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Abstract. Let µ be a given probability measure supported by a compact subset [a, b] ⊂ R. Given a function
f element of L2

(
[a, b], dµ

)
, we proved, under some integrability conditions, that a continuous version of f

can be pointwisely and uniformly approximated by a sequence of polynomial functions. More precisely
by a partial-sum of orthogonal polynomials in L2

(
[a, b], dµ

)
. As an application, we have used the obtained

approximation Theorem to set up a polynomial interpolation algorithm of L2-functions. The derived
interpolation algorithm has been implemented and compared to standard ones, such as the spline-cubic
one.

1. Introduction

In 1885 Weierstrass has proved a corner stone result in approximation theory, that is, every continuous
function on a compact subset, can be pointwisely and uniformly approximated by a polynomial function,
see [12]. This result has been generalized to an abstract functional analysis framework by M. H. Stone in
1937, see [18], no doubt that this both results has constituted the starting point of approximation theory, see
[6][19] for a more comprehensive study.

Since then, numerous research studies have been conducted on the subject of approximating functions
by polynomial functions, serving various purposes such as mathematical problems, computer science,
engineering and environmental sciences, etc ... Here is a selection of papers that highlight the range of
investigations carried out, see [16][21][9][10][5].

Although continuity condition is quite essential to approximate functions by polynomials, in practical
situations we are usually confronted with a design of points without any idea about the minimal regularity
that should satisfy the generating function of that design. In general, we impose at least continuity, actually
without justification, just to be able to run polynomial approximation algorithms.

Let µ be a probability measure on a compact subset of R, [a, b] ⊂ R, which we suppose to be absolutely
continuous with respect to the Lebesgue measure i.e dµ(x) = ω(x)dx for a given non-negative Borel function
ω. It is known that the family of monomials {xn : n ≥ 0} is total in the Hilbert space L2

µ := L2
(
[a, b], dµ

)
,
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see for instance [4], this implies existence of an orthonormal basis {en : n ≥ 0}, such that every function φ
element of L2

µ can be expressed as follows

φ =
+∞∑
n=0

φ(n)en, (1)

where the convergence is in L2
µ and where φ(n) = ⟨φ, en⟩2, with ⟨· · · , · · · ⟩2 the scalar product in L2

µ. For each
N ≥ 0 denote the truncated sum up to N by

φN(x) =
N∑

n=0

φ(n)en(x)· (2)

Then the equation (1) can also be expressed as follows

φN
L2
µ

−−−−−−→
N→+∞

φ. (3)

Our main concern, in the current paper, is to study the necessary conditions under which the L2-
convergence in (3) could be turned into pointwise and uniform convergence ? And as a result, any given
L2-function could hence be approximated pointwisely by a polynomial.

The paper is organized as follows, in the next section the main approximation result is stated as well as
the essential steps to achieve it. In a third section the polynomial approximation result is converted into a
polynomial interpolation algorithm, that is implemented and tested on many significant cases. The fourth
section is just an appendix in which the proof of Theorem 2.2 is detailed since it is long and technical.

2. Pointwise approximation result

In this section the main approximation result Theorem 2.6 will be stated and proved, before let us
introduce some notations and present some examples.
The probability µ is still as defined above i.e a given absolutely continuous probability measure supported
by a compact subset [a, b] ⊊ R, dµ = ωdx where ω is a non-negative Borel function. For all n ∈N denote by

µn =

∫ b

a
xndµ(x) the nth order moment of µ. Let {en : n ∈N} be the orthonormal basis of L2

µ obtained by the

Gram-Schmidt procedure applied on the total subset {xn : n ∈ N}. It is shown in [17] that for all n ≥ 1 the
polynomial function en can be expressed in terms of moments as follows

en(x) =
1

√
dndn−1

∣∣∣∣∣∣∣∣∣∣∣∣
µ0 · · · µn−1 1
µ1 · · · µn x
...
µn · · · µ2n−1 xn

∣∣∣∣∣∣∣∣∣∣∣∣ , (4)

where dn is the determinant of the matrix Dn

dn = |Dn| with Dn =


µ0 · · · µn
µ1 · · · µn+1
...
µn · · · µ2n

 . (5)

This means in particular that any polynomial en is exactly of degree n and that for each n ≥ 1

en(x) = κnxn + ”lower order”, (6)
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where the highest order coefficient satisfies

0 < κn =

√
dn−1

dn
, (7)

and e0 = κ0 = 1.
Next is a presentation of some known examples of probability measures for which the orthonormal poly-
nomials are known and where we can compute explicitly κn, for more details we refer to [3].

Examples 2.1.

1. Letµ be the uniform probability measure on [−1, 1] and {Pn(x)}n∈N the family of Legendre polynomials. Then the

polynomials family
{√

(2n + 1)Pn(x)
}

n∈N
constitutes an orthonormal basis for the Hilbert space L2

(
[−1, 1],

dx
2

)
.

And for every n ∈N

κn =
√

2n + 1
(2n)!

2n(n!)2 .

2. Let µ be the arcsine probability defined on [−1, 1] by its density

ω(x) =
1

π
√

1 − x2
,

and {Tn}n∈N be the Chebyshev polynomials. Then the family
{√

2Tn(x) : n ∈N
}

constitutes an orthonormal

basis for the Hilbert space L2

(
[−1, 1],

1

π
√

1 − x2
dx

)
. And for every n ∈N

κn =

1 if n = 0,
2n− 1

2 if n , 0.

3. For α > 1
2 , we suppose µ to be the Gamma probability measure defined on [−1, 1] by its density function

ω(x) =
Γ(α + 1)
√
πΓ(α + 1

2 )
(1 − x2)α−

1
2 ,

and we set
{
C(α)

n

}
n∈N

to be the so-called Gegenbauer polynomials. Then the polynomials family
√

n!(n + α)Γ(α)Γ(α + 1
2 )

α21−2α
√
πΓ(n + 2α)

C(α)
n (x) : n ∈N


constitutes an orthonormal basis for the Hilbert space L2 (

[−1, 1], dµ
)

and for every n ∈N

κn = (α)n2n+α− 1
2

√
(n + α)Γ(α)Γ(α + 1

2 )

αn!
√
πΓ(n + 2α)

,

where (α)n = α(α + 1) . . . (α + n − 1) is the Pochhammer symbol.

In the next Theorem 2.2 it is shown that for all x ∈ [a, b], the sequence {|en(x)|}n∈N is not small enough, when
n grows to infinity. And so the question of investigating pointwise convergence of the L2-summation in (1)
is actually non-trivial.
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Theorem 2.2. For all x ∈ [a, b] we have

+∞∑
n=0

|en(x)|2 = +∞. (8)

Remark 2.3. The proof of Theorem 2.2 is quite technical and requires some Lemmas, we postponed it to Appendix in
Section 4.

The probability measure µ is said to satisfy the Szegö’s condition if

b∫
a

logω(x)√
(x − a)(b − x)

dx > −∞ . (9)

Next are some examples which could be found for instance in [22].

Examples 2.4.

1. If we consider the uniform probability measure on [a, b], we have

b∫
a

− log(b − a)√
(x − a)(b − x)

dx = −π log(b − a).

2. If we consider the family of Beta-probability measures defined on [0, 1] for α, β > −1 by

dµ(x) =
Γ(α + β + 2)
Γ(α + 1)Γ(β + 1)

xα(1 − x)βdx.

It is straightforward to obtain

1∫
0

logω(x)√
x(1 − x)

dx = −π
(
2(α + β) log 2 + log

(
Γ(α + β + 2)
Γ(α + 1)Γ(β + 1)

))
.

3. If we consider the arcsine probability measure on [−1, 1], we have

1∫
−1

− log
(
π
√

1 − x2
)

√

1 − x2
dx = π

(
log 2 − logπ

)
.

The next Lemma 2.5 gives a uniform bounds of the polynomial functions en(·) for all n∈ N, this Lemma is
crucial for the sequel.

Lemma 2.5. Suppose that the probability measure µ satisfies the Szegö’s condition (9), then there exist C, A > 0
such that

|en(x)| ≤ CAn, (10)

for all n ∈N and all x ∈ [a, b].
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Proof of Lemma 2.5
Since the probability measure µ is compactly supported it is known, see for instance [7], that for all n ∈ N
the polynomial en(·) has exactly n zeros x(n)

1 , · · · , x
(n)
n that are all in ]a, b[. Then for all x ∈ [a, b] and for all

n ∈Nwe have

|en(x)| = κn

n∏
k=1

∣∣∣x − x(n)
k

∣∣∣
< κn

n∏
k=1

(b − a)

< κn (b − a)n .

By using Lemma 4.5, see the appendix below, we finish the proof. □

For each integer p ∈N the following sequence of norms is defined on L2
µ

∥φ∥2p =
+∞∑
n=0

2np
|φ(n)
|
2. (11)

The sequence of norms
{
∥ ∥p : p ∈N

}
is increasing w.r.t p ∈N

∥ ∥p+1 ≥ ∥ ∥p ≥ · · · ≥ ∥ ∥0 = ∥ ∥L2
µ
,

and then it defines a sequence of decreasing sub-spaces of L2
µ, for all p ∈N

Hp :=
{
φ ∈ L2

µ : ∥φ∥p < ∞
}
. (12)

By using a usual completion process a decreasing chain of Hilbert sub-spaces of L2
(
[a, b], µ

)
is obtained

· · · ⊊ Hp+1 ⊊ Hp ⊊ · · · ⊊ H0 = L2([a, b], µ).

The main result of the current paper, is now ready to be stated

Theorem 2.6.
Suppose that the probability measure µ satisfies the Szegö’s condition (9). Then there exists a positive integer p > 0
such that

1. all functions elements ofHp admit a continuous version,

2. for φ a given function element ofHp, its associated sequence of polynomial functions
{
φN : N ∈N

}
defined in

(2) convergences pointwisely and uniformly to φ, on [a, b].

3. The following error control holds

sup
x∈[a,b]

|φ(x) − φN(x)| ≤ CBN
∥φ∥p. (13)

for all functions φ ∈Hp and for some constants C > 0 and 0 < B < 1.
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Proof of Theorem 2.6
Let µ be a probability measure with a compact support and that satisfies the Szegö’s condition, for all
x ∈ [a, b] and a given p > 0we have∑

n≥0

∣∣∣φ(n)en(x)
∣∣∣ = ∑

n≥0

2
np
2

∣∣∣φ(n)
∣∣∣ 2 −np

2 |en(x)|

≤ ∥φ∥p

∑
n≥0

2−np
|en(x)|2


1/2

.

By using Lemma 2.5 we deduce that for all x ∈ [a, b], the series
∑
n≥0

2−np
|en(x)|2 converges for some p > 0.

1. Let φ be a function element of Hp for p > 0 given above, then the function defined as the uniform
limit on [a, b]

φ̃(x) =
∑
n≥0

φ(n)en(x),

is a continuous version of φ.

2. For φ element ofHp, and φN the polynomial function for some N > 0

φN(x) =
N∑

n=0

φ(n)en(x),

we have

|φ(x) − φN(x)| ≤
+∞∑

n=N+1

∣∣∣φ(n)en(x)
∣∣∣

≤ ∥φ∥p

 ∑
n≥N+1

2−np
|en(x)|2


1/2

≤ ∥φ∥p
C

√

1 − 2−pA2

[
2−p/2A

]N+1
,

where C and A are the constants given by Lemma 2.5. This proves 2. and 3. and then finishes the
proof of Theorem 2.6.

□

3. Numerical illustration

In this section Theorem 2.6 is used to work out a polynomial interpolation algorithm to recover a given
real function that belongs to the space L2

µ for µ a compactly supported probability measure that satisfies the
Szegö’s condition (9).

Let (x0, y0), . . . , (xN, yN) be a given design of points, with N > 0 a positive integer. Suppose that
there exists φ an L2

µ function that belongs to Hp, for p > 0 given in Theorem 2.6, and suppose that
y0 = φ(x0), . . . , yN = φ(xN). Since the function φ can be pointwisely approximated by the sequence of
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polynomial functions
{
φn : n ∈N

}
, if we suppose that N is large enough we can consider that φN =∑N

n=0 φ
(n)en approximates φ at the knots {x0, . . . , xN} i.e.


φN(x0)
...
φN(xN)

≃


φ(x0)
...
φ(xN)

,

which leads to the following system of linear equations


e0(x0) · · · eN(x0)
...

...
e0(xN) · · · eN(xN)



φ(0)

...
φ(N)

 ≃

φ(x0)
...

φ(xN)

 . (14)

By solving it, we derive the coefficientsφ(0), · · · , φ(N) and so we obtain the interpolation polynomial function

φN(x) =
N∑

n=0

φ(n)en(x).

Remark 3.1. Note that the accuracy of approximation depends on the initial design’s size N, and doesn’t depend
neither on the distances between successive design’s points nor on function’s regularity

|φ(x) − φN(x)| ≤ CBN
∥φ∥p. (15)

However standard polynomial interpolation algorithms does, see for instance [11]

|φ(x) − pN(x)| ≤

(
max1≤k≤N |xk − xk−1|

)N+1

(N + 1)!
sup
[a,b]

∣∣∣∣∣∣dN+1φ

duN+1 (u)

∣∣∣∣∣∣ , (16)

where pN denotes the Taylor expansion polynomial interpolation of order N associated to φ.

Next we present three examples of probabilities and of functions to be interpolated. We consider a design’s
size N = 5, 10, 15. And then we compute for each N the quadratic error between the given function and
the interpolation points for the well-known ”cubic spline” algorithm and the one proposed in this paper.

Example 1. Let µ be the arcsine probability defined on [−1, 1] by its density function ω(x) =
1

π
√

1 − x2
and let

1(x) = Γ(x2 + 1) be the function to be interpolated. In figure 1 we have a graphical illustration for N = 5.
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Figure 1: Proposed Interp. Algo. vs Spline Algo., 1(x) = Γ(x2 + 1).

The table 1 records errors of the two algorithms for different values of N = 5, 10 and 15:

N Proposed Algo. error Spline error
5 0.0063 0.0025
10 0.0014 0.0007
15 0.3259e-003 0.4081e-003

Table 1: Proposed Algo. error vs Spline error of 1(x).

Remark 3.2. Note that in example 1, we expect that the ”Proposed algorithm” is more accurate for N large since the
interpolated function is of exponential growth and so polynomial of order N is closer than cubic spline, this can be
seen in table 1.

Example 2. Suppose that µ is the probability measure on [−1, 1] defined by its density function ω(x) =
3
4

(1 − x2).

Let h(x) = 2x4 + 4x3 + x2
− 5x + 3 be the function to be interpolated. The figure 2 is the graphical illustration for

N = 5.
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Figure 2: Proposed Interp. Algo. vs Spline Algo., h(x) = 2x4 + 4x3 + x2
− 5x + 3.

In the table 2 we have recorded errors of the two algorithms for different values of N = 5, 10 and 15:

N Proposed Algo. error Spline error
5 8.9012e-015 325.3404e-003
10 41.7627e-015 29.8148e-003
15 696.5221e-015 10.7723e-003

Table 2: Proposed Algo. error vs Spline error of h(x).

Remark 3.3. In Example 2 the interpolated function is a polynomial of order 4 and the probability density is also a
polynomial of order 2. The proposed algorithm shows better accuracy than the ”cubic spline”, for all N.

Example 3. Let µ be the uniform probability measure on [−1, 1] and that the interpolated function φ(x) = cos(3x).
The next Figure 3 shows a graphical illustration for N = 5.
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Figure 3: Proposed Interp. Algo. vs Spline Algo., f (x) = cos(3x).

In the table 3 we have recorded errors of the two algorithms for different values of N = 5, 10 and 15:

N Proposed Algo. error Spline error
5 0.0277 0.0145
10 0.000156 0.00277
15 0.78e-008 0.00131

Table 3: Proposed Algo. error vs Spline error of f (x).

Remark 3.4. In Example 3 the interpolated function is bounded but of polynomial type of infinite order, the proposed
algorithm’s accuracy is clearly better than the cubic spline one, when N increases.

4. Appendix: Proof of Theorem 2.2

As mentioned above the current appendix is dedicated to the proof of Theorem 2.2. Next there are five
needed lemmas, that deal about the growth of the highest order coefficient of the associated polynomial en(·),
κn uniformly w.r.t x ∈ [a, b]. Actually the proof of these five lemmas can be found in the very self-contained
paper [1] but also more recently in [7].

Lemma 4.1. The following inequality holds for all n ∈N

1 ≤ µ2n [κn]2 . (17)
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For n ∈N, denote by an =
κn

κn+1
and by bn =

b∫
a

xe2
n(x)dµ(x), and convince that e−1 ≡ 0 and e0 ≡ 1, the following

Lemma has been proved.

Lemma 4.2. For all x ∈ [a, b], the sequence of polynomials {en(x)}n≥−1 is solution of the following recursive functional
equation{

u−1(x) = 0 and u0(x) = 1
xun(x) = anun+1(x) + bnun(x) + an−1un−1(x), for all n ≥ 1. (18)

Let {qn(·)}n≥−1 be the solution of the recursive equation (18) with the initial conditions u−1(·) = −1 and
u0(·) = 0, then the next Lemma is proved.

Lemma 4.3. For all integers n ∈N

an
[
qn+1(·)en(·) − qn(·)en+1(·)

]
= 1. (19)

The next Lemma derives straightforwardly from Lemma 4.3 and Cauchy–Schwarz inequality.

Lemma 4.4. For every integer n ∈N and for all x ∈ [a, b] we have

n∑
k=0

1
ak
≤ 2

n+1∑
k=0

|ek(x)|2


1/2 n+1∑
k=0

|qk(x)|2


1/2

. (20)

While the Szegö’s condition is unnecessary for the proof of the above four Lemmas, it is essential for the
next Lemma.

Lemma 4.5. If the probability measure satisfies moreover the Szegö’s condition (9, then

lim sup
n
κ1/n

n < ∞. (21)

The proof of Theorem 2.2 is now ready to be developed.
Proof of Theorem 2.2
Recall that an =

κn

κn+1
and so

κn =

 n∏
i=0

ai


−1

. (22)

By using Carleman inequality, see for instance [8], we get

n∑
j=1

 j∏
i=0

ai


−1/ j

≤ 2e
n∑

j=1

a−1
j−1, (23)

then by using (22) we obtain

n∑
j=1

(
κ j

)1/ j
≤ 2e

n∑
j=1

a−1
j . (24)



N. Boucherchem, A. Rezgui / Filomat 38:20 (2024), 7305–7316 7316

By Lemma 4.1 we have κn ≥ (µ2n)−1/2, and so (24) turns out to be

n∑
j=1

(
µ2 j

)− 1
2 j
≤ 2e

n−1∑
j=0

a−1
j . (25)

By using (20), inequality (25) becomes

n∑
j=1

(
µ2 j

)− 1
2 j
≤ 4e

 n∑
k=0

|ek(x)|2


1/2  n∑
k=0

|qk(x)|2


1/2

. (26)

Since the probability measure is compactly supported, there exist M > 0 such that for every n ∈N

µ2n ≤M2n. (27)

From (27) we have for every n ≥ 1(
µ2n

)− 1
2n
≥

1
M
,

then the series
+∞∑
n=1

(
µ2n+2

)− 1
2n is divergent and, because of (26), at least one of the series

∞∑
k=0

|ek(x)|2 and

∞∑
k=0

|qk(x)|2 is divergent. But since both sequences {ek(x)} and {qk(x)} are solutions of the same recursive

equation (18), they both diverge, which finishes the proof of Theorem 2.2. □
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