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Abstract. Let m, n, r, λ and ki (1 ≤ i ≤ m) be positive integers satisfying 1 ≤ n ≤ m and k1 ≥ k2 ≥ · · · ≥

km ≥ (3λ − 1)r − 1. Let G be a graph, and let H be an mλ-subgraph of G and F = {F1,F2, · · · ,Fm} be a (1, f )-
factorization of G. If for any partition {A1,A2, · · · ,Am} of E(H) with |Ai| = λ, G admits a (1, f )-factorization
F = {F1,F2, · · · ,Fm} satisfying Ai ⊆ E(Fi) for 1 ≤ i ≤ m, then we say that F is randomly λ-orthogonal to
H. Let H1,H2, · · · ,Hr be r vertex-disjoint nλ-subgraphs of a [0, k1 + k2 + · · · + km − n + 1]-graph G. In this
paper, it is proved that a [0, k1 + k2 + · · ·+ km − n+ 1]-graph G contains a subgraph R such that R possesses a
[0, ki]n

1-factorization randomly λ-orthogonal to every Hi, 1 ≤ i ≤ r.

1. Introduction

Many real-world networks can be modelled by graphs or networks. An important example of such a
network is a communication network with nodes representing cities and links corresponding to communi-
cation channels. Other examples include an aviation network with nodes modelling aviation stations and
links representing air lines between two stations, or the World Wide Web with nodes corresponding to web
pages and links modelling hyperlinks between web pages. Many real-life problems on network design and
optimization, e. g. coding design, scheduling problems, the file transfer problems on computer networks,
building blocks and so on, are related to the factors, factorizations and orthogonal factorizations in graphs
[2]. A Room square of order 2n can be modelled as the orthogonal 1-factorization of K2n which was first
posed by Horton [9]. Euler [5] first discovered that a pair of orthogonal Latin squares of order n is related
to two orthogonal 1-factorizations of Kn,n. A network can be represented by a graph, vertices of the graph
corresponds to nodes and edges of the graph corresponds to links between the nodes. Henceforth we use
the term graph instead of network.

The graphs discussed in this paper will be finite, undirected and simple. Let G be a graph with vertex
set V(G) and edge set E(G), and let 1, f : V(G) → Z be two nonnegative functions satisfying 1(x) ≤ f (x)
for each x ∈ V(G). Let dG(x) denote the degree of a vertex x in G. A spanning subgraph F of G with
1(x) ≤ dF(x) ≤ f (x) for every x ∈ V(G) is called a (1, f )-factor of G. If G itself is a (1, f )-factor, then we
call G a (1, f )-graph. Especially, if 1(x) = a and f (x) = b for each x ∈ V(G), then a (1, f )-factor is called
an [a, b]-factor and a (1, f )-graph is called an [a, b]-graph. A (1, f )-factorization F = {F1,F2, · · · ,Fm} of G
is a decomposition of the edge set E(G) of G into edge-disjoint (1, f )-factors F1,F2, · · · ,Fm. A subgraph H
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of G is said to be an m-subgraph if H possesses m edges in total. Assume that H is an mλ-subgraph of
G and F = {F1,F2, · · · ,Fm} is a (1, f )-factorization of G. A (1, f )-factorization F of G is λ-orthogonal to H
if |E(H) ∩ E(Fi)| = λ for 1 ≤ i ≤ m. If for any partition {A1,A2, · · · ,Am} of E(H) with |Ai| = λ, G admits a
(1, f )-factorization F = {F1,F2, · · · ,Fm} satisfying Ai ⊆ E(Fi) for 1 ≤ i ≤ m, then we say that F is randomly
λ-orthogonal to H. Let k1, k2, · · · , km be positive integers. A [0, ki]m

1 -factorization F = {F1,F2, · · · ,Fm} of G is
a decomposition of the edge set E(G) of G into edge-disjoint factors F1,F2, · · · ,Fm, where Fi is a [0, ki]-factor,
1 ≤ i ≤ m. If for any partition {A1,A2, · · · ,Am} of E(H) with |Ai| = λ, G admits a [0, ki]m

1 -factorization
F = {F1,F2, · · · ,Fm} satisfying Ai ⊆ E(Fi) for 1 ≤ i ≤ m, then we say that F is randomly λ-orthogonal
to H. Note that randomly 1-orthogonal is equivalent to 1-orthogonal, and 1-orthogonal is simply called
orthogonal.

Egawa and Kano [4] presented some sufficient conditions for graphs admitting (1, f )-factors. Zhou
et al. [35, 38, 43–46], Wang and Zhang [26, 27], Wu [31] derived some results on [1, 2]-factors in graphs.
Kouider and Lonc [13], Wang and Zhang [29] studied the existence of [a, b]-factors in graphs. Kano
[10] derived some results on [a, b]-factorizations of graphs. Cai [3] showed some sufficient conditions
for graphs having [a, b]-factorizations. Yan, Pan, Wong and Tokuda [33] put forward some sufficient
conditions for a graph admitting a (1, f )-factorization. Ma and Gao [20] obtained some results for the
existence of (1, f )-factorizations in graphs. The interested reader can discover many relevant results on
factors and factorizations in graphs [1, 8, 11, 12, 21, 23, 28, 30, 34, 36, 37, 39–42]. Alspach, Heinrich and
Liu [2] presented the following problem: Given a subgraph H of G, does there exist a factorization F of
G of certain type orthogonal to H? Li and Liu [16] claimed that every (m1 + m − 1,m f − m + 1)-graph G
admits a (1, f )-factorization orthogonal to any given m-subgraph of G. Lam et al. [14] verified that every
(m1 +m − 1,m f −m + 1)-graph G admits a (1, f )-factorization orthogonal to k vertex-disjoint m-subgraphs
of G. Feng [6] proved that every (0,m f −m + 1)-graph G possesses a (0, f )-factorization orthogonal to any
given m-subgraph of G. Feng and Liu [7] showed that every [0, k1 + k2 + · · · + km −m + 1]-graph G admits a
[0, ki]m

1 -factorization orthogonal to any given m-subgraph of G. Wang [25] demonstrated that there exists a
subgraph R in an (m1+ k,m f − k)-graph such that R has a (1, f )-factorization orthogonal to n vertex-disjoint
k-subgraphs of R. Wang [24] studied the existence of subgraphs with orthogonal [0, ki]n

1-factorizations in
[0, k1 + k2 + · · · + km − n + 1]-graphs. Zhou, Zhang and Xu [47] claimed that there exists a subgraph R in a
[0, k1 + k2 + · · ·+ km −n+ 1]-graph such that R possesses a [0, ki]n

1-factorization orthogonal to r vertex-disjoint
n-subgraphs of R. Some other results on orthogonal factorizations can be discovered in [15, 17–19, 22, 32].
The following results on orthogonal factorizations of graphs are known.

Theorem 1.1 (Wang [24]). Let G be a [0, k1 + k2 + · · · + km − n + 1]-graph, where m,n and ki (1 ≤ i ≤ m) are
positive integers with n ≤ m and k1 ≥ k2 ≥ · · · ≥ km. Let H be an arbitrary n-subgraph of G. Then there
exists a subgraph R of G such that R has a [0, ki]n

1-factorization orthogonal to H.

Zhou, Zhang and Xu [47] extended Theorem 1.1, and verified the following theorem.

Theorem 1.2 (Zhou, Zhang and Xu [47]). Let G be a [0, k1 + k2 + · · ·+ km −n+ 1]-graph, and let H1,H2, · · · ,Hr
be vertex-disjoint n-subgraphs of G, where m, n, r and ki (1 ≤ i ≤ m) are positive integers with n ≤ m and
k1 ≥ k2 ≥ · · · ≥ km ≥ 2r − 1. Then there exists a subgraph R of G such that R possesses a [0, ki]n

1-factorization
orthogonal to every Hi, 1 ≤ i ≤ r.

We shall consider the following problem: Given r vertex-disjoint nλ-subgraphs H1,H2, · · · ,Hr of G, does
there exist a factorization F randomly λ-orthogonal to every Hi for 1 ≤ i ≤ r? The purpose of this paper is
to verify that for any r vertex-disjoint nλ-subgraphs H1,H2, · · · ,Hr of a [0, k1 + k2 + · · · + km − n + 1]-graph
G, there exists a subgraph R such that R admits a [0, ki]n

1-factorization randomly λ-orthogonal to every
Hi for 1 ≤ i ≤ r, where m, n, r, λ and ki (1 ≤ i ≤ m) are positive integers satisfying 1 ≤ n ≤ m and
k1 ≥ k2 ≥ · · · ≥ km ≥ 2(2λ − 1)r − 1.

2. Preliminary Lemmas

Let G be a graph. For a vertex subset S of G, we denote by G[S] the subgraph of G induced by S, and
write G − S = G[V(G) \ S]. For two disjoint vertex subsets S and T of G, we use EG(S,T) to denote the set of
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edges in G joining S and T, and use eG(S,T) to denote the cardinality of EG(S,T). For convenience, we write
φ(S) =

∑
x∈S
φ(x) and φ(∅) = 0 for any function φ. In particular, dG−S(T) =

∑
x∈T

dG−S(x).

Let S and T be two disjoint subsets of V(G), and E1 and E2 be two disjoint subsets of E(G). Put

U = V(G) \ (S ∪ T), E(S) = {xy ∈ E(G) : x, y ∈ S}

and
E(T) = {xy ∈ E(G) : x, y ∈ T}.

Set
E′1 = E1 ∩ E(S), E′′1 = E1 ∩ EG(S,U),

E′2 = E2 ∩ E(T), E′′2 = E2 ∩ EG(T,U),

αG(S,T; E1,E2) = 2|E′1| + |E
′′

1 |,

βG(S,T; E1,E2) = 2|E′2| + |E
′′

2 |.

With no danger of confusion, we use α and β to denote αG(S,T; E1,E2) and βG(S,T; E1,E2), respectively.
We easily see that α ≤ dG−T(S) and β ≤ dG−S(T).

The proof of our main result in this paper depends heavily on the following result, which was first
derived by Lam, Liu, Li and Shiu [14].

Lemma 2.1 (Lam, Liu, Li and Shiu [14]). Let G be a graph, and let 1, f : V(G) → Z be two functions with
0 ≤ 1(x) < f (x) ≤ dG(x) for every x ∈ V(G), and E1 and E2 be two disjoint subsets of E(G). Then G possesses
a (1, f )-factor F satisfying E1 ⊆ E(F) and E2 ∩ E(F) = ∅ if and only if

γG(S,T; 1, f ) = f (S) + dG−S(T) − 1(T) ≥ αG(S,T; E1,E2) + βG(S,T; E1,E2)

for any two disjoint subsets S and T of V(G).
Next, we assume that m,n, r and ki (1 ≤ i ≤ m) are positive integers satisfying 1 ≤ n ≤ m and k1 ≥ k2 ≥

· · · ≥ km ≥ (3λ − 1)r − 1, and G is a [0, k1 + k2 + · · · + km − n + 1]-graph. For every isolated vertex x of G
and every [0, ki]-factor Fi, we admit dFi (x) = 0. Let I be the set of all isolated vertices of G. If G − I admits
a [0, ki]-factor, then G possesses also a [0, ki]-factor. Consequently, we may assume that G does not admit
isolated vertices. In what follows, we define

1(x) = max{0, dG(x) − (k1 + k2 + · · · + km−1 − n + 2)}

and
f (x) = min{km, dG(x)}

for all x ∈ V(G). According to the definitions of 1(x) and f (x), we possess the following result.

Lemma 2.2. Let m be an integer with m ≥ 2. Then

0 ≤ 1(x) < f (x) = min{km, dG(x)} ≤ dG(x)

for every vertex x of G.

We verify the following lemma, which will be used in the proof of our main theorem.

Lemma 2.3. Let G be a [0, k1 + k2 + · · · + km]-graph, and let H1,H2, · · · ,Hr be r vertex-disjoint λ-subgraphs
of G, where m, r, λ and ki (1 ≤ i ≤ m) are positive integers with k1 ≥ k2 ≥ · · · ≥ km ≥ 2(2λ − 1)r − 1. Then G
possesses a [0, k1]-factor F1 with E(Hi) ⊆ E(F1) for 1 ≤ i ≤ r.

Proof. Set E1 =
r⋃

i=1
E(Hi) and E2 = ∅. We define α and β as before for two disjoint vertex subsets S and T of

G. In light of the definitions of α and β, we derive

α ≤ min{2λr, λ|S|} and β = 0.
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Consequently, we admit

γG(S,T; 0, k1) = k1|S| + dG−S(T) − 0 · |T| ≥ (2(2λ − 1)r − 1)|S| ≥ λ|S| ≥ α = α + β

by λ ≥ 1, r ≥ 1 and k1 ≥ 2(2λ − 1)r − 1. Then it follows from Lemma 2.1 that G possesses a [0, k1]-factor F1
with E(Hi) ⊆ E(F1) for 1 ≤ i ≤ r. Lemma 2.3 is verified. □

3. Main Result and its Proof

In what follows, we pose our main theorem in this paper.

Theorem 3.1. Let G be a [0, k1 + k2 + · · · + km − n + 1]-graph, and let H1,H2, · · · ,Hr be r vertex-disjoint
nλ-subgraphs of G, where m, n, r, λ and ki (1 ≤ i ≤ m) are positive integers satisfying 1 ≤ n ≤ m and
k1 ≥ k2 ≥ · · · ≥ km ≥ 2(2λ − 1)r − 1. Then there exists a subgraph R of G such that R admits a [0, ki]n

1-
factorization randomly λ-orthogonal to every Hi, 1 ≤ i ≤ r.

Proof. In terms of Theorem 1.2, Theorem 3.1 holds for λ = 1. Next, we may assume that λ ≥ 2.
We apply induction on m and n. According to Lemma 2.3, Theorem 3.1 holds for n = 1. Hence, we

may consider that n ≥ 2 in the following. For the inductive step, we assume that Theorem 3.1 holds for
any [0, k1 + k2 + · · · + km′ − n′ + 1]-graph G′ with m′ < m, n′ < n and 1 ≤ n′ ≤ m′, and any r vertex-disjoint
n′λ-subgraphs H′1,H

′

2, · · · ,H
′
r of G′. Next, we discuss a [0, k1 + k2 + · · · + km − n + 1]-graph G and any r

vertex-disjoint nλ-subgraphs H1,H2, · · · ,Hr of G.

We select any Ai ⊆ E(Hi) with |Ai| = λ, 1 ≤ i ≤ r. Write E1 =
r⋃

i=1
Ai and E2 =

( r⋃
i=1

E(Hi)
)
\ E1. Obviously,

|E1| = λr and |E2| = (n − 1)λr. For two disjoint subsets S and T of V(G), we define E′1, E′′1 , E′2, E′′2 , α and β as
in Section 2. Thus, we derive

α ≤ min{2λr, λ|S|}

and
β ≤ min{2(n − 1)λr, (n − 1)λ|T|}.

The definitions of 1(x) and f (x) are identical to that in Section 2. Now, we select disjoint subsets S and T of
V(G) such that

(a) γG(S,T; 1, f ) − αG(S,T; E1,E2) − βG(S,T; E1,E2) is minimum.
(b) |S| is minimum subject to (a).
We now demonstrate the following claim.

Claim 1. If S , ∅, then f (x) ≤ dG(x) − 1 for every x ∈ S, and so f (x) = km for every x ∈ S.
Proof. Set S1 = {x ∈ S : f (x) ≥ dG(x)}. Next, we verify S1 = ∅.

Assume that S1 , ∅. Then setting S0 = S \ S1. Hence, we admit

γG(S,T; 1, f ) = f (S) + dG−S(T) − 1(T)
= f (S0) + f (S1) + dG(T) − eG(S0,T) − eG(S1,T) − 1(T)
= f (S0) + dG−S0 (T) − 1(T) + f (S1) − eG(S1,T)
= γG(S0,T; 1, f ) + f (S1) − eG(S1,T)
≥ γG(S0,T; 1, f ) + dG(S1) − eG(S1,T)
= γG(S0,T; 1, f ) + dG−T(S1). (1)

Note that

αG(S,T; E1,E2) + βG(S,T; E1,E2) ≤ αG(S0,T; E1,E2) + βG(S0,T; E1,E2) + αG(S1,T; E1,E2)

and
dG−T(S1) ≥ αG(S1,T; E1,E2).



S. Zhou et al. / Filomat 38:20 (2024), 7235–7244 7239

Combining these with (1), we derive

γG(S,T; 1, f ) − αG(S,T; E1,E2) − βG(S,T; E1,E2)
≥ γG(S0,T; 1, f ) + dG−T(S1) − αG(S0,T; E1,E2) − βG(S0,T; E1,E2) − αG(S1,T; E1,E2)
≥ γG(S0,T; 1, f ) − αG(S0,T; E1,E2) − βG(S0,T; E1,E2),

which conflicts the choice of S. Hence, S1 = ∅. And so if S , ∅, then f (x) ≤ dG(x) − 1 for every x ∈ S.
Furthermore, we derive f (x) = km for every x ∈ S. Claim 1 is verified. □

The remaining of the proof is dedicated to proving that G possesses a (1, f )-factor Fn with E1 ⊆ E(Fn) and
E2∩E(Fn) = ∅. According to Lemma 2.1 and the choice of S and T, it suffices to claim that γG(S,T; 1, f ) ≥ α+β.

Next, we let ρ = k1 + k2 + · · · + km−1 − n + 2, T1 = {x : dG(x) − ρ > 0, x ∈ T} and T0 = T \ T1. We easily see
that

1(x) = 0 (2)

for every x ∈ T0, and

1(x) = dG(x) − ρ (3)

for every x ∈ T1. In terms of the definition of βG(S,T; E1,E2), we get

βG(S,T0; E1,E2) + βG(S,T1; E1,E2) = βG(S,T; E1,E2). (4)

Note that α ≤ min{2λr, λ|S|} ≤ λ|S| and β ≤ dG−S(T). If T1 = ∅, then we have

γG(S,T; 1, f ) = f (S) + dG−S(T) − 1(T)
= km|S| + dG−S(T) − 1(T0) − 1(T1)
= km|S| + dG−S(T)
≥ (2(2λ − 1)r − 1)|S| + dG−S(T)
≥ λ|S| + dG−S(T)
≥ α + β

by (2), Claim 1 and λ ≥ 2.
If S = ∅, thenα = 0. It follows from (2), (3), (4), r ≥ 1,λ ≥ 2, 2 ≤ n ≤ m and k1 ≥ k2 ≥ · · · ≥ km ≥ 2(2λ−1)r−1

that

γG(S,T; 1, f ) = f (S) + dG−S(T) − 1(T)
= dG(T) − 1(T1)
= dG(T0) + dG(T1) − (dG(T1) − ρ|T1|)
= dG(T0) + ρ|T1|

≥ dG(T0) + ((m − 1)(2(2λ − 1)r − 1) − n + 2)|T1|

≥ dG(T0) + ((n − 1)(2(2λ − 1)r − 1) − n + 2)|T1|

≥ dG(T0) + (n − 1)λ|T1|

≥ βG(∅,T0; E1,E2) + βG(∅,T1; E1,E2)
= βG(∅,T; E1,E2) = β = α + β.

In what follows, we always assume that S , ∅ and T1 , ∅. To demonstrate Theorem 3.1, we shall
consider two cases.

Case 1. |S| ≤ |T1| − 1.
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Using (2), (3) and Claim 1, we get

γG(S,T; 1, f ) = f (S) + dG−S(T) − 1(T)
= f (S) + dG−S(T0) + dG−S(T1) − 1(T1)
= km|S| + dG−S(T0) + dG(T1) − eG(S,T1) − 1(T1)
= km|S| + dG−S(T0) + ρ|T1| − eG(S,T1),

namely,

γG(S,T; 1, f ) = km|S| + dG−S(T0) + ρ|T1| − eG(S,T1). (5)

Subcase 1.1. |T1| ≤ km − λ.
According to (4), (5), r ≥ 1, λ ≥ 2, 2 ≤ n ≤ m and k1 ≥ k2 ≥ · · · ≥ km ≥ 2(2λ − 1)r − 1, we have

γG(S,T; 1, f ) = km|S| + dG−S(T0) + ρ|T1| − eG(S,T1)
≥ km|S| + dG−S(T0) + ρ|T1| − |S||T1|

= (km − |T1|)|S| + dG−S(T0) + ρ|T1|

≥ λ|S| + dG−S(T0) + ρ|T1|

≥ λ|S| + dG−S(T0) + ((m − 1)km − n + 2)|T1|

≥ λ|S| + dG−S(T0) + ((m − 1)(2(2λ − 1)r − 1) − n + 2)|T1|

≥ λ|S| + dG−S(T0) + ((n − 1)(2(2λ − 1)r − 1) − n + 2)|T1|

≥ λ|S| + dG−S(T0) + (n − 1)λ|T1|

≥ α + βG(S,T0; E1,E2) + βG(S,T1; E1,E2)
= α + βG(S,T; E1,E2) = α + β.

Subcase 1.2. |T1| ≥ km − λ + 1.
Subcase 1.2.1. |S| ≤ 2n − 4.
We easily prove that ρ− |S| > 0. Then it follows from (5), r ≥ 1, λ ≥ 2, 2 ≤ n ≤ m and k1 ≥ k2 ≥ · · · ≥ km ≥

2(2λ − 1)r − 1 that

γG(S,T; 1, f ) = km|S| + dG−S(T0) + ρ|T1| − eG(S,T1)
≥ km|S| + ρ|T1| − |S||T1|

= km|S| + (ρ − |S|)|T1|

≥ km|S| + (ρ − |S|)(km − λ + 1)
> km|S| + (ρ − |S|)(km − λ)
= λ|S| + (km − λ)ρ
≥ λ|S| + (km − λ)((m − 1)km − n + 2)
≥ λ|S| + (2(2λ − 1)r − 1 − λ)((n − 1)(2(2λ − 1)r − 1) − n + 2)
= λ|S| + ((4r − 1)λ − 2r − 1)((n − 1)(2(2λ − 1)r − 1) − n + 2)
≥ λ|S| + (2(4r − 1) − 2r − 1)((n − 1)(4λ − 3) − n + 2)
= λ|S| + (6r − 3)((n − 1)λ + 3(n − 1)(λ − 1) − n + 2)
≥ λ|S| + 3r((n − 1)λ + 3(n − 1) − n + 2)
= λ|S| + 3r((n − 1)λ + 2n − 1)
> λ|S| + 2(n − 1)λr
≥ α + β.

Subcase 1.2.2. |S| ≥ 2n − 3.
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Note that G is a [0, k1+k2+· · ·+km−n+1]-graph. Thus, we get dG(S) ≤ (k1+k2+· · ·+km−n+1)|S| = (ρ+km−

1)|S|. In terms of (2), (3), Claim 1, |S| ≤ |T1| − 1, r ≥ 1, λ ≥ 2, 2 ≤ n ≤ m and k1 ≥ k2 ≥ · · · ≥ km ≥ 2(2λ− 1)r− 1,
we derive

γG(S,T; 1, f ) = f (S) + dG−S(T) − 1(T)
= f (S) + dG(T) − eG(S,T) − 1(T1)
= km|S| + dG(T) − eG(S,T) − (dG(T1) − ρ|T1|)
≥ km|S| + ρ|T1| − eG(S,T)
= ρ(|T1| − |S|) + (km + ρ)|S| − eG(S,T)
≥ ρ + |S| + dG(S) − eG(S,T)
= ρ + |S| + dG−T(S)
≥ (m − 1)km − n + 2 + 2n − 3 + α
≥ (n − 1)(2(2λ − 1)r − 1) + n − 1 + α
> α + 2(n − 1)λr
≥ α + β.

Case 2. |S| ≥ |T1|.
Note that G is a [0, k1+k2+· · ·+km−n+1]-graph. Thus, we get dG(T1) ≤ (k1+k2+· · ·+km−n+1)|T1| = (ρ+km−

1)|T1|. According to (2), (3), Claim 1, |S| ≥ |T1|, r ≥ 1, λ ≥ 2, 2 ≤ n ≤ m and k1 ≥ k2 ≥ · · · ≥ km ≥ 2(2λ− 1)r− 1,
we derive

γG(S,T; 1, f ) = f (S) + dG−S(T) − 1(T)
= f (S) + dG−S(T) − 1(T1)
= km|S| + dG−S(T) − dG(T1) + ρ|T1|

= km(|S| − |T1|) + (km + ρ)|T1| + dG−S(T) − dG(T1)
≥ km(|S| − |T1|) + dG(T1) + |T1| + dG−S(T) − dG(T1)
= km(|S| − |T1|) + |T1| + dG−S(T)
≥ (2(2λ − 1)r − 1)(|S| − |T1|) + |T1| + dG−S(T)
≥ (4λ − 3)(|S| − |T1|) + |T1| + dG−S(T)
≥ (λ + 1)(|S| − |T1|) + |T1| + dG−S(T),

that is,

γG(S,T; 1, f ) ≥ (λ + 1)(|S| − |T1|) + |T1| + dG−S(T). (6)

Subcase 2.1. |S| ≥ 2λr.
It follows from (6) and |S| ≥ |T1| that

γG(S,T; 1, f ) ≥ (λ + 1)(|S| − |T1|) + |T1| + dG−S(T)
≥ |S| + dG−S(T)
≥ 2λr + dG−S(T)
≥ α + β.

Subcase 2.2. |S| ≤ 2λr − 1.
Note that T1 , ∅. Hence, we consider the following two subcases.
Subcase 2.2.1. |T1| = 1.
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We write T1 = {x}. Using (3), (4), (6), Claim 1, r ≥ 1, λ ≥ 2, 2 ≤ n ≤ m and k1 ≥ k2 ≥ · · · ≥ km ≥ 2(2λ−1)r−1,
we have

γG(S,T; 1, f ) ≥ (λ + 1)(|S| − |T1|) + |T1| + dG−S(T)
= λ|S| − λ|T1| + |S| + dG−S(T1) + dG−S(T0)
= λ|S| + |S| + dG−S(x) + dG−S(T0) − λ
≥ λ|S| + dG(x) + dG−S(T0) − λ
≥ λ|S| + ρ + 1 + dG−S(T0) − λ
≥ λ|S| + (m − 1)km − n + 3 + dG−S(T0) − λ
≥ λ|S| + dG−S(T0) + (n − 1)(2(2λ − 1)r − 1) − n + 3 − λ
> λ|S| + dG−S(T0) + (n − 1)λ
= λ|S| + dG−S(T0) + (n − 1)λ|T1|

≥ α + βG(S,T0; E1,E2) + βG(S,T1; E1,E2)
= α + βG(S,T; E1,E2)
= α + β.

Subcase 2.2.2. |T1| ≥ 2.
Claim 2. 4(n − 1)(2λ − 1)r − 4n + 9 − 2λr > 2nλr.
Proof. By r ≥ 1, λ ≥ 2 and n ≥ 2, we admit

4(n − 1)(2λ − 1)r − 4n + 9 − 2λr − 2nλr
= 8(n − 1)λr − 4(n − 1)r − 4n + 9 − 2λr − 2nλr
= (8n − 8 − 2 − 2n)λr − 4(n − 1)r − 4n + 9
= (6n − 10)λr − 4(n − 1)r − 4n + 9
≥ 2(6n − 10)r − 4(n − 1)r − 4n + 9
= (8n − 16)r − 4n + 9
≥ 8n − 16 − 4n + 9
= 4n − 7 ≥ 1 > 0,

namely,
4(n − 1)(2λ − 1)r − 4n + 9 − 2λr > 2nλr.

Claim 2 is proved. □
Since |T1| ≥ 2, there exist x, y ∈ T1. It follows from (3), (6), Claim 2, |S| ≥ |T1|, |S| ≤ 2λr − 1, r ≥ 1, λ ≥ 2,

2 ≤ n ≤ m and k1 ≥ k2 ≥ · · · ≥ km ≥ 2(2λ − 1)r − 1 that

γG(S,T; 1, f ) ≥ (λ + 1)(|S| − |T1|) + |T1| + dG−S(T)
≥ |S| + dG−S(T1)
≥ 2|S| + dG−S(T1) − 2λr + 1
≥ dG(x) + dG(y) − 2λr + 1
≥ 2ρ + 2 − 2λr + 1
≥ 2((m − 1)km − n + 2) − 2λr + 3
≥ 2((n − 1)(2(2λ − 1)r − 1) − n + 2) − 2λr + 3
= 4(n − 1)(2λ − 1)r − 4n + 9 − 2λr
> 2nλr
= 2λr + 2(n − 1)λr
≥ α + β.
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In conclusion, γG(S,T; 1, f ) ≥ αG(S,T; E1,E2) + βG(S,T; E1,E2). According to the choice of S and T, we
derive γG(S′,T′; 1, f ) ≥ αG(S′,T′; E1,E2) + βG(S′,T′; E1,E2) for any disjoint vertex subsets S′ and T′ of G.
Using Lemma 2.1, G has a (1, f )-factor Fn with E1 ⊆ E(Fn) and E2 ∩ E(Fn) = ∅, and Fn is also a [0, kn]-factor
of G. By the definitions of 1(x) and f (x), we admit

dG−Fn (x) = dG(x) − dFn (x) ≥ dG(x) − f (x) ≥ 0

and

dG−Fn (x) = dG(x) − dFn (x) ≤ dG(x) − 1(x)
≤ dG(x) − (dG(x) − (k1 + k2 + · · · + km−1 − n + 2))
= k1 + k2 + · · · + km−1 − (n − 1) + 1

for any x ∈ V(G). Therefore, G−Fn is a [0, k1+k2+ · · ·+km−1−(n−1)+1]-graph. Write H′i = Hi−Ai for 1 ≤ i ≤ r.
Obviously, H′1,H

′

2, · · · ,H
′
r are r vertex-disjoint (n − 1)λ-subgraphs of G − Fn. By the induction hypothesis,

there exists a subgraph R′ of G − Fn such that R′ admits a [0, ki]n−1
1 -factorization randomly λ-orthogonal to

every H′i , 1 ≤ i ≤ r. Let R be the subgraph of G induced by E(R′) ∪ E(Fn). Consequently, R is a subgraph of
G such that R possesses a [0, ki]n

1-factorization randomly λ-orthogonal to every Hi, 1 ≤ i ≤ r. We finish the
proof of Theorem 3.1. □

If we set r = 1 and λ = 1 in Theorem 3.1, then we promptly derive Theorem 1.1. If we let λ = 1 in
Theorem 3.1, then instantly gain Theorem 1.2. Consequently, Theorem 3.1 is a generalization of Theorems
1.1 and 1.2. If we set r = 1 in Theorem 3.1, then we get the following corollary.

Corollary 3.1. Let G be a [0, k1 + k2 + · · · + km − n + 1]-graph, and let H be an nλ-subgraph of G, where m, n,
λ and ki (1 ≤ i ≤ m) are positive integers satisfying 1 ≤ n ≤ m and k1 ≥ k2 ≥ · · · ≥ km ≥ 4λ − 3. Then there
exists a subgraph R of G such that R admits a [0, ki]n

1-factorization randomly λ-orthogonal to H.
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