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Abstract. Over the past three decades, fractional calculus has gained increasing importance and practical
relevance in various fields of science and engineering. This article aims to develop enhanced estimations
based on the fractional Simpson’s rule for functions that are twice differentiable. Leveraging majorization
theory, we introduce a novel auxiliary identity by making use of fractional integral operators. To derive
the novel bounds presented in this manuscript, we employ the notion of convex functions in conjunction
with the Niezgoda Jensen Mercer (JM) inequality for majorized tuples, as well as some core inequalities,
including Young’s, Power mean, and Hölder’s inequalities. Furthermore, this study encompasses the
application of quadrature rules and provides illustrative examples related to special functions. Notably,
the primary contributions of this research involve the extension and generalization of numerous well-
established findings found in the current body of literature.

1. Introduction and Preliminaries

Let’s start by reflecting on the relevant ideas related to convex mappings and other important concepts
discussed in this paper.

Definition 1.1. Let g : [ζ1, ζ2] ⊆ ℜ →ℜ is convex hold for all c,d ∈ [ζ1, ζ2] and κ ∈ [0, 1]

g(κc + (1 − κ)d) ≤ κg(c) + (1 − κ)g(d) (1)

Convex functions are crucial to a wide range of mathematical disciplines. This theory offers a fantastic
starting point and foundation for developing numerical tools for tackling and exploring difficult mathe-
matical problems. Considering all of their useful qualities, they are particularly magical in the realm of
optimization theory. Convex function theory and mathematical inequalities have a lovely relationship.
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Here is one of the most fundamental inequality that is considered as the expansion of a convex function.
Let 0 < d1 ≤ d2 ≤ ... ≤ dn and let ω = (ω1, ω2, ..., ωλ) be the weight which can not be negative such that
λ∑
ȷ=1
ω ȷ = 1 and if the function g : [ζ1, ζ2]→ℜ on the given interval is convex then Jensen’s inequality given

as [1]:

g

 λ∑
ȷ=1

ω ȷ d ȷ

 ≤
 λ∑
ȷ=1

ω ȷ g
(
d ȷ

) , (2)

For all d ȷ ∈ [ζ1, ζ2], ω ȷ ∈ [0, 1] for
(
ȷ = 1, 2, ..., λ

)
. The JM inequality has been applied in several disciplines,

particularly statistics, machine learning, and economics. It is commonly utilised in a variety of fields to
establish essential limits and verify crucial findings. Jensen’s inequality has numerous applications in
finance, optimisation, economics and statistics , but it is especially useful in information theory for fore-
casting the estimations of the bounds of distance functions [2–4].

McD Mercer [5] presented a fascinating perspective on Jensen’s inequality designated as Jensen Mercer
(in short JM) inequality in the year 2003, given as:
Let g is convex function on [ζ1, ζ2], then

g

ζ1 + ζ2 −

λ∑
ȷ=1

ω ȷ d ȷ

 ≤ g (ζ1) + g (ζ2) −
λ∑
ȷ=1

ω ȷ g
(
d ȷ

)
, (3)

is valid for all finite positive increasing sequence d ȷ ∈ [ ζ1, ζ2] , for
(
ȷ = 1, 2, ..., λ

)
together with weights

ω ȷ ∈ [0, 1] defined in (2).

Definition 1.2. [6] Let c = (c1, ..., cℓ) and d = (d1, ...,dℓ) be two tuple with its arrangements c[ℓ] ≤ c[ℓ−1] ≤ ... ≤
c[1],d[ℓ] ≤ d[ℓ−1]... ≤ d[1] where each of them is a real number then c is considered to be majorize d (or d is a said to
be majorize by c, in symbolic terms c ≻ d), i f :

λ∑
s=1

d[s] ≤

λ∑
s=1

c[s] f or λ = 1, 2, ..., ℓ − 1 (4)

and

ℓ∑
s=1

d[s] =

ℓ∑
s=1

c[s].

In [7], an idea of extended JM inequality in context of majorization presented by Niezgoda is stated as
follows:

Theorem 1.3. Let (d ȷs) be a λ × ℓ real matrix and ζ = (ζ1, ζ2, ..., ζℓ) be ℓ tuple such that ζs,d ȷs, ∀ ȷ = 1, 2, ..., λ,

s ∈ {1, ..., ℓ} and function g be a convex defined in I. Moreover, ω ȷ ≥ 0 for ȷ = 1, 2, ..., λ with
λ∑
ȷ=1
ω ȷ = 1.If ζ majorizes

each row of d ȷs then

g
( ℓ∑
s=1

ζs −
∑
s

= 1ℓ−1
λ∑
ȷ=1

ω ȷd ȷs
)
≤

ℓ∑
s=1

g(ζs) −
ℓ−1∑
s=1

λ∑
ȷ=1

ω ȷg(d ȷs). (5)

Many researchers have studied and investigated the JM inequality over the years in a variety of ways,
including raising its dimension, obtaining it for convex operators together with its numerous refinements,
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operator variants for superquadratic functions, improved features and various generalisations with appli-
cations in information theory, see the papers [26]-[33].
Simpson’s inequality is widely recognized for its significant geometrical implications and extensive range
of practical applications, as mentioned in the subsequent discussion [8].∣∣∣∣∣∣13{g (ζ1) + g (ζ2)

2
+ 2g

(
ζ1 + ζ2

2

)
−

1
ζ2 − ζ1

∫ ζ2

ζ1

g (x) dx
}∣∣∣∣∣∣

≤
1

2880

∣∣∣∣∣∣g4
∣∣∣∣∣∣
∞

(ζ2 − ζ1)4 .

where g : [ζ1, ζ2] → ℜ is a mapping which is continuously differentiable four times on (ζ1, ζ2) and∣∣∣∣∣∣g(4)
∣∣∣∣∣∣
∞
= supx∈(ζ1,ζ2)

∣∣∣g(4) (x)
∣∣∣ < ∞.

In recent years, there has been a notable expansion in research on inequalities of Simpson-type ap-
plicable to the functions that can be differentiated twice. Sarikaya et al. pioneered the utilization of
Riemann-Liouville (in short RL)-fractional integrals to derive various inequalities of trapezoidal and
Hermite-Hadamard-types. For differentiable s-convex functions and convex functions which are twice
differentiable, Sarikaya et al. [9, 10] proven the general form of Simpson’s type inequality. For instance,
Hezenci et al. [11] introduced an identity regarding functions which are differentiable two times employing
RL-fractional integral operators, leading to a series of inequalities of Simpson-type. In [12], Hezenci et
al. established a generalized fractional integral identity and employed it to derive inequalities Simpson’s-
formula-type for convex functions which are differentiable two times. These outcomes can be expressed in
Riemann integral, RL- and k-RL fractional integral forms. Subsequently, Zhou et al. [13] utilized fractional
integrals incorporating exponential kernels to present several parameterized integral inequalities associ-
ated with convex functions. These inequalities encompass the averaged midpoint-trapezoid inequality,
the trapezoid inequality and Simpson’s inequality. Furthermore, Zhou et al. [14] proposed weighted pa-
rameterized integral inequalities relevant to twice differentiable functions, unifying midpoint-, Simpson-,
Bullen-, and trapezoid-type inequalities and Faisal et al. established variants of Hermite Hadamard type
inequalities using the majorization technique in [15–18].

In recent years, numerous studies have placed significant emphasis on the concept of convexity and
its various manifestations. Specifically, the investigation of convexity within the framework of integral
inequalities has emerged as a compelling research topic. Hermite’s inequality, Hadamard’s inequality, and
Jensen’s inequality, as well as Hilbert’s inequality and Hardy’s inequality, are among the most notable
inequalities pertaining to the convex function’s integral mean.
In the past thirty years, fractional calculus, which encompasses the study of integrals and derivatives with
arbitrary real or complex orders, has gained significant attention. Its increasing popularity can be attributed
to its proven utility across a diverse spectrum of scientific and engineering disciplines. This field offers
promising techniques for addressing a multitude of challenges, including solving differential and integral
equations, as well as tackling a variety of mathematical physics problems, special functions, and its expan-
sions and generalisations in either one or more variables. One of the ways to build fractional calculus is
as an application of the concept of a derivative operator, which may be expanded from integer order to
any other (non-integral) order. The field of fractional calculus encompasses theories related to differential,
integral, and integro-differential equations, alongside specialized mathematical physics functions, extend-
ing into one or more variables. Its applications are diverse and encompass various domains. Some of the
present areas where fractional calculus finds utility consist of rheology, fluid dynamics, diffusive transport
resembling diffusion, dynamic processes within identical and porous structures, electrical network anal-
ysis, statistics and probability, viscoelastic behavior, control theory for dynamic systems, electrochemical
corrosion studies, optics, chemical physics and signal processing, among others. Numerous investigations
have demonstrated that fractional operators are capable of explaining complex long-memory and multi
scale processes in materials which are challenging to model utilizing conventional mathematical techniques,
such as classical differential calculus [19]. The RL-fractional integral operators are the first and foremost
flexible in terms of local kernels are defined as:
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Let g be the integrable function on [ζ1, ζ2], then Riemann Liouvile fractional integral of order α such that
α > 0 are stated subsequently:

Jαζ+1 g (x) =
1
Γ (α)

∫ x

ζ1

(x − t)α−1 g (t) dt , x > ζ1

and

Jαζ−2 g (x) =
1
Γ (α)

∫ ζ2

x
(t − x)α−1 g (t) dt , x < ζ2.

where Γ is termed as Gamma function.

The core aim of this manuscript is to provide a study of fractional Simpson inequality estimates by
using the majorization approach. We come up with a fractional auxiliary outcome, then by using Neizgoda
JM inequality related to majorization and convexity, we provide a range of novel estimates for Simpson’s
fractonal inequalities. In order to further enhance the elegance of connections, we present Simpson’s
estimations utilizing special q-digamma and Bessel functions.

2. Main Results

This section contains Simpson’s type lemma via majorization for the RL-integral operator for differen-
tiable functions on the given interval I. We start with the following lemma:
Here ζ = (ζ1, ζ2, ..., ζℓ), (c1, c2, ..., cℓ) and (d1,d2, ...,dℓ) be the three ℓ-tuples that will be used in this paper.

Lemma 2.1. Supposing that ζs, cs,ds ∈ I for all s ∈ {1, 2, 3, ..., ℓ} be three tuples such that cℓ > dℓ, α > 0 and
function g be the continuous as well as differentiable on I such thatℜ ⊇ I. If g′ ∈ L(I) and ζ majorizes both c and d,
then the following identity:

Sα(cs,ds, ζs, ℓ; g) =
1
6

{
g

 ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs

 + 4g

 ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs + ds
2

 + g

 ℓ∑
s=1

ζs −
ℓ−1∑
s=1

ds

}
−

2α−1Γ(α + 1)(
ℓ−1∑
s=1

(ds − cs)
)α × {

Jα(
ℓ∑
s=1
ζs−

ℓ−1∑
s=1

cs

)−g
 ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs + ds
2


+ Jα(

ℓ∑
s=1
ζs−

ℓ−1∑
s=1

ds

)+ g

 ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs + ds
2

 }

=

(
ℓ−1∑
s=1

(ds − cs)
)2

8(α + 1)

∫ 1

0

(
1 − 2α

2
+

2(α + 1)
3

κ − κ(α+1)

)
×[

g′′
 ℓ∑
s=1

ζs −
[1 − κ

2

ℓ−1∑
s=1

cs +
1 + κ

2

ℓ−1∑
s=1

ds
]+

g′′
 ℓ∑
s=1

ζs −
[1 − κ

2

ℓ−1∑
s=1

ds +
1 + κ

2

ℓ−1∑
s=1

cs
] ]dκ (6)

satisfies for κ ∈ [0, 1].
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Proof. Let us first consider L.H.S

=

(
ℓ−1∑
s=1

(ds − cs)
)2

8(α + 1)

∫ 1

0

(
1 − 2α

2
+

2(α + 1)
3

κ − κ(α+1)

)
×

[
g′′

 ℓ∑
s=1

ζs −
[1 − κ

2

ℓ−1∑
s=1

cs +
1 + κ

2

ℓ−1∑
s=1

ds
] + g′′

 ℓ∑
s=1

ζs −
[1 − κ

2

ℓ−1∑
s=1

ds +
1 + κ

2

ℓ−1∑
s=1

cs
] ]dκ

=

(
ℓ−1∑
s=1

(ds − cs)
)2

8(α + 1)
{I1 + I2}.

Where I1 is given as,

I1 =
[ ∫ 1

0

(
1 − 2α

2
+

2(α + 1)
3

κ − κ(α+1)

)
g′′

 ℓ∑
s=1

ζs −
[1 − κ

2

ℓ−1∑
s=1

cs +
1 + κ

2

ℓ−1∑
s=1

ds
] dκ.

Now by applying integrating by parts on I1, we have

I1 =

(
1 − 2α

3
+

2(α + 1)
3

κ − κ(α+1)

) g′
(
ℓ∑
s=1
ζs −

[
1−κ

2

ℓ−1∑
s=1

cs + 1+κ
2

ℓ−1∑
s=1

ds
])

−

ℓ−1∑
s=1

ds−cs
2

∣∣∣∣∣∣
1

0

∫ 1

0

g′
(
ℓ∑
s=1
ζs −

[
1−κ

2

ℓ−1∑
s=1

cs + 1+κ
2

ℓ−1∑
s=1

ds
])

−

ℓ−1∑
s=1

ds−cs
2

(
2(α + 1)

3
− (α + 1)κα

)
dκ.

I1 =
2(1 − α)

3
ℓ−1∑
s=1

(ds − cs)

g′
 ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs + ds
2


+

4(1 + α)

3
(
ℓ−1∑
s=1

(ds − cs)
)2 g

 ℓ∑
s=1

ζs −
ℓ−1∑
s=1

ds

 + 8(α + 1)
3

g

 ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs + ds
2


−

α(α + 1)(
ℓ−1∑
s=1

(ds − cs)
)2

∫ 1

0
g

 ℓ∑
s=1

ζs −

1 + κ
2

ℓ−1∑
s=1

cs +
1 − κ

2

ℓ−1∑
s=1

ds


κα−1dκ. (7)

By substituting the variables, we get

I1 =
2(1 − 2α)

3
ℓ−1∑
s=1

(ds − cs)

g′
 ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs + ds
2


+

4(1 − α)

3
(
ℓ−1∑
s=1

(ds − cs)
)2 g

 ℓ∑
s=1

ζs −
ℓ−1∑
s=1

ds

 + 8(α + 1)
3

g

 ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs + ds
2

−
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2(α+2)α(α + 1)(
ℓ−1∑
s=1

(ds − cs)
)α ∫ ℓ∑

s=1
ζs−

ℓ−1∑
s=1

cs+ds
2

ℓ∑
s=1
ζs−

ℓ−1∑
s=1

ds

[[ ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs + ds
2

]
− P

]α−1

g(P)dP.

Similarly for I2, by applying integration by parts we have

I2 = −
2(1 − 2α)

3
ℓ−1∑
s=1

(ds − cs)

g′
 ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs + ds
2


+

4(1 − α)

3
(
ℓ−1∑
s=1

(ds − cs)
)2 g

 ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs

 + 8(α + 1)
3

g

 ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs + ds
2



−
2(α+2)α(α + 1)(
ℓ−1∑
s=1

(ds − cs)
)α ∫ ℓ∑

s=1
ζs−

ℓ−1∑
s=1

cs

ℓ∑
s=1
ζs−

ℓ−1∑
s=1

cs+ds
2

[
P −

[ ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs + ds
2

]]α−1

g(P)dP. (8)

Before applying the fractional integral’s definition, we demonstrate that

ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs + ds
2

>
ℓ∑
s=1

ζs −
ℓ−1∑
s=1

ds

and
ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs + ds
2

<
ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs

From the given condition,

cℓ > dℓ =⇒ cℓ − dℓ > 0

As c ≺ ζ and d ≺ ζ then by applying the definition of majorization

ℓ−1∑
s=1

ds + dℓ =
ℓ−1∑
s=1

cs + cℓ =⇒
ℓ−1∑
s=1

ds −
ℓ−1∑
s=1

cs = cℓ − dℓ.

ℓ−1∑
s=1

ds >
ℓ−1∑
s=1

cs =⇒ −

ℓ−1∑
s=1

ds < −
ℓ−1∑
s=1

cs.

−

ℓ−1∑
s=1

ds <
ℓ−1∑
s=1

cs − 2
ℓ−1∑
s=1

cs =⇒ −

ℓ−1∑
s=1

(cs + ds)
2

< −
ℓ−1∑
s=1

cs.

Adding
ℓ∑
s=1
ζs on both sides

ℓ∑
s=1

ζs −
ℓ−1∑
s=1

(cs + ds)
2

<
ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs.

Similarly,
ℓ∑
s=1

ζs −
ℓ−1∑
s=1

ds <
ℓ∑
s=1

ζs −
ℓ−1∑
s=1

(cs + ds)
2

.
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Adding I1 and I2, we have

I1 + I2 =
4(α + 1)

3
(
ℓ−1∑
s=1

(ds − cs)
)2

[
g
[ ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs
]
+ 4g

[ ℓ∑
s=1

ζs −
ℓ−1∑
s=1

(cs + ds)
2

]
+

g
[ ℓ∑
s=1

ζs −
ℓ−1∑
s=1

ds
]]
−

2(α+2)(α + 1)Γ(α + 1)
ℓ−1∑
s=1

(ds − cs)α+2

[
Jα
(
ℓ∑
s=1
ζs−

ℓ−1∑
s=1

cs)−
g
( ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs + ds
2

)

+ Jα
(
ℓ∑
s=1
ζs−

ℓ−1∑
s=1

ds)+
g
( ℓ∑
s=1

ζs −
ℓ−1∑
s=1

cs + ds
2

)]
. (9)

Multiply by

(
ℓ−1∑
s=1

(ds − cs)
)2

8(α + 1)
on both sides of (9), we obtain (6) .

Remark 2.2. By substituting ℓ = 2 in Lemma 6, the above mentioned identity becomes:

Sα(cs,ds, ζs, 2; g) =
1
6

[
g(ζ1 + ζ2 − c) + 4g

(
ζ1 + ζ2 −

c + d
2

)
+ g(ζ1 + ζ2 − d)

]
−

2α−1Γ(α + 1)
(d − c)α

×

[
Jα
ζ1+ζ2−c−g

(
ζ1 + ζ2 −

c + d
2

)
+ Jα
ζ1+ζ2−d+g

(
ζ1 + ζ2 −

c + d
2

)]
=

(d − c)2

8(α + 1)

∫ 1

0

(
1 − 2α

3
+

2(α + 1)
3

κ − κ(α+1)

) [
g′′

(
ζ1 + ζ2 −

(1 − κ
2

c +
1 + κ

2
d
))

+ g′′
(
ζ1 + ζ2 −

(1 − κ
2

d +
1 + κ

2
c
))

dκ
]
,

The above mentioned equality is known as Mercer equality pertaining to RL-fractional integral and is a novel concept
in the field of inequalities.

Remark 2.3. In above Remark 2.2, for α = 1 we attain the traditional Simpson Mercer form given below:

S1(cs,ds, ζs, 2; g) =
1
6

[
g(ζ1 + ζ2 − c) + 4g

(
ζ1 + ζ2 − (

c + d
2

) + g(ζ1 + ζ2 − d)
]
−

1
d − c

∫ ζ1+ζ2−c

ζ1+ζ2−d
g(P)dP =

(d − c)2

48

∫ 1

0

(
4κ − 3κ2

− 1
)

[
g′′

(
ζ1 + ζ2 −

(1 − κ
2

c +
1 + κ

2
d
)
+ g′′

(
ζ1 + ζ2 −

(1 − κ
2

d +
1 + κ

2
c
)]

dκ.

Remark 2.4. Here for ζ1 = c and ζ2 = d in Remark 2.2, we obtain an equality via Riemann Liouville which is proved
in [20].

Remark 2.5. By using α = 1 and ζ1 = c and ζ2 = d in Remarks 2.2, we obtain the traditional Simpson Lemma that
has been proven by Butt et al. in [21].

Based on Lemma 2.1, some new majorization-based Simpson’s type inequalities results for convex functions
are given below.
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Theorem 2.6. According to Lemma’s 2.1 assumptions, if the function |g′′| on I is continuous as well as convex , then
∀ α > 0, the subsequent inequality for fractional integral inequality:

∣∣∣∣∣Sα(cs,ds, ζs, ℓ; g)
∣∣∣∣∣ ≤

(
ℓ−1∑
s=1

(ds − cs)
)2

8(α + 1)
Y1(α)

[
2
∣∣∣∣g′′( ℓ∑

s=1

ζs
)∣∣∣∣ − {∣∣∣∣g′′( ℓ−1∑

s=1

cs
)∣∣∣∣ + ∣∣∣∣g′′( ℓ−1∑

s=1

ds
)∣∣∣∣}]

where

Y1(α) =
{ 1−α2

3(α+2) 0 < α ≤ 1
2

2
(

(ρα)α+2

α+2 −
(1−2α)ρα+(α+1)(ρα)2

3

)
+ 1−α2

3(α+2) α > 1
2

satisfies for κ ∈ [0, 1].

Proof. By considering the modulus on both sides of Lemma 2.1, we have

∣∣∣∣∣∣Sα(cs,ds, ζs, ℓ; g)

∣∣∣∣∣∣ ≤
(
ℓ−1∑
s=1

(ds − cs)
)2

8(α + 1)

∫ 1

0

∣∣∣∣∣ (1 − 2α
2
+

2(α + 1)
3

κ − κα+1

) ∣∣∣∣∣×[∣∣∣∣∣g′′( ℓ∑
s=1

ζs −
(1 + κ

2

ℓ−1∑
s=1

cs +
1 − κ

2

ℓ−1∑
s=1

ds
))∣∣∣∣∣ + ∣∣∣∣∣g′′( ℓ∑

s=1

ζs −
(1 + κ

2

ℓ−1∑
s=1

ds +
1 − κ

2

ℓ−1∑
s=1

cs
))∣∣∣∣∣]dκ.

By using (5) for λ = 2 , ω1 =
1−κ

2 and ω2 =
1+κ

2 , we have

≤

(
ℓ−1∑
s=1

(ds − cs)
)2

8(α + 1)

∫ 1

0

∣∣∣∣∣ (1 − 2α
2
+

2(α + 1)
3

κ − κα+1

) ∣∣∣∣∣×{ ℓ∑
s=1

∣∣∣g′′(ζs)∣∣∣ − [
1 + κ

2

ℓ−1∑
s=1

∣∣∣g′′(cs)∣∣∣ + 1 − κ
2

ℓ−1∑
s=1

∣∣∣g′′(ds)∣∣∣]+
ℓ∑
s=1

∣∣∣g′′(ζs)∣∣∣ − [1 + κ
2

ℓ−1∑
s=1

∣∣∣g′′(ds)∣∣∣ + 1 − κ
2

ℓ−1∑
s=1

∣∣∣g′′(cs)∣∣∣]}dκ

=

(
ℓ−1∑
s=1

(ds − cs)
)2

8(α + 1)
Y1(α)

{
2
ℓ∑
s=1

∣∣∣g′′(ζs)∣∣∣ − ( ℓ−1∑
s=1

∣∣∣g′′(cs)∣∣∣ + ℓ−1∑
s=1

∣∣∣g′′(ds)∣∣∣)}
which finishes the proof.

Remark 2.7. By substituting ℓ = 2 in Theorem 2.6, one can obtain Mercer estimates of inequality:∣∣∣∣∣Sα(cs,ds, ζs, 2; g)
∣∣∣∣∣ ≤ (d − c)2

8(α + 1)
Y1(α)

{
2 | g′′(ζ1) | +2 | g′′(ζ2) | − | g′′(c) | − | g′′(d) |

}
.

Remark 2.8. For α = 1, ρα = 1
3 and ℓ = 2 in Theorem 2.6, we obtain classical Simpson estimates that is proved in

[21].
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Remark 2.9. By using ζ1 = c and ζ2 = d in above Remark 2.7, we originate Simpson type inequality fractional
estimates proved in [20].

Remark 2.10. Here by using ζ1 = c, ζ2 = d, ρα = 1
3 and α = 1 Remark 2.7, for a convex function which is twice

differentiable, we develop traditional Simpson estimates, which is proved in [10].

Theorem 2.11. Based on the assumptions of Lemma 2.1, if the function |g′′|q on I is continuous convex for q > 1,
then the subsequent inequality for fractional integral inequality ∀ α > 0 holds:

∣∣∣∣∣∣Sα(cs,ds, ζs, ℓ; g)

∣∣∣∣∣∣ ≤
(
ℓ−1∑
s=1

(ds − cs)
)2

8(α + 1)
Y(α, p)×

{ ℓ∑
s=1

∣∣∣g′′(ζs)∣∣∣q − [3
4

ℓ−1∑
s=1

∣∣∣g′′(cs)∣∣∣q + 1
4

ℓ−1∑
s=1

∣∣∣g′′(ds)∣∣∣q]1/q

+

ℓ∑
s=1

∣∣∣g′′(ζs)∣∣∣q − [1
4

ℓ−1∑
s=1

∣∣∣g′′(cs)∣∣∣q + 3
4

ℓ−1∑
s=1

∣∣∣g′′(ds)∣∣∣q]1/q}
where κ ∈ [0, 1] and 1

p +
1
q = 1, also Y(α, p) is defined as:

Y(α, p) =
∫ 1

0

∣∣∣∣∣ (1 − 2α
2
+

2(α + 1)
3

κ − κ(α+1)

) ∣∣∣∣∣pdκ
) 1

p

.

Proof. From Lemma 2.1, taking modulus on both sides, we have

∣∣∣∣∣∣Sα(cs,ds, ζs, ℓ; g)

∣∣∣∣∣∣ ≤
(
ℓ−1∑
s=1

(ds − cs)
)2

8(α + 1)

∫ 1

0

∣∣∣∣∣ (1 − 2α
2
+

2(α + 1)
3

κ − κ(α+1)

) ∣∣∣∣∣[∣∣∣∣∣g′′( ℓ∑
s=1

ζs −
(1 + κ

2

ℓ−1∑
s=1

cs +
1 − κ

2

ℓ−1∑
s=1

ds
))∣∣∣∣∣+∣∣∣∣∣g′′( ℓ∑

s=1

ζs −
(1 + κ

2

ℓ−1∑
s=1

ds +
1 − κ

2

ℓ−1∑
s=1

cs
))∣∣∣∣∣]dκ.

(10)

By applying Hölder’s inequality on (10), we have

≤

(
ℓ−1∑
s=1

(ds − cs)
)2

8(α + 1)

( ∫ 1

0

∣∣∣∣∣ (1 − 2α
2
+

2(α + 1)
3

κ − κ(α+1)

) ∣∣∣∣∣pdκ
) 1

p

(∣∣∣∣∣g′′( ℓ∑
s=1

ζs −
(1 + κ

2

ℓ−1∑
s=1

cs +
1 − κ

2

ℓ−1∑
s=1

ds
))∣∣∣∣∣qdκ

) 1
q

+

( ∫ 1

0

∣∣∣∣∣ (1 − 2α
2
+

2(α + 1)
3

κ − κ(α+1)

) ∣∣∣∣∣pdκ
) 1

p

×
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s=1

ζs −
(1 + κ

2

ℓ−1∑
s=1

ds +
1 − κ

2

ℓ−1∑
s=1

cs
))∣∣∣∣∣qdκ

) 1
q

.

By using (5) λ = 2, ω1 =
1+κ

2 and ω2 =
1−κ

2 , we have

≤

(
ℓ−1∑
s=1

(ds − cs)
)2

8(α + 1)

( ∫ 1

0

∣∣∣∣∣ (1 − 2α
2
+

2(α + 1)
3

κ − κ(α+1)

) ∣∣∣∣∣pdκ
) 1

p

×

[ ∫ 1

0

ℓ∑
s=1

∣∣∣g′′(ζs)∣∣∣q − 1 + κ
2

ℓ−1∑
s=1

∣∣∣g′′(ds)∣∣∣q + 1 − κ
2

ℓ−1∑
s=1

∣∣∣g′′(cs)∣∣∣q dκ


1
q

+

∫ 1

0

ℓ∑
s=1

∣∣∣g′′(ζs)∣∣∣q − 1 + κ
2

ℓ−1∑
s=1

∣∣∣g′′(cs)∣∣∣q + 1 − κ
2

ℓ−1∑
s=1

∣∣∣g′′(ds)∣∣∣q dκ


1
q ]
.

=

(
ℓ−1∑
s=1

(ds − cs)
)2

2
Y(α, p) ×

[ ℓ∑
s=1

∣∣∣g′′(ζs)∣∣∣q − (3
4

ℓ−1∑
s=1

∣∣∣g′′(cs)∣∣∣q
+

1
4

ℓ−1∑
s=1

∣∣∣g′′(ds)∣∣∣q)] 1
q
+

[ ℓ∑
s=1

∣∣∣g′′(ζs)∣∣∣q − (3
4

ℓ−1∑
s=1

∣∣∣g′′(cs)∣∣∣q + 1
4

ℓ−1∑
s=1

∣∣∣g′′(ds)∣∣∣q)] 1
q
.

Remark 2.12. By substituting ℓ = 2 in Theorem 2.11, it reduces to new fractional Mercer estimates given as:

∣∣∣∣∣Sα(cs,ds, ζs, 2; g)
∣∣∣∣∣ ≤ (d − c)2

8(α + 1)
Y(α, p) ×

[ ∣∣∣g′′(ζ1)
∣∣∣q + ∣∣∣g′′(ζ2)

∣∣∣q − [3
4

∣∣∣g′′(x)
∣∣∣q + 1

4

∣∣∣g′′(d)
∣∣∣q ]] 1

q

+
[ ∣∣∣g′′(ζ1)

∣∣∣q + ∣∣∣g′′(ζ2)
∣∣∣q − [3

4

∣∣∣g′′(d)
∣∣∣q + 1

4

∣∣∣g′′(c)
∣∣∣q ]] 1

q
.

Remark 2.13. By using ζ1 = c and ζ2 = d in above mentioned Remark 2.12, we establish estimates of the fractional
Simpson inequality for RL-integral operators, as illustrated in [20].

Remark 2.14. For α = 1 and ρα = 1
3 in Remark 2.12, we find the bound for the traditional Mercer inequality.:∣∣∣∣∣S1(cs,ds, ζs, 2; g)

∣∣∣∣∣ ≤ (d − c)2

162
Y(1, p) ×

[ ∣∣∣g′′(ζ1)
∣∣∣q + ∣∣∣g′′(ζ2)

∣∣∣q − [3
4

∣∣∣g′′(c)
∣∣∣q + 1

4

∣∣∣g′′(d)
∣∣∣q ]] 1

q

+
[ ∣∣∣g′′(ζ1)

∣∣∣q + ∣∣∣g′′(ζ2)
∣∣∣q − [3

4

∣∣∣g′′(d)
∣∣∣q + 1

4

∣∣∣g′′(c)
∣∣∣q ]] 1

q
.

Remark 2.15. For α = 1, ρα = 1
3 , ζ1 = c and ζ2 = d we obtain classical Simpson estimates proved in [20].

Theorem 2.16. Based on the assumptions of Lemma 2.1, if the function
∣∣∣g′′∣∣∣q on I is continuous convex, then for

q > 1 the subsequent inequality holds:

∣∣∣∣∣Sα(cs,ds, ζs, ℓ; g)
∣∣∣∣∣ ≤

(
ℓ−1∑
s=1

(ds − cs)
)2

8(α + 1)

(
Y1(α)

)1− 1
q
×[(

Y1(α)
ℓ∑
s=1

∣∣∣g′′(ζs)∣∣∣q − { (
Y1(α) + Y2(α)

2

) ℓ−1∑
s=1

∣∣∣g′′(cs)∣∣∣q + (
Y1(α) − Y2(α)

2

) ℓ−1∑
s=1

∣∣∣g′′(ds)∣∣∣q}) 1
q
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+
(
Y1(α)

ℓ∑
s=1

∣∣∣g′′(ζs)∣∣∣q − { (
Y1(α) − Y2(α)

2

) ℓ−1∑
s=1

∣∣∣g′′(cs)∣∣∣q + (
Y1(α) + Y2(α)

2

) ℓ−1∑
s=1

∣∣∣g′′(ds)∣∣∣q}) 1
q
]

for κ ∈ [0, 1] and 1
p +

1
q = 1, where

Y2(α) =
{ 3+α−2α2

18(α+3) 0 < α ≤ 1
2

2
(

(ρα)α+3

α+3 −
3(1−2α)(ρα)2+4(α+1)(ρα)3

18

)
+ 3+α−2α2

18(α+3) α > 1
2 .

Proof. From Lemma 2.1, by taking modulus on both sides we have

∣∣∣∣∣Sα(cs,ds, ζs, ℓ; g)
∣∣∣∣∣ ≤

(
ℓ−1∑
s=1

(ds − cs)
)2

8(α + 1)

[∫ 1

0

∣∣∣∣∣ (1 − 2α
2
+

2(α + 1)
3

κ − κ(α+1)

) ∣∣∣∣∣∣∣∣∣∣g′′( ℓ∑
s=1

ζs −
(1 + κ

2

ℓ−1∑
s=1

cs +
1 − κ

2

ℓ−1∑
s=1

ds
))∣∣∣∣∣dκ

+

∫ 1

0

∣∣∣∣∣ (1 − 2α
2
+

2(α + 1)
3

κ − κ(α+1)

) ∣∣∣∣∣∣∣∣∣∣g′′( ℓ∑
s=1

ζs −
(1 + κ

2

ℓ−1∑
s=1

ds +
1 − κ

2

ℓ−1∑
s=1

cs
))∣∣∣∣∣dκ] (11)

By employing Power mean inequality on R.H.S of (11), we have

≤

(
ℓ−1∑
s=1

(ds − cs)
)2

2

[( ∫ 1

0

∣∣∣∣∣ (1 − 2α
2
+

2(α + 1)
3

κ − κ(α+1)

)
dκ

∣∣∣∣∣1− 1
q

×

( ∫ 1

0

∣∣∣∣∣1 − 2α
2

+
2(α + 1)

3
κ − κ(α+1)

∣∣∣∣∣∣∣∣∣∣g′′( ℓ∑
s=1

ζs −
(1 + κ

2

ℓ−1∑
s=1

cs +
1 − κ

2

ℓ−1∑
s=1

ds
))∣∣∣∣∣qdκ

) 1
q

+
( ∫ 1

0

∣∣∣∣∣ (1 − 2α
2
+

2(α + 1)
3

κ − κ(α+1)

) ∣∣∣∣∣)1− 1
q
( ∫ 1

0

∣∣∣∣∣ (1 − 2α
2
+

2(α + 1)
3

κ − κ(α+1)

) ∣∣∣∣∣∣∣∣∣∣g′′( ℓ∑
s=1

ζs −
(1 + κ

2

ℓ−1∑
s=1

ds +
1 − κ

2

ℓ−1∑
s=1

cs
))∣∣∣∣∣qdκ

) 1
q
]
.

By utilizing (5) for λ = 2, ω1 =
1+κ

2 and ω2 =
1−κ

2 , we have

∣∣∣∣∣g′′( ℓ∑
s=1

ζs −
(1 + κ

2

ℓ−1∑
s=1

ds +
1 − κ

2

ℓ−1∑
s=1

cs
))∣∣∣∣∣q ≤

ℓ∑
s=1

∣∣∣g′′(ζs)∣∣∣q − [1 + κ
2

ℓ−1∑
s=1

∣∣∣g′′(cs)∣∣∣q + 1 − κ
2

ℓ−1∑
s=1

∣∣∣g′′(ds)∣∣∣q].
∣∣∣∣∣g′′( ℓ∑

s=1

ζs −
(1 + κ

2

ℓ−1∑
s=1

ds +
1 − κ

2

ℓ−1∑
s=1

cs
))∣∣∣∣∣q ≤

ℓ∑
s=1

∣∣∣g′′(ζs)∣∣∣q − [
1 + κ

2

ℓ−1∑
s=1

∣∣∣g′′(cs)∣∣∣q + 1 − κ
2

ℓ−1∑
s=1

∣∣∣g′′(ds)∣∣∣q].
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=

(
ℓ−1∑
s=1

(ds − cs)
)2

8(α + 1)

(
Y1(α)

)1− 1
q
×

(
Y1(α)

ℓ∑
s=1

∣∣∣g′′(ζs)∣∣∣q − { (
Y1(α) + Y2(α)

2

) ℓ−1∑
s=1

∣∣∣g′′(cs)∣∣∣q+(
Y1(α) − Y2(α)

2

) ℓ−1∑
s=1

∣∣∣g′′(ds)∣∣∣q}) 1
q

+
(
Y1(α)

ℓ∑
s=1

∣∣∣g′′(ζs)∣∣∣q
−

{ (
Y1(α) − Y2(α)

2

) ℓ−1∑
s=1

∣∣∣g′′(cs)∣∣∣q + (
Y1(α) + Y2(α)

2

) ℓ−1∑
s=1

∣∣∣g′′(ds)∣∣∣q}) 1
q
.

Remark 2.17. In above Theorem 2.16, for ℓ = 2 one can obtain the following inequality:∣∣∣∣∣Sα(cs,ds, ζs, 2; g)
∣∣∣∣∣ ≤ (d − c)2

8(α + 1)

(
Y1(α)

)1− 1
q
×

[ (∣∣∣g′′(ζ1)
∣∣∣q + ∣∣∣g′′(ζ2)

∣∣∣q) Y1(α)

−

(
Y1(α) + Y2(α)

2

) ∣∣∣g′′(c)
∣∣∣q + (Y1(α) − Y2(α)

2

) ∣∣∣g′′(d)
∣∣∣q ]] 1

q
+

[ (∣∣∣g′′(ζ1)
∣∣∣q + ∣∣∣g′′(ζ2)

∣∣∣q) Y1(α) −
(

Y1(α) − Y2(α)
2

) ∣∣∣g′′(c)
∣∣∣q + (Y1(α) + Y2(α)

2

) ∣∣∣g′′(d)
∣∣∣q ]] 1

q
.

Remark 2.18. If we substitute ζ1 = c and ζ2 = d in Remark 2.17, then we obtain the inequality that is proved in
[20].

Remark 2.19. If α = 1 and ρα = 1
3 is picked in Remark 2.17, we attain traditional Simpson estimates proved in [21].

Remark 2.20. Here by using ζ1 = c, ζ2 = d, α = 1 and ρα = 1
3 in Remark 2.17, We establish the bounds for the

standard Simpson inequality for convex functions which are twice differentiable, that is presented in [10].

3. Applications

3.1. Simpson-like quadrature formula

In the following section, we will explore the applications of the integral inequalities established in the
previous part. These inequalities can be effectively harnessed to approximate composite quadrature rules,
resulting substantial decrease in error compared to traditional procedures.

Proposition 3.1. Let the function g : [ζ1, ζ2]→ℜ is a bounded. If Iı ∈ ζ1 = ϑ0, ϑ1, ..., ϑı−1, ϑı = ζ2 is the interval
and ϑγ,1, ϑγ,2 ∈ [ϑγ, ϑγ+1] with χγ = ϑγ+1 − ϑγ ∀ γ = 0, 1, ..., ı − 1 then we will have,∫ ϑ0+ϑı−ϑ1

ϑ0+ϑı−ϑ2

g(P)dP = B(Iı,g) + R(Iı,g)

where

B(Iı,g) =
1
6

[ ı−1∑
γ=0

g[ϑγ + ϑγ+1 − ϑγ,1]χγ + 4
ı−1∑
γ=0

g[ϑγ + ϑγ+1 −
ϑγ,1 + ϑγ,2

2
]χγ+

ı−1∑
γ=0

g[ϑγ + ϑγ+1 − ϑγ,2]χγ

]
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and remainder term satisfies

∣∣∣R(Iı,g)
∣∣∣ ≤ 1

162

[
χ2
γ2
ı−1∑
γ=0

[ ∣∣∣g′′(ϑγ)∣∣∣ + ∣∣∣g′′(ϑγ+1)
∣∣∣ ] − [

χ2
γ

ı−1∑
γ=0

∣∣∣g′′(ϑγ,1)
∣∣∣ + χ2

γ

ı−1∑
γ=0

∣∣∣g′′(ϑγ,2)
∣∣∣ ]].

Proof. Applying the Theorem 2.6, with ℓ = 2 and α = 1 on interval [ϑγ, ϑγ+1] , γ = 0, 1, ..., ı − 1, we get∣∣∣∣∣∣16
[
g[ϑγ + ϑγ+1 − ϑγ,1]hγ + 4g[ϑγ + ϑϑ+1 −

ϑγ,1 + ϑγ,2
2

]χγ + g[ϑγ + ϑγ+1 − ϑγ,2]χγ

]
−∫ ϑγ+ϑγ+1−ϑγ,1

ϑγ+ϑγ+1−ϑγ,2

g(P)dP ≤

1
162

[
χ2
γ2
ı−1∑
γ=0

[ ∣∣∣g′′(ϑγ)∣∣∣ + ∣∣∣g′′(ϑγ+1)
∣∣∣ ] − [

χ2
γ

ı−1∑
γ=0

∣∣∣g′′(ϑγ,1)
∣∣∣ + χ2

γ

ı−1∑
γ=0

∣∣∣g′′(ϑγ,2)
∣∣∣ ]]

∀ γ = 0, 1, ..., ı − 1. Taking summation across 0 to ı − 1 and considering the triangle inequality, we get the
aforementioned outcome.

3.2. q-digamma function(in short q-DF)

Ψq-digamma function which is described as logarithmic derivative ofq-DF. Some studies were also used
to investigate the monotonicity and full monotonicity features of functions associated with the q-gamma
function (in short q-GF) and q-DF, which result in surprising inequalities [22, 23] given as:

Suppose 0 < q < 1, the

Ψq = − ln
(
1 − q

)
+ ln q

∞∑
k=0

qk+ξ

1 − qk+ξ

= − ln
(
1 − q

)
+ ln q

∞∑
k=0

qkξ

1 − qkξ
.

q−DFΨq for ξ > 0 and q ≥ 1 can be given as:

Ψq = − ln
(
q − 1

)
+ ln q

[
ξ −

1
2
−

∞∑
k=0

q−(k+ξ)

1 − q−(k+ξ)

]
= − ln

(
q − 1

)
+ ln q

[
ξ −

1
2
−

∞∑
k=0

q−kξ

1 − q−kξ

]
.

is monotonic on given interval (0,∞) and is convex.

Proposition 3.2. Let assume cs,ds, ζs ∈ I ⊂ ℜ Let cs ≥ ds for all s = {1, ..., ℓ} and 1 ≥ q ≥ 0 then we have below
mentioned inequality:

∣∣∣∣∣Sα(cs,ds, ζs, 2;Ψq)
∣∣∣∣∣ ≤

(
ℓ−1∑
s=1

(ds − cs)
)2

8(α + 1)

Y1(α)
[
2
ℓ∑
s=1

∣∣∣∣Ψ(3)
q

(
ζs

)∣∣∣∣ − { ℓ−1∑
s=1

∣∣∣∣Ψ(3)
q

(
cs
)∣∣∣∣ + ℓ−1∑

s=1

∣∣∣∣Ψ(3)
q

(
ds

)∣∣∣∣ }]
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where

Y1(α) =
{ 1−α2

3(α+2) 0 < α ≤ 1
2

2
(

(ρα)α+2

α+2 −
(1−2α)ρα+(α+1)(ρα)2

3

)
+ 1−α2

3(α+2) α > 1
2 .

Proof. According to the definition of q-DF, it is straightforward to know that for each q ∈ (0, 1), the mapping
g→ Ψ′q on (0,∞) is completely monotonic. It is to say that on (0,∞), g′′(ξ) = Ψ′′′q (ξ) is non-negative convex
mapping. We get the required result by utilising this substitution in Theorem 2.6.

Remark 3.3. If ℓ = 2, ζ1 = c and ζ2 = d is picked in Proposition 3.2, then we have subsequent inequality:∣∣∣∣∣16 [
Ψ′q(c) + 4Ψ′q

(c + d
2

)
+Ψ′q(d)

]
−

2α−1Γ(α + 1)
(d − c)α

× Jαc−Ψ
′

q

(c + d
2

)
+ Jαd+Ψ

′

q

(c + d
2

)∣∣∣∣∣ ≤ (d − c)2

8(α + 1)
Y1(α)

{
| Ψ(3)

q (c) | + | Ψ(3)
q (d) |

}
.

Remark 3.4. If α = 1 is picked in Remark 3.3, then we have subsequent inequality:∣∣∣∣∣16 {
Ψ′q (c) + 4Ψ′q

(c + d
2

)
+Ψ′q (d)

}
−
Ψq(d) −Ψq(c)

d − c

∣∣∣∣∣
≤

(d − c)2

162

[
| Ψ(3)

q (c) | + | Ψ(3)
q (d) |

]
.

3.3. Modified Bessel Function
Bessel functions were called after Friedrich Wilhelm Bessel (1784 − 1846), however Daniel Bernoulli is

often regarded as the first to introduce them.
In 1732, the Bessels notion is operational. Several findings about Bessel functions have been made

utilizing its generating function.
We consider the modified Bessel function of the first kind Θγ, that has the series representation [24, 25].

Θγ(ξ) = Σn≥0

(
ξ
2

)γ+2n

n!Γ
(
γ + n + 1

) ,
where γ > −1 and ξ ∈ ℜ, whereas modified Bessel function of the second kind [25], is generally defined as

Θγ (ξ) =
π
2
ℑ−γ (ξ) − ℑγ (ξ)

sinγπ
. (12)

taking into account the function Θγ (ξ) :ℜ→ [1,∞) given by

Θγ (ξ) = 2γΓ
(
γ + 1

)
ξ−γℏγ (ξ) ,

where Γ represents gamma function.
Formula for the derivative of Θγ (ξ) of first order is stated by [25]:

Θ′γ (ξ) =
ξ

2
(
γ + 1

)Θγ+1 (ξ) (13)

and the 2nd derivative may be derived simply from (13) to be

Θ′′γ (ξ) =
ξ2Θγ+2 (ξ)

4
(
γ + 1

) (
γ + 2

) + Θγ+1 (ξ)

2
(
γ + 1

) . (14)
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Proposition 3.5. Suppose for γ > −1 and q > 1 and cs,ds, ζs ∈ I ⊂ ℜ, then the subsequent inequality:∣∣∣∣∣Sα(cs,ds, ζs, 2;Θγ)
∣∣∣∣∣

≤

(
ℓ−1∑
s=1

(ds−cs)
)2

8(α+1) Y1(α)
[
2
{ ℓ∑
s=1
ζs

2

∣∣∣∣Θγ+2(ζs)

∣∣∣∣
4(γ+1)(γ+2) +

ℓ∑
s=1

∣∣∣∣Θγ+1(ζs)

∣∣∣∣
2(γ+1)

}
−

{ ℓ−1∑
s=1

cs2
∣∣∣∣Θγ+2(cs)

∣∣∣∣
4(γ+1)(γ+2) +

ℓ−1∑
s=1

∣∣∣∣Θγ+1(cs)

∣∣∣∣
2(γ+1)

}
−

{ ℓ−1∑
s=1

ds2
∣∣∣∣Θγ+2(ds)

∣∣∣∣
4(γ+1)(γ+2) +

ℓ−1∑
s=1

∣∣∣∣Θγ+1(ds)

∣∣∣∣
2(γ+1)

}]
holds.

Proof. The Bessel function g→ Θγ can be used to attain the desired result. It is straightforward that utilising
Θ′′γ (ξ) , ξ > 0 on (0,∞) is a convex function. We achieve the required result by examining this substitution
and utilising (13) in Theorem 2.6.

Remark 3.6. If ℓ = 2, α = 1, ζ1 = c and ζ2 = d is picked in Proposition 3.5 then we arrive at the inequality shown
below:∣∣∣∣∣16{

Θγ (c) + 4Θγ
(c + d

2

)
+ Θγ (d)

}
−
Θγ (c) −Θγ (d)

d − c

∣∣∣∣∣
≤ (d − c)2

( 1
162

) [{ c2

4(γ + 1)(γ + 2)

∣∣∣∣Θγ+2(c)
∣∣∣∣ + 1

2(γ + 1)

∣∣∣∣Θγ+1(c)
∣∣∣∣}

+

{
d2

4(γ + 1)(γ + 2)

∣∣∣∣Θγ+2(d)
∣∣∣∣ + 1

2(γ + 1)

∣∣∣∣Θγ+1(d)
∣∣∣∣}].

4. Conclusion

To the best of our understanding, this present study marks the exploration of the RL-fractional integral
inequality of Simpson-type, specifically when considering differentiable functions in conjunction with
a majorization approach. In our research, we have established a novel fractional integral identity for
functions which are differentiable by leveraging the principles of majorization theory. We presented
Simpson inequalities tailored for mappings that possess second derivatives and whose absolute value
derivatives, raised to specific powers, exhibit convex properties. Our findings extend beyond conventional
Simpson inequalities, incorporating connections to Bessel functions within the application section and
relating to special functions theory, such as q-DF. Furthermore, there is potential to expand this concept
to encompass generalized integral operators with non-local and non-singular kernels by incorporating the
principles of generalized convexities.
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