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Available at: http://www.pmf.ni.ac.rs/filomat

Chlodowsky variant of generalised Jain-Appell operators
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Abstract. In this paper we consider a Chlodowsky variant of Jain-Appell operators which includes
many known and new defined operators such as Chlodowsky variant of generalised Jakimovski-Leviatan,
Jain-Appell, Appell-Baskakov and Appell-Lupaş operators. These operators are constructed in terms of
the function ϱ and their weighted approximation to the identity operator is given in the weighted space
with weight φ = 1 + ϱ2 by using the Korovkin set {1, ϱ, ϱ2

}. We investigate a quantitative error estimate
of the operators by using Holhos’ weighted modulus of continuity and obtain the local approximation
properties in terms of the first and the second modulus of continuities and Lipschitz class maximal function.
Furthermore, the Voronovskaja type asymptotic formula is also obtained.

1. Introduction

The task of finding approximation of functions by simpler functions such as polynomials is what approx-
imation theory is all about. Bernstein [13] was the first to build a sequence of positive linear operators
to prove the Weierstrass approximation theorem. Several linear positive operators have been constructed
since then to examine approximation properties in various spaces such as Szasz, Baskakov, Lupaş, Meyer
König and Zeller, Bleimann-Butzer-Hann operators. Especially in the last two decades, there has been an
increasing interest in the investigation of certain linear positive operators ([1], [23], [24], [35], [42]).
In approximating a continuous function on the unbounded interval [0,∞), one of the famous operators is
the Szasz-Mirakjan operators given by

Sn( f ; x) := e−nx
∞∑

k=0

(nx)k

k!
f
(

k
n

)
,

where n ∈N, x ∈ [0,∞) and f is a sufficiently nice function that ensures convergence of the above sum and
belongs to a subspace of C[0,∞), the space of continuous functions defined on [0,∞). Recently, several new
results on various modifications or generalizations of Szasz-Mirakjan operators have been published. We
list some of them as follows :
The Jain-Pethe [31] operators are defined by
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S(α)
n ( f ; x) =

1
(1 + nα)(x/α)

∞∑
k=0

f
(

k
n

) ( n
1 + nα

)k x(k,−α)

k!
,

where

x(k,−α) = x(x + α)(x + 2α) · · · (x + (k − 1)α), (k ∈N := 1, 2, · · ·)
x(0,−α) = 1.

These operators are the gamma transform of the Szasz-Mirakjan operators.
Generalized Szasz-Mirakyan operators [9] are defined by

Sp
n( f ; x) = exp(−nϱ(x))

∞∑
k=0

( f ◦ ϱ−1)
(

k
n

)
(nϱ(x))k

k!

= (Sn( f ◦ ϱ−1) ◦ ϱ)(x) =
∞∑

k=0

f
(
ϱ−1

(
k
n

))
Pϱ,n,k(x)

where

Pϱ,n,k(x) = exp(−nϱ(x))
(nϱ(x))k

k!

and the function ϱ(x) satisfies the following conditions:

(a) ϱ is continuously differentiable function on R+ .
(b) ϱ(0) = 1 and infx≥0 ϱ′(x) ≥ 1 .

It is clear that in the case ϱ(x) = x in the above definition, we recover the usual Szazs-Mirakyan operators.
There are other functions which satisfy properties (a) and (b) such as ϱm(x) =

∑m
k=1 xk, x ∈ R+. The

authors investigated the approximation properties of these operators in the space Ck
φ(R+) (see section 2)

for the definition where φ = 1 + ϱ2, by using the Korovkin theorem proved in [25], which uses the test
functions 1, ϱ and ϱ2. Here Bφ[0,∞) =

{
f : [0,∞)→ [0,∞) | ∥ f ∥φ = supx≥0

f (x)
φ(x) < ∞

}
and Cφ[0,∞) denotes

the subspace of all continuous function belonging to Bφ[0,∞) and Ck
φ[0,∞)) denotes the subspace of all

functions f ∈ Cφ[0,∞) with the property limx→∞
f (x)
φ(x) = K f , where K f is a constant depending on f.

Jakamovski and Leviatan [32] introduced the operators

Pn( f ; x) =
e−nx

1(1)

∞∑
k=0

pk(nx) f
(

k
n

)
, x ≥ 0, (1)

by using Appell polynomials, where {pk(x)}k≥0 are the Appell polynomials which satisfy the property

p′k(x) = kpk−1(x).

An equivalent definition of the Appell polynomials can be given by means of the generating function

1(u)eux =

∞∑
k=0

pk(x)uk,
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where

1(u) =
∞∑

n=0

anun, 1(1) , 1 (2)

is an analytic function in the disc |u| < r , (r > 1) .
They also have the explicit form (another equivalent definition) as

pk(x) =
k∑

i=0

ai
xk−i

(k − i)!
, k ∈N.

Operators given in equation (1) are linear and positive operators when ai ≥ 0 ,( i = 0, 1, 2, ...). Special Appell
polynomials such as Apostol-Genocchi polynomials have been recently used as a basis in the construction
of integral variant of Baskakov type operators in [43] and [21]. On the other hand different approaches
about the Jakimovski-Leviatan type operators have been proposed in the very recent papers [3] and [4]
which give rise to some interesting properties.
Given a function ϕ(x) on the interval (0, β), β > 0 and linear positive operator Ln(ϕ(y); x), the Chlodowsky’s
approach is to propose new operator Cn

(
ϕ(βy); x

β

)
with β := βn such that βn → ∞ and βn

n → 0, then the
operator Cn(ϕ) is investigated for some classes of function ϕ(x) on the unbounded interval. When β is finite,
this approach has been used in the papers [10], [18], [39], [45], [46].
On the other hand, when ϕ is defined on the interval (0,∞), Chlodowsky’s approach has been modified
by the new operator Cn(ϕ; x) = Ln

(
ϕ(by); x

b

)
with the conditions b := bn such that bn → ∞ and bn

n → 0. The
modified approach has been taken in to account in the papers [11], [12], [14], [20], [28], [33], [38], [40], [41].
Chlodowsky type of Jakimovski-Leviatan operators [15] are defined by

C∗n( f ; x) =
e−

n
bn

x

1(1)

∞∑
k=0

pk

( n
bn

x
)

f
(

k
n

bn

)
. (3)

Here {bn} is a positive increasing sequence which satisfies limn→∞bn = ∞ and limn→∞
bn
n = 0.

Recently, Jain-Appell operators [42] have been defined by

Cαn( f ; x) =
1

1(1)(1 + nα)(x/α)

∞∑
k=0

f
(

k
n

)
p∼(α)

k (x; n) (4)

where

p∼(α)
k (x; n) =

k∑
i=0

ai

(k − i)!

( n
1 + nα

)k−i
x(k−i,−α)

and the cofficients ai are given in (2).
These operators are the gamma transform of the Jakimovski-Leviatan operators. It is pointed out that these
operators include the Jain-Pethe operators and many interesting new operators such as Appell-Baskakov
and Appell-Lupaş operators. Therefore it has been shown that the Appell polynomials can be used to
extend the usual Baskakov operators and Lupaş operators in the Jakimovski-Leviatan sense.
Inspired and motivated by the above mentioned operators, we introduce the Chlodowsky variant of the
generalized Jain-Appell operators by

Cϱ,(α)
n ( f ; x) =

1
(1 + n

bn
α)(ϱ(x)/α)1(1)

×

∞∑
k=0

( f ◦ ϱ−1)
(

k
n

bn

)
A∼(α)

k

(
ϱ(x);

n
bn

)
(5)
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where

A∼(α)
k

(
ϱ(x);

n
bn

)
=

k∑
i=0

ai

(k − i)!

( n
bn

1 + n
bn
α

)k−i

ϱ(x)(k−i,−α),

with ϱ(x) satisfies (a) and (b) and the cofficients ai comes from (2). We also assume that {bn} is a positive
increasing sequence which satisfies limn→∞bn = ∞ and limn→∞

bn
n = 0. It is obvious that, the operators are

positive and linear when ai ≥ 0.
These operators include many known and new defined operators. We list some of them below.

• By taking ϱ(x) = x in (5), we have the operators

C(α)
n ( f ; x) =

1
(1 + n

bn
α)(x/α)1(1)

∞∑
k=0

f
(

k
n

bn

)
A∼(α)

k

(
x;

n
bn

)
(6)

where

A∼(α)
k

(
x;

n
bn

)
=

k∑
i=0

ai

(k − i)!

( n
bn

1 + n
bn
α

)k−i

x(k−i,−α).

We call these operators as Chlodowsky variant of Jain-Appell operators.

• Taking 1(x) = 1 in (5), we get the Chlodowsky variant of generalised Jain-Pethe operators defined as

Sϱ,(α)
n

bn
( f ; x) =

1
(1 + n

bn
α)(ϱ(x)/α)

∞∑
k=0

( f ◦ ϱ−1)
(

k
n

bn

)
A∼(α)

k (ϱ(x);
n
bn

), (7)

and further, by taking ϱ(x) = x, we get the Chlodowsky variant of Jain-Pethe operators.

• Letting α → 0+ in (5), we recover the generalised version of the Chlodowsky variant of Jakimovski-
Leviatan operators given by

C∗n( f ; x) =
e−

n
bn
ϱ(x)

1(1)

∞∑
k=0

Ak

( n
bn
ϱ(x)

)
( f ◦ ϱ−1)

(
k
n

bn

)
. (8)

Note that, by taking ϱ(x) = x, we get the Chlodowsky type Jakimovski-Leviatan operators given in
(3).

• Choosing α = αn(x) = ϱ(x)
n , where x ≥ 0 , n ∈ N in (5) , we get the following operators where we call

them Chlodowsky variant of generalised Appell-Baskakov operators

Bϱ,Cn
(

f ; x
)

:= C
ϱ,
(
ϱ(x)

n

)
n ( f ; x) =

1( bn+ϱ(x)
bn

)n
1(1)

∞∑
k=0

( f ◦ ϱ−1)
(

k
n

bn

) k∑
i=0

ai

(
n + k − i − 1

n − 1

) (
ϱ(x)

bn + ϱ(x)

)k−i

. (9)
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Taking ϱ(x) = x in the above operator, we get

BC
n
(

f ; x
)

:= C( x
n )

n ( f ; x) =
1(

bn+x
bn

)n
1(1)

∞∑
k=0

f
(

k
n

bn

) k∑
i=0

ai

(
n + k − i − 1

n − 1

) ( x
bn + x

)k−i
(10)

where we call them as Chlodowsky variant of Appell-Baskakov operators. Note that in the case
ϱ(x) = x and 1(1) = 1, we recover the Chlodowsky variant of Baskakov operators.

• Choosing α = αn(x) = bn
n , where x ≥ 0 and n ∈N in (5), we have

Lϱ,Cn
(

f ; x
)

:= C
ϱ,( bn

n )
n ( f ; x) =

1

2
( nϱ(x)

bn

)
1(1)

∞∑
k=0

( f ◦ ϱ−1)
(

k
n

bn

)
A
∼( bn

n )
k

(
ϱ(x);

n
bn

)
(11)

where

A
∼( bn

n )
k

(
ϱ(x);

n
bn

)
=

k∑
i=0

ai

(k − i)!

( n
2bn

)k−i
(ϱ(x))(k−i,−α).

which can be called as Chlodowsky variant of generalised Appell-Lupaş operators. Taking ϱ(x) = x
in the above operator, we get

LC
n
(

f ; x
)

:= C( bn
n )

n ( f ; x) =
1

2( nx
bn )1(1)

∞∑
k=0

f
(

k
n

bn

)
A
∼( bn

n )
k

(
x;

n
bn

)
(12)

where

A
∼( bn

n )
k

(
x;

n
bn

)
=

k∑
i=0

ai

(k − i)!

(n
2

)k−i
x(k−i,−α).

where we call them as Chlodowsky variant of Appell-Lupaş operator.

The paper is organized as follows:
In Section 2, we investigate weighted approximation properties of Chlodowsky variant of generalised
Jain-Appell polynomials. In section 3, we study a weighted quantitative type theorem for the rate of this
convergence by using Holhos’s [29] modulus of continuity. In Section 4, we obtain some local approximation
results related to Petree’s K-functional, the first and the second modulus of continuity and Lipschitz class
maximal function. In Section 5 , we obtain Voronovskaya type asymptotic formula for the operators C(α)

n ( f ; x)
our operators.
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2. Weighted approximation properties

We start this section by showing that the operators given in (5) are the gamma transformation of the
Chodowsky type Jakimovski-Leviatan operators. We then compute the first few moments and central
moments of these operators.

Theorem 2.1. For α > 0 be fixed, the operators given in (5) can be represented as

Cϱ,(α)
n ( f ; x) =

1

Γ
(
ϱ(x)
α

) ∫
∞

0
e−tt(ϱ(x)/α)−1C∗n( f ;αt)dt

where the function ϱ(x) satisfies the conditions (a) and (b) and f is sufficiently nice function which guarantees the
uniform convergence of the series in (5).

Proof. Under the hypothesis of the theorem, direct calculation yields

Cϱ,(α)
n ( f ; x) =

1

Γ
(
ϱ(x)
α

) ∫
∞

0
e−tt(ϱ(x)/α)−1C∗n( f ;αt)dt

=
1

Γ
(
ϱ(x)
α

) ∫
∞

0
e−tt(ϱ(x)/α)−1 e−

n
bn
αt

1(1)

∞∑
k=0

pk

( n
bn
αt

)
f
(

k
n

bn

)
dt

=
1

Γ
(
ϱ(x)
α

) ∫
∞

0
e−tt(ϱ(x)/α)−1 e−

n
bn
αt

1(1)
×

∞∑
k=0

k∑
i=0

ai
(nαt)k−i

bk−i
n (k − i)!

f
(

k
n

bn

)
dt

=
1

Γ
(
ϱ(x)
α

)
1(1)

∞∑
k=0

f
(

k
n

bn

) k∑
i=0

ai
(nα)k−i

bk−i
n (k − i)!

×

∫
∞

0
e−(1+ n

bn
α)tt(ϱ(x)/α)+k−i−1dt

=
1

Γ
(
ϱ(x)
α

)
1(1)

∞∑
k=0

f
(

k
n

bn

)
×

k∑
i=0

ai
(nα)k−i

bk−i
n (k − i)!

Γ( ϱ(x)
α + k − i)

(1 + n
bn
α)(ϱ(x)/α)+k−i

.

On the other hand since

Γ( ϱ(x)
α + k − i)

Γ( ϱ(x)
α )

=

(
ϱ(x)
α + k − i − 1

)
...

(
ϱ(x)
α

)
Γ
(
ϱ(x)
α

)
Γ
(
ϱ(x)
α

)
=
ϱ(x)(ϱ(x) + α)...(ϱ(x) + (k − i − 1)α)

αk−i
=

(ϱ(x))k−i,−α

αk−i

with x(0,−α) = 1, we get the following family of linear positive operators:

Cϱ,(α)
n ( f ; x) =

1
(1 + n

bn
α)(ϱ(x)/α)1(1)

∞∑
k=0

f
(

k
n

bn

)
A∼(α)

k

(
ϱ(x);

n
bn

)
where

A∼(α)
k

(
ϱ(x);

n
bn

)
=

k∑
i=0

ai

(k − i)!

( n
bn

1 + n
bn
α

)k−i

ϱ(x)(k−i,−α),

which is exactly (5).
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Lemma 2.2. For the first few moments of operators defined in (5), we have

Cϱ,(α)
n (1; x) = 1 (13)

Cϱ,(α)
n (ϱ(t); x) = ϱ(x) +

bn

n
1′(1)
1(1)

(14)

Cϱ,(α)
n (ϱ2(t); x) = ϱ2(x) + αϱ(x) + ϱ(x)

bn

n
1(1) + 21′(1)
1(1)

+
b2

n

n2

1′(1) + 1′′(1)
1(1)

(15)

Cϱ,(α)
n (ϱ3(t); x) = ϱ3(x) + 3ϱ2(x)α + 2ϱ(x)α2

+(ϱ2(x) + ϱ(x)α)
(

bn

n
41(1) + 31′(1)

1(1)

)
+ϱ(x)

(
b2

n

n2

1(1) + 81′(1) + 31′′(1)
1(1)

)
+

(
b3

n

n3

1′(1) + 41′′(1) + 1′′′(1)
1(1)

)
(16)

Cϱ,(α)
n (ϱ4(t); x) = ϱ4(x) + 6ϱ3(x)α + 11ϱ2(x)α2 + 6ϱ(x)α3 +

+(ϱ3(x) + 3ϱ2(x)α + 2ϱ(x)α2)
(

bn

n
101(1) + 41′(1)

1(1)

)
+(ϱ2(x) + ϱ(x)α)

(
b2

n

n2

141(1) + 301′(1) + 61′′(1)
1(1)

)
+ϱ(x)

(
b3

n

n3

1(1) + 261′(1) + 301′′(1) + 41′′′(1)
1(1)

)
+

b4
n

n4

1′(1) + 141′′(1) + 101′′′(1) + 1(4)(1)
1(1)

. (17)

Proof. Recalling the moments of the Chlodowsky variant of Jakimovski-Leviatan operators [15] :

C∗n(e0; x) = 1

C∗n(e1; x) = x +
bn

n
1′(1)
1(1)

C∗n(e2; x) = x2 +
bn

n
1(1) + 21′(1)
1(1)

x +
b2

n

n2

1′(1) + 1′′(1)
1(1)

C∗n(e3; x) = x3 +
bn

n
41(1) + 31′(1)

1(1)
+

b2
n

n2

1(1) + 81′(1) + 31′′(1)
1(1)

x

+
b3

n

n3

1′(1) + 41′′(1) + 1′′′(1)
1(1)

C∗n(e4; x) = x4 +
bn

n
101(1) + 41′(1)
1(1)x3 +

b2
n

n2

141(1) + 301′(1) + 61′′(1)
1(1)

x2

+
b3

n

n3

1(1) + 281′(1) + 301′′(1) + 41′′′(1)
1(1)

x

+
b4

n

n4

1′(1) + 141′′(1) + 101′′′(1) + 1(4)(1)
1(1)

,



M. A. Özarslan, M. Çil / Filomat 38:20 (2024), 7269–7288 7276

the moments of Chlodowsky variant of generalised Jain-Appell operators follow by using the representation
of the operators given in Theorem (2.1).

Lemma 2.3. The first few r-th central moments of the operators

Mn,r(x) = Cϱ,(α)
n ((ϱ(t) − ϱ(x))r; x), r = 0, 1, 2... (18)

are given for n ∈N and x ∈ [0,∞), by

Mn,0(x) = Cϱ,(α)
n ((ϱ(t) − ϱ(x))0; x) = 1

Mn,1(x) = Cϱ,(α)
n ((ϱ(t) − ϱ(x))1; x) =

bn

n
1′(1)
1(1)

Mn,2(x) = Cϱ,(α)
n ((ϱ(t) − ϱ(x))2; x) = αϱ(x) + ϱ(x)

bn

n
+

b2
n

n2

1′(1) + 1′′(1)
1(1)

Mn,4(x) = Cϱ,(α)
n ((ϱ(t) − ϱ(x))4; x) =

(
3α2 + 14α

bn

n
+

101(1) + 41′(1)
1(1)

b2
n

n2

)
ϱ2(x)

+

(
6α3 + α2

(
201(1) + 81′(1)

1(1)

)
bn

n

+α

(
141(1) + 301′(1) + 61′′(1)

1(1)

)
b2

n

n2

+

(
1(1) + 221′(1) + 141′′(1)

1(1)

)
b3

n

n3

)
ϱ(x)

+
1′(1) + 141′′(1) + 101′′′(1) + 1(4)

1(1)
b4

n

n4 .

Proof. The proof follows from the linearity of the operators and Lemma (2.3) and (2.2).

We now proceed by obtaining the weighted approximation of the operator Cϱ,(α)
n ( f ; x). To prove our

weighted approximation theorem, we recall some notations and definitions which are needed. By choosing
ϱ(x) as a function that satisfies the condition (a) and the condition (b) given before, let φ : I ⊂ R → (0,∞),
φ(x) = 1+ ϱ2(x) be a weight function. Then the function spaces Bφ[0,∞),Cφ[0,∞), Ck

φ[0,∞) and Uφ[0,∞) are
defined as follows [25]:

Bφ[0,∞) =

{
f : R+ → R : ∥ f ∥φ = sup

x≥0

f (x)
φ(x)

< ∞

}
,

Cφ[0,∞) =
{

f ∈ Bφ(R+) : f is continuous
}
,

Ck
φ[0,∞) =

{
f ∈ Cφ(R+) : lim

x→∞

f (x)
φ(x)

= K f < +∞

}
,

Uφ[0,∞) =

{
f ∈ Cφ(R+) :

f
φ

is uniformly continuous
}
.

It can be easily seen that

Ck
φ[0,∞) ⊂ Uφ[0,∞) ⊂ Cφ[0,∞) ⊂ Bφ[0,∞).

Lemma 2.4. [26] The linear positive operator sequence (Ln)n≥1 is a sequence of transformations from Cφ(R+) to
Bφ(R+) if and only if

|Ln(φ)(x)| ≤ Kφ(x)

where K is a positive constant.
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Theorem A. [27] Let Ln : Cφ → Bφ be a sequence of linear positive operators. If

lim
n→∞

∥ Ln(ϱi) − ϱi
∥φ= 0, i = 0, 1, 2 (∗)

then for all f ∈ Ck
φ we have

lim
n→∞

∥ Ln f − f ∥φ= 0. (19)

In the rest of the paper, we assume that

(iii) α := (αn(x)) such that 0 ≤ ϱ(x)αn(x)
1+ϱ2(x) ≤ cn with cn → 0 as n→∞.

Theorem 2.5. Let α := αn(x) satisfies (iii) and (bn)n≥0 be a non-negative sequence such that limn→∞bn = ∞ and
limn→∞

bn
n = 0. Then for all f ∈ Ck

ϱ[0,∞), we have

lim
n→∞

∥ Cϱ,(α)
n f − f ∥φ= 0 (20)

where φ(x) = 1 + ϱ2(x).

Proof. We start by showing that the operator C(αn)
n is a transformation from Cφ[0,∞) to Bφ[0,∞). Let

φ(x) = 1 + ϱ2(x), then we have

∥ Cϱ,(αn)
n ( f ) ∥φ=1+ϱ2 = sup

x∈(0,∞)

∥Cϱ,(αn(x))
n f (x)∥
φ(x)

≤ ∥ f ∥φ sup
x∈(0,∞)

∥Cϱ,(αn)
n (φ)∥
φ(x)

= ∥ f ∥φ sup
x∈(0,∞)

1 + ϱ2(x) + αn(x)ϱ(x) + ϱ(x) bn
n
1(1)+21′(1)
1(1) +

b2
n

n2
1′(1)+1′′(1)
1(1)

1 + ϱ2(x)

≤ (1 +M) ∥ f ∥φ .

Therefore the operators Cϱ,(αn)
n are uniformly bounded. Moreover it is obvious that ∥ Cϱ,(αn)

n (1)− 1 ∥φ= 0 . On
the other hand,

∥ Cϱ,(αn)
n (ϱ) − ϱ ∥φ = sup

x∈(0,∞)

ϱ(x) + bn
n
1′(1)
1(1) − ϱ(x)

1 + ϱ2(x)

= sup
x∈(0,∞)

bn1
′(1)

n1(1)(1 + ϱ2(x))
→ 0

as n→∞ and

∥ Cϱ,(αn)
n (ϱ)2

− ϱ2
∥φ = sup

x∈(0,∞)

ϱ2(x) + αn(x)ϱ(x) + ϱ(x) bn
n
1(1)+21′(1)
1(1) +

b2
n

n2
1′(1)+1′′(1)
1(1) − ϱ2(x)

1 + ϱ2(x)

= sup
x∈(0,∞)

(
αn(x)ϱ(x)
1 + ϱ2(x)

+
ϱ(x)bn(1(1) + 21′(1))

n1(1)(1 + ϱ2(x))
+

b2
n1
′(1) + 1′′(1)

n21(1)(1 + ϱ2(x))

)
→ 0

as n→∞. Hence, from Theorem (A), we have

lim
n→∞

∥ Cϱ,(αn)
n ( f ) − f ∥φ=1+ϱ2= 0

for all f ∈ Ck
ϱ[0,∞).
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3. Weighted quantitative estimates

Now, we calculate the rate of convergence of the operators given in (5) by using the modulus of continuity
ωϱ( f ; δ), which was proposed by Adrian Holhos in [29] as

ωϱ( f , δ) = sup
x,y≥0

∥ϱ(x)−ϱ(y)∥≤δ

| f (x) − f (y)|
φ(x) + φ(y)

,

for each f ∈ Cφ(R+) and for every δ ≥ 0, where ϱ(x) satisfies (a) and (b).
We see that α is chosen to be certain function sequence while configuring the special instances. We put the
following constraint on α since we will be working in space Cφ=1+x2 (R+). α := (αn(x)) satisfies (iii).

Theorem B. [29] Let Ln : Cϱ(R+)→ Bϱ(R+) be a sequence of linear operators satifying

∥ Lnϱ
0
− ϱ0

∥φ0 = jn,
∥ Lnϱ − ϱ ∥φ 1

2
= kn,

∥ Lnϱ
2
− ϱ2

∥φ = ln,

∥ Lnϱ
3
− ϱ3

∥
φ

3
2
= mn

where jn, kn, ln and mn tend to zero as n→∞ . Then we have

∥ Ln f − f ∥
φ

3
2
≤ (7 + 4 jn + 2ln)ωϱ( f , δn)+ ∥ f ∥φ jn

for all f ∈ Cϱ(R+) , where

δn = 2
√

( jn + 2kn + ln)(1 + jn) + jn + 3kn + 3ln +mn.

Theorem 3.1. For all f ∈ Ck
ϱ(R+) we have

∥ Cϱ,(αn)
n ( f ) − f ∥

φ
3
2
≤

(
7 + 2cn +

bn

n
21(1) + 41′(1)

1(1)
+

b2
n

n2

21′(1) + 21′′(1)
1(1)

)
ωϱ( f , δn)

where

δn = 2

√
cn +

1(1) + 41′(1)
1(1)

bn

n
+
1′(1) + 1′′(1)
1(1)

b2
n

n2 + 6cn + 2
√

2c2
n

+
(7 + 4cn)1(1) + (12 + 3cn)1′(1)

1(1)
bn

n
+
1(1) + 111′(1) + 61′′(1)

1(1)
b2

n

n2

+
1′(1) + 41′′(1) + 1′′′(1)

1(1)
b3

n

n3 .

Proof. We first determine the sequences jn, kn, ln, and mn from (13), (14), (15) and (16) , and then use Theorem
B to get the proposed results. Direct calculations give

∥ Cϱ,(αn)
n (1) − 1 ∥φ0= 0 = jn,

∥ Cϱ,(αn)
n (ϱ) − ϱ ∥φ1/2= sup

x∈(0,∞)

bn1
′(1)

n1(1)(1 + ϱ2(x))1/2
≤

bn

n
1′(1)
1(1)

= kn,
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∥ Cϱ,(αn)
n (ϱ)2

− ϱ2
∥ = sup

x∈(0,∞)

(
αn(x)ϱ(x)

(1 + ϱ2(x))2 +
ϱ(x)bn(1(1) + 21′(1))

n1(1)(1 + ϱ2(x))
+

b2
n1
′(1) + 1′′(1)

n21(1)(1 + ϱ2(x))

)
≤ cn +

bn

n
1(1) + 21′(1)
1(1)

+
b2

n

n2

1′(1) + 1′′(1)
1(1)

= ln,

and

∥ Cϱ,(αn)
n (ϱ)3

− ϱ3
∥φ3/2 = sup

x∈(0,∞)

3ϱ2(x)αn(x) + 2ϱ(x)α2
n(x) + (ϱ2(x) + ϱ(x)αn(x))

(
bn
n

41(1)+31′(1)
1(1)

)
(1 + ϱ2(x))3/2

+
ϱ(x)

(
b2

n
n2
1(1)+81′(1)+31′′(1)

1(1)

)
+

b3
n

n3
1′(1)+41′′(1)+1′′′(1)

1(1)

(1 + ϱ2(x))3/2

= 3cn + 2
√

2c2
n + (1 + cn)

(
bn

n
41(1) + 31′(1)

1(1)

)
+

(
b2

n

n2

1(1) + 81′(1) + 31′′(1)
1(1)

)
+

(
b3

n

n3

1′(1) + 41′′(1) + 1′′′(1)
1(1)

)
= mn

where jn, kn, ln and mn tend to zero as n→∞ and α→∞. Then we have

∥ Cϱ,(αn)
n ( f ) − f ∥

φ
3
2
≤ (7 + 4 jn + 2ln)ωϱ( f ; δn)+ ∥ f ∥φ jn

≤

(
7 + 2cn +

bn

n
21(1) + 41′(1)

1(1)
+

b2
n

n2

21′(1) + 21′′(1)
1(1)

)
ωϱ( f , δn)

for all f ∈ Cϱ(R+) , where

δn = 2
√

( jn + 2kn + ln)(1 + jn) + jn + 3kn + 3ln +mn

= 2

√
cn +

1(1) + 41′(1)
1(1)

bn

n
+
1′(1) + 1′′(1)
1(1)

b2
n

n2

+6cn + 2
√

2c2
n +

(7 + 4cn)1(1) + (12 + 3cn)1′(1)
1(1)

bn

n

+
1(1) + 111′(1) + 61′′(1)

1(1)
b2

n

n2 +
1′(1) + 41′′(1) + 1′′′(1)

1(1)
b3

n

n3 .

4. Local approximation properties

In this section we investigate the local approximation properties of the operators by means of Lipschitz type
maximal functions and two different types of modulus of continuity. Lets denote the bounded continuous
functions space with CB[0,∞) on [0,∞) given with the norm

∥ h ∥CB[0,∞):= sup{|h(x)| : x ∈ [0,∞)}

and the space C2
B(R+) := { f ∈ CB(R+) : f ′, f ′′ ∈ CB(R+)} endowed with the norm

∥ f ∥C2
B(R+)=∥ f ∥CB[0,∞) + ∥ f ′ ∥CB[0,∞) + ∥ f ′′ ∥CB[0,∞) .
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The first type modulus of continuity which is the classical type for h ∈ CB[0,∞) is defined as follows

ω(h; δ) = sup
|k|≤δ
{|h(x + k) − h(x)| : x ∈ [0,∞)}. (21)

where δ > 0 [6] and for function h ∈ CB[0,∞) the second-order modulus of smoothness is defined by

ω2(h, δ) := sup
0<k≤δ
{|h(x + 2k) − 2h(x + k) + h(x)| : x ∈ [0,∞)} (22)

for δ > 0 [6].
The Petree’s K-functional is defined by

K(h, δ) = in f1∈C2
B(R+){∥ h − f ∥CB[0,∞) +δ ∥ f ∥C2

B(R+)} (23)

where δ > 0 . The Peetre’s K-functional K(h; δ) and the second order modulus of smoothness ω2 have a
relation given by

K(h, δ) ≤ Cω2(h,
√

δ). (24)

for h ∈ CB[0,∞).

Proposition 4.1. For all h ∈ CB[0,∞) , we have

∥ Cϱ,(α)
n (h; ·) ∥CB[0,∞)≤∥ h ∥CB[0,∞) . (25)

Proof. Since C(α)
n (ϱ0(t); x) = 1, we obtain

|Cϱ,(α)
n (h; x)| ≤ ∥ h ◦ ϱ−1

∥CB[0,∞) Cϱ,(α)
n (ϱ0; x)

≤ ∥ h ◦ ϱ−1
∥CB[0,∞)≤∥ h ∥CB[0,∞) .

Theorem 4.2. For all h ∈ C1
B[0,∞) := {h ∈ CB[0,∞) : h′ ∈ CB[0,∞)} , we have

|Cϱ,(α)
n (h; x) − h(x)| ≤

√
(Mn,1(x))2( f ◦ ϱ−1)′(ϱ(x))2 + 2

√
Mn,2(x)ω

(
(h ◦ ϱ−1)′;

√
Mn,2(x)

)
.

where M(n,1)(x) and M(n,2)(x) are given in Lemma (2.3).

Proof. Let h ∈ [0,∞). From Taylor’s theorem we can write

h(t) − h(x) = (h ◦ ϱ−1)(ϱ(t)) − (h ◦ ϱ−1)(ϱ(x))

= (ϱ(t) − ϱ(x))(h ◦ ϱ−1)′(ϱ(x)) +
∫ ϱ(t)

ϱ(x)

{
(h ◦ ϱ−1)′(s) − (h ◦ ϱ−1)′(ϱ(x))

}
ds (26)

for x, t ∈ [0,∞). Using the inequality
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|h(t) − h(x)| ≤
(
|t − x|
δ
+ 1

)
ω(h; δ).

we can write that

∣∣∣∣∣ ∫ ϱ(t)

ϱ(x)

{
(h ◦ ϱ−1)′(s) − (h ◦ ϱ−1)′(ϱ(x))

}
ds

∣∣∣∣∣ ≤ ω (
(h ◦ ϱ−1)′; δ

) { (ϱ(t) − ϱ(x))2

δ
+ |ϱ(t) − ϱ(x)|

}
.

Therefore, using the above inequality (26) and then applying the operators Cϱ,(α)
n on both sides of the

resultant inequality we have

∣∣∣∣∣Cϱ,(α)
n (h; x) − h(x)

∣∣∣∣∣ ≤ |Mn,1(x)||(h ◦ ϱ−1)′(ϱ(x))|

+ω
(
(h ◦ ϱ−1)′; δ

) {Mn,2(x)
δ

+ Cϱ,(α)
n (|ϱ(t) − ϱ(x)|; x)

}
.

Finally, using Cauchy-Schwarz inequality, we have

∣∣∣∣∣Cϱ,(α)
n (h; x) − h(x)

∣∣∣∣∣ ≤ √
(Mn,1(x))2(h ◦ ϱ−1)′(ϱ(x))2

+ω
(
(h ◦ ϱ−1)′; δ

) {Mn,2(x)
δ

+
√

Mn,2(x)
}
.

Hence the result follows by choosing δ := δn :
√

Mn,2(x) and Lemma (2.3).

In the following theorem we obtain quantitative type estimate in terms of the Petree’s K-functional.

Theorem 4.3. For all h ∈ CB[0,∞), Chlodowsky variant of generalised Jain-Appell operators Cϱ,(α)
n satisfies the

following inequality

|Cϱ,(α)
n (h; x) − f (h)| ≤ K

h;

Mn,1(x)
2

+
Mn,2(x) max

{
1, ∥ ϱ′′ ∥CB[0,∞)

}
4


 (27)

where Mn,1(x) and Mn,2(x) are given in Lemma (2.3).

Proof. Using the Taylor’s theorem, we have

(k ◦ ϱ−1)(ϱ(t)) = (k ◦ ϱ−1)(ϱ(x)) + (ϱ(t) − ϱ(x))(k ◦ ϱ−1)′(ϱ(x)) +
(ϱ(t) − ϱ(x))2

2!
(k ◦ ϱ−1)′′(ϱ(c)),

where c ∈ (x, t). Considering the identities

(k ◦ ϱ−1)′(ϱ(x)) =
k′(x)
ϱ′(x)

.

(k ◦ ϱ−1)′′(ϱ(x)) =
k′′(x)

(ϱ′(x))2 −
k′(x)ϱ′′(x)

(ϱ′(x))3 ,
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we get,

k(t) − k(x) =
k′(x)
ϱ′(x)

(ϱ(t) − ϱ(x)) +
(ϱ(t) − ϱ(x))2

2

{
k′′(c)

(ϱ′(c))2 +
k′(c)ϱ′′(c)

(ϱ′(c))3

}
.

Applying Cϱ,(α)
n on both sides of the above equality and taking into account that infx≥0 ϱ′(x) ≥ 1, we get

|Cϱ,(α)
n (k; x) − k(x)| ≤ Mn,1(x)

k′(x)
ϱ′(x)

+
Mn,2(x)

2

{
k′′(c)

(ϱ′(c))2 +
k′(c)ϱ′′(c)

(ϱ′(c))3

}
≤ Mn,1(x)(∥ k′′ ∥CB[0,∞) + ∥ k′ ∥CB[0,∞) + ∥ k ∥CB[0,∞))

+
Mn,2(x)

2
(∥ k′′ ∥CB[0,∞) + ∥ k′ ∥CB[0,∞)∥ ϱ

′′
∥CB[0,∞) + ∥ k ∥CB[0,∞))

≤ Mn,1(x) ∥ k ∥C2
B[0,∞) +

Mn,2(x)
2

max
{
1, ∥ ϱ′′ ∥CB[0,∞)

}
∥ k ∥C2

B[0,∞)

=

{
Mn,1(x) +

Mn,2(x)
2

max
{
1, ∥ ϱ′′ ∥CB[0,∞)

}}
∥ k ∥C2

B[0,∞) .

Now for h ∈ CB[0,∞), there exists k ∈ C2
B[0,∞) such that ∥ h − k ∥CB[0,∞)≤ ε. Therefore using triangle

inequality, (25) and the above inequality, we have

|Cϱ,(α)
n (h; x) − h(x)| ≤ C(α)

n (|h − k|; x) + |h(x) − k(x)| + |C(α)
n (k; x) − k(x)|

≤ 2 ∥ h − k ∥CB[0,∞)

+

{
Mn,1(x) +

Mn,2(x)
2

max
{
1, ∥ ϱ′′ ∥CB[0,∞)

}}
∥ k ∥C2

B[0,∞) .

From the Peetre’s K-functional (23) definition we get the desired result as

|Cϱ,(α)
n (h; x) − h(x)| ≤ K

h;

Mn,1(x)
2

+
Mn,2(x) max

{
1, ∥ ϱ′′ ∥CB[0,∞)

}
4


 . (28)

The following theorem states the quantitative estimate by means of the second order modulus of smooth-
ness.

Theorem 4.4. We have the following inequality

|Cϱ,(α)
n (h; x) − h(x)| ≤ C{ω2(h,

√
δn +min(1, δn) ∥ h ∥CB[0,∞)} (29)

where h ∈CB[0,∞), the positive constant C is independent of n and

δn =
Mn,1(x)

2
+

Mn,2(x) max
{
1, ∥ ϱ′′ ∥CB[0,∞)

}
4

.

Proof. The proof follows by using relation (24) in Theorem (4.3).
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Recall the Lipschitz class functional that was described in [25]. With the choice of the function ϱ that satisfy
conditions given before, the set of all functions h satisfying

|h(t) − h(x)| ≤M|ϱ(t) − ϱ(x)|η, x, t ≥ 0, (30)

is said to be of class LipM(ϱ(x); η) for η ∈ (0, 1] and M > 0 .
Let E ⊂ [0,∞). The function h ∈ C[0,∞) belongs to LipM(ϱ(x); η), η ∈ (0, 1] if the following holds true

|h(t) − h(x)| ≤Mη,h|ϱ(t) − ϱ(x)|η, x ∈ E and t ≥ 0, (31)

where Mη,h is a constant depending on h and α.

Theorem 4.5. Let E be any bounded subset of [0,∞). ϱ be a function satisfying conditions (a) and (b). Then we
have,

|Cϱ,(α)
n (h; x) − h(x)| ≤Mη,h

(
Mn,2(x)

η
2 + 2(ϱ′(ξ))ηdη(x,E)

)
, (32)

x ∈ (0,∞), n ∈N,

for any h ∈ LipM(ϱ(x); η) on E and η ∈ (0, 1] where the distance between the point x and the set E is d(x,E) =
inf{|x− y| : y ∈ E} , Mη,h is a constant depending on η and h, ξ is a part of the interval with terminal points x and x0 .

Proof. We use E to denote the closure of the subset E in [0,∞), than for at least one x0 ∈ E we have
d(x,E) = ∥x − x0∥. The hypothesis on h and using the monotonicity of C(α)

n , we get

|Cϱ,(α)
n (h; x) − h(x)| ≤ Cϱ,(α)

n (|h(t) − h(x0)|; x) + Cϱ,(α)
n (|h(t) − h(x0)|; x)

≤ Mη,h{C
ϱ,(α)
n (|ϱ(t) − ϱ(x0)|η; x) + |ϱ(x) − ϱ(x0)|η}

≤ Mη,h{C
ϱ,(α)
n (|ϱ(t) − ϱ(x)|η; x) + 2|ϱ(x) − ϱ(x0)|η}.

From the Holder’s inequality with p = 2
η and q = 2

2−η and the fact ∥ϱ(x) − ϱ(x0)∥ = ϱ′(ξ)∥x − x0∥ where ξ
belongs to the interval whose terminal points are x and x0, we easily conclude

|Cϱ,(α)
n (h; x) − h(x)| ≤ Mη,h{[C

ϱ,(α)
n (|ϱ(t) − ϱ(x)|2; x)]

η
2 + 2(ϱ′(ξ)|x − x0|)η}

≤ Mη,h{(Mn,2)
η
2 + 2(ϱ′(ξ))ηdη(x,E)}.

Proposition 4.6. Let ϱ satisfy the conditions (a) and (b). Then for any h ∈ LipM(ϱ(x); η), we have

|Cϱ,(α)
n (h; x) − h(x)| ≤M(Mn,2(x))

η
2 . (33)

In [30] generalized Lipschitz-type maximal function of order η is defined as

ω∼ϱη (h; x) = sup
x,t,t∈[0,∞)

|h(t) − h(x)|
|ϱ(t) − ϱ(x)|η

. (34)

Theorem 4.7. Let h ∈ CB(0,∞) and 0 < η ≤ 1. Then for all x ∈ [0,∞), we have

|C(η)
n (h; x) − h(x)| ≤ ω∼ϱη (h; x)(Mn,2)

η
2 . (35)
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Proof. From the definition of ηth order generalized Lipschitz-type maximal function given in (34), we have

|Cϱ,(η)n (h; x) − h(x)| ≤ ω∼ϱβ (h; x)Cϱ,(η)n (|ϱ(t) − ϱ(x)|η; x).

Applying the Hölder inequality with p = 2
α and q = 2

2−η , we have

|Cϱ,(η)n (h; x) − h(x)| ≤ ω∼ϱη (h; x)[Cϱ,(η)n ((ϱ(t) − ϱ(x))2; x)]
η
2

≤ ω∼ϱη (h; x)(Mn,2)
η
2 .

which is (35).

5. A Voronovskaya asymptotic formula

For the C(α)
n ( f ; x) we will give Voronovskaya type theorem in this section.

Theorem 5.1. Let h ∈ Cφ(R+), x ∈ R+ and with the assumption of (h ◦ ϱ−1)’s first and second derivatives exist at
ϱ(x). We also assume that bn → ∞ and bn

n → 0, nαn(x)
bn
→ 0 , for fixed [0,∞). If (h ◦ ϱ−1)’s second derivative is

bounded on (0,∞), then we have

lim
n→∞

n
bn

[
Cϱ,(αn(x))

n (h; x) − h(x)
]
=
1′(1)
1(1)

(h ◦ ϱ−1)′(ϱ(x)) + ϱ2(x)
1
2

( f ◦ ϱ−1)′′

for fixed x ∈ [0,∞).

Proof. With the Taylor expansion at the point ϱ(x) ∈ R+ of h ◦ ϱ−1 , there is a ξ between x and t such that

h(t) = (h ◦ ϱ−1)(ϱ(x)) + (h ◦ ϱ−1)′(ϱ(x))(ϱ(t) − ϱ(x))

+
1
2

(h ◦ ϱ−1)′′(ϱ(x))(ϱ(t) − ϱ(x))2 + λx(t)(ϱ(t) − ϱ(x))2 (36)

where

λx(t) =
(h ◦ ϱ−1)′′(ϱ(ξ)) − (h ◦ ϱ−1)′′(ϱ(x))

2
. (37)

Here, the assumption on h together with (37) guarantees |λx(t)| ≤ M for all t and |λx(t)| → 0 as t → x.
Applying Cαn

n to (36), we get

Cϱ,(αn(x))
n (h; x) − h(x) = (h ◦ ϱ−1)′(ϱ(x))Cϱ,(αn(x))

n (ϱ(t) − ϱ(x); x)

+
1
2

(h ◦ ϱ−1)′′(ϱ(x))Cϱ,(αn(x))
n ((ϱ(t) − ϱ(x))2; x)

+Cϱ,(αn(x))
n (λx(t)(ϱ(t) − ϱ(x))2; x).

Clearly

lim
n→∞

n
bn

Cϱ,(αn(x))
n (ϱ(t) − ϱ(x); x) = lim

n→∞

n
bn

(
bn

n
1′(1)
1(1)

)
= lim

n→∞

(
1′(1)
1(1)

)
=
1′(1)
1(1)
.

Since limn→∞
nαn(x)

bn
= 0 for fixed x ∈ [0,∞), we have

lim
n→∞

n
bn

Cϱ,(αn(x))
n ((ϱ(t) − ϱ(x))2; x) = lim

n→∞

n
bn

[
αn(x)ϱ(x) + ϱ(x)

bn

n
+

b2
n

n2

1′(1) + 1′′(1)
1(1)

]
= ϱ(x).
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Now let’s estimate limn→∞
n
bn

Cϱ,(αn)
n (λx(t)(ϱ(t) − ϱ(x))2; x) term. Choose δ > 0 and ε > 0 such that |λx(t)| < ε

for |t − x| < δ. Recall that, by the condition (b),

|t − x| ≤ ϱ′(µ)|t − x| = |ϱ(t) − ϱ(x)|.

Consequently, |ϱ(t) − ϱ(x)| < δ, implies |λx(t)(ϱ(t) − ϱ(x))2
| < ε(ϱ(t) − ϱ(x))2, while if |ϱ(t) − ϱ(x)| ≥ δ, using the

fact that |λx(t)| <M, we find

|λx(t)|(ϱ(t) − ϱ(x))2
| <

M
δ2 (ϱ(t) − ϱ(x))4.

Thus , we can write that
n
bn

Cϱ,(αn(x))
n (λx(t)((ϱ(t) − ϱ(x))2; x) < ε

n
bn

Cϱ,(αn(x))
n ((ϱ(t) − ϱ(x))2; x)

+
n
bn

M
δ2 Cϱ,(αn(x))

n ((ϱ(t) − ϱ(x))4; x).

Since nαn(x)
bn
→ 0 for fixed x ∈ [0,∞), we have

lim
n→∞

n
bn

Cϱ,(αn(x))
n ((ϱ(t) − ϱ(x))4; x)

= limn→∞
n
bn

[ (
3α2

n(x) + 14αn(x)
bn

n
+

101(1) + 41′(1)
1(1)

b2
n

n2

)
ϱ2(x)

+

( (
6α3

n(x) + α2
n(x)

(
201(1) + 81′(1)

1(1)

))
bn

n

+αn(x)
(

141(1) + 301′(1) + 61′′(1)
1(1)

)
b2

n

n2

+

(
1(1) + 221′(1) + 141′′(1)

1(1)

)
b3

n

n3

)
ϱ(x)

+

(
1′(1) + 141′′(1) + 101′′′(1) + 1(4)

1(1)
b4

n

n4

) ]
= 0

therefore, we conclude from (38) that

lim
n→∞

n
bn

Cϱ,(αn(x))
n (λx(t)(ϱ(t) − ϱ(x))2; x) = 0

Since ε is arbitrary it follows that,

lim
n→∞

n
bn

[
Cϱ,(αn(x))

n (h; x) − h(x)
]
=
1′(1)
1(1)

(h ◦ ϱ−1)′(ϱ(x)) + ϱ2(x)
1
2

(h ◦ ϱ−1)′′.
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Figure 1: Approximation of h(x) = (x3/2 + 1)e−x on [0, 5], when n = 100.
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Figure 2: Graph of errors when h(x) = (x3/2 + 1)e−x on [0, 5], when n = 100.

6. Illustrative examples

Figures 1 illustrates the approximations to the function h(x) = (x3/2+1)e−x by the Chlodowsky variant of
Jain-Appell, Chlodowsky variant of Appell-Baskakov and Chlodowsky variant of Appell-Lupaş operators
with f (x) = ex, bn = n

1
3 , for n = 100. Figure 2 illustrates the approximation error of function h(x) = (x3/2+1)e−x

by the same three operators with f (x) = ex, bn = n
1
3 , for n = 100. In both figures, the blue curve represents

the Cϱ,(α)
n (h; x) operators given in (5), the yellow curve represents the Bϱ,Cn (h; x) operators given in (9) and the

green curve represents the Lϱ,Cn (h; x) operators given in (11). It should be mentioned that, increasing n will
cause much efficient approximation to a given function.
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[9] A. Aral, D. Inoan, I. Raşa. On the generalized Szász–Mirakyan operators , Results in Mathematics, 65(2014), 441-452 .

[10] R. Arslan, M. Mursaleen. Some approximation results on Chlodowsky type q-Bernstein-Schurer operators,Filomat, 23(2023), (37), 8013-
8028.

[11] R. Arslan, M. Mursaleen.Approximation by bivariate Chlodowsky type Szász–Durrmeyer operators and associated GBS operators on
weighted spaces, Journal of Inequalities and Applications. 2022(2022), (1), 26.

[12] B. Baxhaku, R. Zejnullahu , A. Berisha. The Approximation of Bivariate Blending Variant Szász Operators Based Brenke Type Polynomials,
Advances in Mathematical Physics, 2018(2018), 1-10 .
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[20] Ö. Dalmanoğlu, M. Örkücü. On the Chlodowsky variant of Jakimovski-Leviatan-Păltănea Operators, Gazi University Journal of Science,

34(2021), 812-833.
[21] N. Deo, S. Kumar.Durrmeyer variant of Apostol-Genocchi-Baskakov operators, Quaestiones Mathematicae, 44(2021), 1817-1834 .
[22] DeVore, R. A., Lorentz,G. G.: Constructive approximation (Vol. 303). Berlin: Springer Science & Business Media, (1993).
[23] M. Dhamija, R. Pratap, N. Deo. Approximation by Kantorovich form of modified Szász–Mirakyan operators, Applied Mathematics and

Computation, 317 (2018), 109-120 .
[24] Z. Finta. On approximation properties of Stancu’s operators, Studia Universitatis Babes, -Bolyai Mathematica, 47(2002),4.
[25] A. D. Gadjiev, A. Aral. The estimates of approximation by using a new type of weighted modulus of continuity. Computers & Mathematics

with Applications. 54(2007), 127-135.
[26] A. D. O. Gadzhiev. The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that

of PP Korovkin, Doklady Akademii Nauk Russian Academy of Sciences, 218(1974), 1001-1004.
[27] A. D. Gadjiev. Theorems of the type of PP Korovkin type theorems, Matematicheskie Zametki, 20(1976), 781-786 .
[28] T. Garg,A. M. Acu, P. N. Agrawal. Weighted approximation and GBS of Chlodowsky–Szász–Kantorovich type operators. Analysis and

Mathematical Physics. 9(3), 1429-1448 (2019).
[29] A. Holhos.Quantitative estimates for positive linear operators in weighted spaces, General Mathematics, 16(2008), 99-110.
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