(∥x∥ + ε)
H
P

≤
|xi|

ρ′
H
P

for all i ∈ I. Since M is nondecreasing, we obtain(∑
i∈I

(
M

( |xi|

(∥x∥ + ε)
H
P

))P
) 1

H

≤

(∑
i∈I

(
M

( |xi|

ρ′
H
P

))P
) 1

H

≤ 1.
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Letting ε→ 0, we arrive at (∑
i∈I

(
M

( |xi|

∥x∥
H
P

))P
) 1

H

≤ 1.

Now, for each x, y ∈ lM(q, I), we set

u = ∥x∥ = inf

ρ P
H :

(∑
i∈I

(
M

(
|xi|

ρ

) )P) 1
H
≤ 1


and

v =
∥∥∥y

∥∥∥ = inf

ρ P
H :

(∑
i∈I

(
M

(
|yi|

ρ

) )P
) 1

H

≤ 1

 .
(we may assume that x, y , 0). This implies that

(∑
i∈I

(
M

 |xi|

∥x∥
H
P

 )P
) 1

H

≤ 1 and
(∑

i∈I

(
M

 |yi|∥∥∥y
∥∥∥ H

P

)P
) 1

H

≤ 1.

Suppose that t, s ∈ R satisfy s > u and t > v. We obtain

(∑
i∈I

(
M

(
|xi|

s
H
P

) )P
) 1

H

≤

(∑
i∈I

(
M

 |xi|

∥x∥
H
P

 )P
) 1

H

≤ 1

and (∑
i∈I

(
M

(
|yi|

t
H
P

) )P
) 1

H

≤

(∑
i∈I

(
M

 |yi|∥∥∥y
∥∥∥ H

P

 )P
) 1

H

≤ 1

On the other hand, we have

|xi| + |yi|

(t + s)
H
P

≤
s

H
P

s
H
P + t

H
P

|xi|

s
H
P

+
t

H
P

s
H
P + t

H
P

|yi|

t
H
P

.

for every i ∈ I. Hence,

(
M

(
|xi + yi|

(s + t)
H
P

) )P

≤

(
M

(
|xi| + |yi|

(s + t)
H
P

) )P

≤
s

H
P

s
H
P + t

H
P

M
( |xi|

s
H
P

)
+

t
H
P

s
H
P + t

H
P

M
( |yi|

t
H
P

)
for every i ∈ I. It is easy to see that (a + b)x

≤ ax + bx for all x ∈ [0, 1]. Using both induction and this fact, we
obtain that ( n∑

k=1

(ak + bk)P
) 1

H
≤

( n∑
k=1

aP
k

) 1
H
+

( n∑
k=1

kP
k

) 1
H
.
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Supposing that J ∈ F (I), we have[∑
i∈J

(
M

(
|xi + yi|

(s + t)
H
P

) )P] 1
H

≤

[∑
i∈J

(
s

H
P

s
H
P + t

H
P

M
(
|xi|

s
H
P

)
+

t
H
P

s
H
P + t

H
P

M
(
|yi|

t
H
P

) )P] 1
H

≤

[∑
i∈J

( s
H
P

s
H
P + t

H
P

M
(
|xi|

s

) )P
] 1

H

+

[∑
i∈J

( t
H
P

s
H
P + t

H
P

M
(
|yi|

t
H
P

) )P
] 1

H

≤

(
s

H
P

s
H
P + t

H
P

) P
H

+

(
s

H
P

s
H
P + t

H
P

) P
H

≤
s

s + t
+

t
s + t

= 1.

for every s > ∥x∥ > 0 and t > ∥y∥ > 0. This yields that

s + t ∈

ρ P
H :

∑
i∈I

M
(
|xi + yi|

ρ

)
≤ 1

 .
and

∥∥∥x + y
∥∥∥ = inf

ρ P
H :

∑
i∈I

M
(
|xi + yi|

ρ

)
≤ 1

 ≤ s + t. (35)

Since (35) holds for every s > ∥x∥ and t > ∥y∥, we can deduce that

∥∥∥x + y
∥∥∥ ≤ ∥x∥ + ∥∥∥y

∥∥∥ .
and lM(q, I) is a p-normed space.

Lemma 5.2. Let (xk) ⊂ lM(q, I) be a sequence. Suppose that (xk) converges to 0 in lM(q, I). Then, lim
k→∞

xk
i = 0 ∈ K for

every i ∈ I.

Proof. Suppose otherwise. Then, there exists i0 ∈ I such that (xk
i0

) does not converge to 0 ∈ K. This means

that there is a sequence of positive integers (k j) and r > 0 such that |xk j

i0
| ≥ r. For each j = 1, 2, ..., we have

∥∥∥xk j
∥∥∥ = inf

ρ P
H > 0 :

(∑
i∈I

M

 |xk j

i |

ρ


P ) 1

H

≤ 1

 .
Therefore,

1 ≥
(∑

i∈I

M

 |xk j

i |

∥xk j∥
H
P


P ) 1

H

≥M

 r∥∥∥xk j
∥∥∥ H

P

 (36)

for every k j. Letting k j →∞ and combining it with ∥xk j∥ → 0, we arrive at M
(

r

|xk j |

)
→∞.This is contradictory

to (36). The lemma is proved.
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We have the following fact:

Theorem 5.3. lM(q, I) is a p-Banach space.

Proof. According to Theorem 5.1, we have that lM(q, I) is a p-normed space with the p-norm

∥x∥ = inf
{
ρ

P
H > 0 :

(∑
i∈I

(
M

( |xi|

ρ

))P
) 1

H

≤ 1
}
. (37)

Suppose that (xk) ⊂ lM(q, I) is a Cauchy sequence. We claim that (xk) converges to x ∈ lM(q, I). We have

∥xk
− xl
∥ = inf

{
ρ

P
H :

(∑
i∈I

(
M

( |xk
i − xl

i|

ρ

))P) 1
H
≤ 1

}
→ 0 (38)

as k, l→∞. By Lemma 5.2, we obtain that
|xk

i − xl
i| → 0

as k, l→∞ for each i ∈ I. Hence, for each i ∈ I, (xk
i ) ⊂ K is a Cauchy sequence i ∈ I. Since K is complete, we

infer that lim
k→∞

xk
i := xi ∈ K. Set x = (xi)i∈I. Let ε > 0. It follows from (38) that there exists k0 ∈N

∥xk
− xl
∥ = inf

{
ρ

P
H :

(∑
i∈I

(
M

( |xk
i − xl

i|

ρ

))P
) 1

H

≤ 1
}
< ε (39)

for every k, l ≥ k0. In the above inequality, if we fix k ≥ k0 and let l→∞, then

∥xk
− x∥ = inf

{
ρ

H
P :

(∑
i∈I

(
M

(
|xk

i − xi|

ρ

))P
) 1

H

≤ 1
}
< ε. (40)

We have obtained ∥xk
− x∥ < ε for every k > k0. This means that xk converges to x.

Next, we show that x ∈ lM(q, I). It follows from (40) that

∑
i∈I

(
M

(
|xk0

i − xi|

ρ

))qi
≤

∑
i∈I

(
M

(
|xk0

i − xi|

ρ

))P
≤ 1 < ∞.

Hence, xk0 −x ∈ lM(I). This implies that x = xk0 − (xk0 −x) ∈ lM(q, I). We can conclude that lM(q, I) is a p-Banach
space.

We recall that

hM(q, I) =
{
x = (xi) ⊂ K :

∑
i∈I

(
M

( |xi|

ρ

))qi
< ∞ for every ρ > 0

}
.

We have the following fact:

Proposition 5.4. hM(q, I) is a closed subspace of lM(q, I).

Proof. First, we claim that hM(q, I) is a linear subspace of lM(q, I). Suppose that x, y ∈ hM(q, I) and α ∈ K. If
α = 0, then αx = 0 ∈ hM(q, I).

If α , 0, then
∑

i∈I

(
M

( |xi|

ρ

))qi

< ∞ for every ρ > 0. Hence, for every ρ′ > 0 and ρ =
ρ′

|α|
, we have

∑
i∈I

(
M

( |αxi|

ρ′

))qi

=
∑
i∈I

(
M

( |xi|

ρ

))qi

< ∞.
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This yields that αx ∈ hM(q, I), which implies that 2x, 2y ∈ hM(q, I). We obtain
∑

i∈I

(
M

( |2xi|

ρ

))qi

< ∞ and

∑
i∈I

(
M

( |2yi|

ρ

))qi

< ∞ for every ρ > 0. Since M is a convex function, we have that

M
( |xi + yi|

ρ

)
≤M

( |xi| + |yi|

ρ

)
=M

(1
2
|2xi|

ρ
+

1
2
|2yi|

ρ

)
≤

1
2

M
( |2xi|

ρ

)
+

1
2
M

( |2yi|

ρ

)
.

Therefore, ∑
i∈I

(
M

( |xi + yi|

ρ

))
)qi ≤

(
1
2

∑
i∈I

M
( |2xi|

ρ

)
+

1
2

∑
i∈I

M
( |2yi|

ρ

))qi

≤ C
[∑

i∈I

(
M

( |2xi|

ρ

))qi

+
∑
i∈I

(
M

( |2yi|

ρ

))qi]
< ∞,

where C = max
{
1, 2sup qi−1

}
. This proves that x + y ∈ hM(q, I).

Finally, we show that hM(q, I) is a closed subset of lM(q, I). Let (xk) be a sequence in hM(q, I). Suppose that
xk converges to x in lM(q, I). For each ε > 0, there exists k0 ∈N such that

∥xk
− x∥ < ε (41)

for every k ≥ k0. We claim that xk0 − x ∈ hM(q, I). Assume that xk0 − x < hM(I). Then, we can find ρ0 > 0 such
that ∑

i∈I

(
M

( |xk0
i − xi|

ρ0

))qi

= ∞.

Since M is nondecreasing, we have that

∑
i∈I

(
M

( |xk0
i − xi|

ρ

))qi

= ∞

for every 0 < ρ < min{ε, ρ0}. This implies that

inf
{
ρ > 0 :

∑
i∈I

(
M

( |xk0
i − xi|

ρ

)
≤ 1

})qi}
> ε.

We arrive at ∥xk0 − x∥ > ε and contraction to (41). Hence, there exists k0 ∈ N such that xk0 − x ∈ hM(q, I).
Therefore,

x = xk0 − (xk0 − x) ∈ hM(q, I).

If M is degenerate, then we obtain a description of lM(q, I) and hM(q, I)

Theorem 5.5. Suppose that M is a degenerate Orlicz function. Then,
1) lM(q, I) is isomorphic to l∞(I);
2) hM(q, I) is isomorphic to C0(I).
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Proof. 1) Suppose that M is a degenerate Orlicz function. There exists t0 > 0 such that M(t0) = 0. From the
continuity of M and lim

t→∞
M(t) = ∞, we can find T0 such that M(T0) = 0 and M(t) > 0 for every t > T0. For

each x = (xi) ∈ l∞(I) and x , 0, we set

k = sup
i∈I
|xi|

p = ∥x∥∞ < ∞,

where p =
P
H
. If we choose ρ =

2k
T0

, then

|xi|

ρ
=

T0|xi|

2k
≤

T0

2
.

This implies that

0 ≤M
( |xi|

ρ

)
≤M

(T0

2

)
= 0

for every i ∈ I. We obtain
∑

i∈I

(
M

(
|xi |

ρ

))qi

= 0 so that x = (xi) ∈ lM(q, I). Hence, l∞(I) = lM(q, I).

Next, we claim that the p-norms of lM(q, I) and l∞(I) are equivalent. We recall that

∥x∥∞ = sup
i∈I
|xi|

p

is the p-norm on l∞(I). It follows from the previous argument that∑
i∈I

(
M

( |xi|

ρ

))pi

= 0 < 1

with ρ =
2k
T0

. Hence,

∥x∥ = inf
{
ρ

P
H > 0 :

(∑
i∈I

(
M

( |xi|

ρ

))P
) 1

H

≤ 1
}
≤

2k
T0
=

2∥x∥∞
T0
.

This implies that

∥x∥∞ ≥
T0

2
∥x∥ (42)

for every x ∈ lM(q, I). It follows from

∥x∥ = inf
{
ρ

P
H > 0 :

(∑
i∈I

(
M

( |xi|

ρ

))P
) 1

H

≤ 1
}

that (∑
i∈I

M
( |xi|

∥x∥
1
p

) 1
H
=

(∑
i∈I

M
[
|xi|

∥x∥
H
P

]) 1
H

≤ 1

for every x ∈ lM(q, I) and x , 0. Since M is continuous M(0) = 0 and lim
t→∞

M(t) = ∞, we can seek T1 > 0 such

that M(T1) = 1 and M(t) > 1 for all t > T1. Because M
( |xi|

∥x∥
1
p

)
≤ 1 for every i, we can deduce that

|xi|

∥x∥
1
p

≤ T1
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for every i. This yields

∥x∥∞ = sup
i∈I
|xi|

p
≤ T1∥x∥ (43)

for every x , 0. It is easy to see that the above inequality holds with x = 0. Combining (42) and (43), we can
conclude that the p-norms of l∞(I) and lM(q, I) are equivalent. This proves that lM(q, I) is isomorphic to l∞(I).

2) It is easy to check that C0(I) is a closed subspace of l∞(I). Because hM(q, I) is a closed subspace of
lM(q, I) and according to 1), we only need to claim that hM(q, I) = C0(I).

Let x = (xi) ∈ hM(p, I). We have ∑
i∈I

(
M

( |xi|

ρ

))qi

< ∞

for every ρ > 0. If x < C0(I), then the family (|xi|)i∈I does not converges to 0. We can find the infinite subset J
of I and r > 0 such that |x j| > r for every j ∈ J. Now, we fix ρ > 0 such that

|x j|

ρ
≥

r
ρ
≥ T1

for all j ∈ J. It follows from
|x j|

ρ
≥ T1 for every j ∈ J that

(
M

( |x j|

ρ

))qi

≥

(
M(T1)

)qi
> 0

for every j ∈ J. Since J is infinite, we can deduce that

∑
j∈J

(
M

( |x j|

ρ

))qi

= ∞.

Hence,
∑

i∈I

(
M

(
|xi |

ρ

))qi

= ∞.We arrive at a contradiction to
∑

i∈I

(
M

(
|xi |

ρ

))qi
< +∞ for every ρ > 0. This implies

that hM(q, I) ⊂ C0(I).
Next, assume that x = (xi) ∈ C0(I). We show that x ∈ hM(q, I). For each ρ > 0, since the family (|xi|)

converges to 0, we can find J0 ∈ F (I) such that |xi| < ρT0 for every i ∈ I \ J0. This implies that
|xi|

ρ
< T0 for

every i ∈ I \ J0. Hence, M(
|xi|

ρ
) = 0 for every i ∈ I \ J0.We obtain

∑
i∈I

(
M

( |xi|

ρ

))qi
=

∑
i∈J0

(
M

( |xi|

ρ

))qi

< ∞,

for each ρ > 0. This proves that x = (xi) ∈ hM(q, I). Therefore, C0(I) ⊂ hM(q, I), so C0(I) = hM(q, I)..

We recall that a nondegenerate Orlicz function M is called, and it satisfies the ∆q-condition at 0 if

lim
t→0

M(qt)
M(t)

< ∞ for some q > 0. A function M satisfies the ∆q-condition at 0 for every q > 0 if and only if M

satisfies the ∆2-condition at 0 (see [7]).
The following theorem states that hM(p, I) = lM(p, I) under the ∆2 condition:

Theorem 5.6. Let M be a nondegenerate Orlicz function. If M satisfies the∆2-condition at 0, then lM(p, I) = hM(p, I).
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Proof. Since M satisfies the ∆2-condition at 0, we can deduce that M satisfies the ∆q-condition for each q > 0.
Let x ∈ lM(p, I). There exists ρ0 > 0 such that∑

i∈I

(
M

( |xi|

ρ0

))pi

< ∞.

Therefore, the family
((

M( |xi |

ρ0

)pi
)

i∈I

converges to 0. It follows that
((

M
(
|xi |

ρ0

))P
)

i∈I

converges to 0, where

P = inf pi > 0. Since M is nondegenerate and continuous at 0, we can conclude that the family
(
|xi |

ρ0

)
i∈I

converges to 0. Hence, there exists J0 ∈ F (I) such that
|xi|

ρ0
< 1 for every i ∈ I \ J0.

For each ρ > 0, invoking the ∆q-condition at 0 with q =
ρ0

ρ
, we can find K > 0 and 0 < δ < 1 such that

M
(ρ0t
ρ

)
< KM(t)

for every 0 < t ≤ δ. We have (
M(
|xi|

ρ
)
)pi
=

(
M(
ρ0

ρ

|xi|

ρ0
)
)pi
≤ KH

(
M(
|xi|

ρ0
)
)pi

for every i ∈ I \ J0, where H = sup{pi : i ∈ I}. We obtain∑
i∈I

(
M

(
|xi|

ρ

))pi
=

∑
i∈J0

(
M

(
|xi|

ρ

))pi
+

∞∑
i∈I\J0

(
M

(
|xi|

ρ

) )pi

≤

∑
i∈J0

(
M

(
|xi|

ρ

))pi
+ KH

∑
i∈I\J0

(
M

(
|xi|

ρ0

) )pi
< ∞.

This proves that
∑

i∈I

(
M(
|xi|

ρ
)
)pi
< ∞ for every ρ > 0. Therefore, x ∈ hM(q, I). Hence, lM(p, I) ⊂ hM(p, I), and

thus, lM(p, I) = hM(p, I).

6. P-strong convergence of families with respect to Orlicz functions

Let ω(I) be the set of all complex families. Let p = (pi)i∈I be any family of nonnegative real numbers
and the map φ : I→ [0,∞). Suppose that Pφ is a regular power series method with a radius of convergence
of R > 0. Let M be an Orlicz function. We introduce the following family spaces:

W0(Pφ,M, I) =
{
x ∈ ω(I) : lim

t→R−

1
pφ(t)

∑
j∈I

p jtφ( j)M(|x j|) = 0
}

(44)

and

W(Pφ,M, I) =
{
x ∈ ω(I) : x − Le ∈W0(P,M, I) for some L

}
(45)

If x ∈ W(Pφ,M, I), we say that the family x is Pφ-strongly convergent to L with respect to an Orlicz
function M.

Proposition 6.1. Let M be an Orlicz function satisfying the ∆2-condition at 0. Then, we have the following
inclusions:

W0(Pφ, I) ⊂W0(Pφ,M, I) and W(Pφ, I) ⊂W(Pφ,M, I).



K. P. Chi / Filomat 38:20 (2024), 6995–7020 7017

Proof. It is sufficient to claim W0(Pφ, I) ⊂ W0(Pφ,M, I). Let x = (xi) ∈ W0(Pφ, I) and M be an Orlicz function
satisfying the ∆2-condition. According to the continuity of M at 0, for a given ε > 0, there exists 0 < δ < 1
such that M(s) < ε for every 0 ≤ s < δ. Then, we have that

1
pφ(t)

∑
i∈I

pitφ(i)M(|xi|) =
1

pφ(t)

∑
i∈I; |xi |<δ

pitφ(i)M(|xi|) +
1

pφ(t)

∑
i∈I; |xi |≥δ

pitφ(i)M(|xi|)

≤ ε +
1

pφ(t)

∑
i∈I; |xi |≥δ

pitφ(i)M(|xi|).
(46)

Since 0 < δ < 1, we have that

|xi| <
1
δ
|xi| < 1 +

|xi|

δ
,

for every i ∈ I. It follows from the ∆2-condition of M that

M(|xi| ≤M(1 +
|xi|

δ
) ≤

1
2

M(2) +
1
2

M
(2|xi|

δ

)
≤

M(2)
2
+ K
|xi|

2δ
M(2) <

(1 + K)M(2)
δ

|xi|,
(47)

for every i ∈ I, where K is a positive constant satisfying M(2u) ≤ KM(u) for every u ≥ 0. Combining (46)
and (47), we arrive at

1
pφ(t)

∑
i∈I

pitφ(i)M(|xi|) ≤ ε +
(1 + K)M(2)

δ
1

pφ(t)

∑
i∈I

pitφ(i)
|xi|.

Since x = (xi) ∈W0(Pφ, I), we infer that

lim
0<t→R−

1
pφ(t)

∑
i∈I

pitφ(i)
|xi| = 0.

This implies that

lim
0<t→R−

1
pφ(t)

∑
i∈I

pitφ(i)M(|xi|).

The proof is finished.

Lemma 6.2. If M is an Orlicz function satisfying the ∆2− condition, then W0(Pφ,M, I) ∩ l∞(I) is an ideal of l∞(I).

Proof. Given x ∈ W0(Pφ,M, I) and y ∈ l∞(I), we show that xy ∈ W0(Pφ,M, I). Since y ∈ l∞(I), there exists
K1 > 1 such that

∥y∥ = sup
i∈I
|yi| ≤ K1.

Hence,
M(|xiyi|) ≤M(K1|xi|) ≤ K(1 + K1)M(|xi|),

for every i ∈ I. Therefore,

1
pφ(t)

∑
i∈I

pitφ(i)M(|xiyi)|) ≤ K(1 + K1)
1

pφ(t)

∑
i∈I

pitφ(i)M(|xi|). (48)

It follows from x ∈W0(Pφ,M, I) that

lim
0<t→R−

1
pφ(t)

∑
i∈I

pitφ(i)M(|xi|) = 0. (49)
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Combining (48) and (49), we can conclude that

lim
0<t→R−

1
pφ(t)

∑
i∈I

pitφ(i)M(|xiyi)|) = 0.

This proves that xy ∈W0(Pφ,M, I).

The following lemma is similar to Lemma 2.2 in [14]. We omit the proof.

Lemma 6.3. Let E be an ideal of l∞(I) and x ∈ l∞(I). Then, x belongs to the closure of E in l∞(I) if and only if
χK(x;ε) ∈ E for all ε > 0.

The following lemma is analogous to Lemma 2.3 in [14]. The author states that the idea was first pub-
lished by Freedman and Sember in [5] and omits the proof. We provide proof for the reader’s convenience.

Lemma 6.4. If Pφ is regular, then W0(Pφ, I) ∩ l∞ is a closed ideal of l∞(I).

Proof. By the same argument as that in the proof of Lemma 6.2, we can deduce that W0(Pφ, I) ∩ l∞ is
an ideal of l∞(I). Now, we claim that W0(Pφ, I) ∩ l∞ is a closed subset of l∞(I). Let (xk) be a sequence in
W0(Pφ, I) ∩ l∞. Suppose that xk converges to x ∈ l∞(I). It is sufficient to prove that x ∈ W0(Pφ, I). Since
xk = (xk

i ) ∈W0(Pφ, I) ∩ l∞, we infer that

lim
0<t→R−

1
pφ(t)

∑
i∈I

pitφ(i)M(|xk
i |) = 0. (50)

for each k = 1, 2, .... We set

1k(t) :=
1

pφ(t)

∑
i∈I

pitφ(i)M(|xk
i |)

for each k = 1, 2, .... For each 0 < t < R, given ε > 0, there is a J0 ∈ F (I) such that

|1k(t) − Sk
J(t)| < ε (51)

for every J ∈ F (I) with J ≥ J0, where

Sk
J(t) =

1
pφ(t)

∑
i∈J

pitφ(i)M(|xk
i |).

Since
∥xk
− x∥ = sup

i∈I
|xk

i − xi| → 0

as k→∞, we have that lim
k→∞

xk
i = xi. Using the continuity of M, we can conclude that

lim
k→∞

Sk
J(t) =

1
pφ(t)

∑
i∈I

pitφ(i)M(|xi|) := SJ(t) (52)

for every J ∈ F (I). For each J ≥ J0, there exists k0 = k0(J) ∈N such that

|Sk
J(t) = SJ(t)| < ε (53)

for every k ≥ k0. It follows from (51) and (53) that

|1k(t) − SJ(t)| < 2ε
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for every J ≥ J0 and k ≥ k0. Letting t→ R−, and combining it with (50), we arrive at

lim
0<t→R−

SJ(t) < 2ε

for all J ≥ J0. This yields that

lim
0<t→R−

1
pφ(t)

∑
i∈I

pitφ(i)M(|xi|) = 0. (54)

The lemma is proved.

Theorem 6.5. Let M be an Orlicz function satisfying the ∆2-condition and Pφ be a regular power-summable family
method. Then,

W(Pφ,M, I) ∩ l∞(I) =W(Pφ, I) ∩ l∞(I).

Proof. It is sufficient to prove that

W0(Pφ,M, I) ∩ l∞(I) =W0(Pφ, I) ∩ l∞(I).

By Proposition 6.1, we have that

W0(Pφ,M, I) ∩ l∞(I) ⊂W0(Pφ, I) ∩ l∞(I).

We need to prove the opposite inclusion. To do so, we first see that

1
pφ(t)

∑
i∈I

pitφ(i)M
(
χK(x;ε)(i)

)
=M(1)

1
pφ(t)

∑
i∈I

pitφ(i)χK(x;ε)(i). (55)

Let x = (xi) ∈W0(Pφ,M, I) ∩ l∞(I) and ε > 0. Consider a family y = (yi) defined by

yi =


1
xi
, if |xi| ≥ ε

0, otherwise.

It is easy to observe that xy = χK(x;ε) and χK(x;ε) ∈W0(Pφ,M, I) ∩ l∞(I). This yields that

lim
0<t→R−

1
pφ(t)

∑
i∈I

pitφ(i)M
(
χK(x;ε)(i)

)
= 0.

It follows from (55) that

lim
0<t→R−

1
pφ(t)

∑
i∈I

pitφ(i)χK(x;ε)(i) = 0.

Considering Lemma 6.3 and Lemma 6.4, we can deduce that

x ∈W0(Pφ, I) ∩ l∞(I).

The theorem is proved.

Theorem 6.6. Let M be an Orlicz function satisfying the ∆2-condition and Pφ be a regular power-summable family
method. Then,

1) W(Pφ,M, I) ∩ l∞(I) =W(Pφ, I) ∩ l∞(I) = st(Pφ, I) ∩ l∞(I).
2) W(Pφ, I) ⊂W(Pφ,M, I) ⊂ st(Pφ, I).
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Proof. 1) Note that every bounded family is Pφ uniformly bounded. Combining this fact with Theorem 3.6
and Theorem 6.5, we can deduce that

W(Pφ,M, I) ∩ l∞(I) =W(Pφ, I) ∩ l∞(I) = st(Pφ, I) ∩ l∞(I).

2) It follows from Proposition 6.1 that

W(Pφ, I) ⊂W(Pφ,M, I).

We continuously prove the inclusion W(Pφ,M, I) ⊂ st(Pφ, I). Let ε > 0 and x ∈ W0(Pφ,M, I). We consider a
family y = (yi) to be defined by

yi =


1
xi
, if |xi| ≥ ε

0, otherwise.

Clearly, y is a bounded family and

xy = χK(x;ε) ∈W0(Pφ,M, I) ∩ l∞(I).

From Theorem 6.5, we infer that
χK(x;ε) ∈W0(Pφ, I) ∩ l∞(I).

Applying Theorem 3.6, we can conclude that x ∈ st(Pφ) ∩ l∞(I).
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