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Abstract. A Ducci sequence is a sequence {S,DS,D2S, ...}, where the map D : Zn
→ Zn takes each

S = (s1, s2, s3, ..., sn−1, sn) to (|s1 − s2|, |s2 − s3|, ..., |sn−1 − sn|, |sn − s1|). In this paper, we study norms of r-
circulant matrices Circr(DL) and Circr(D2L), where L is an n-tuple of Lucas numbers. Then we examine
some properties of circulant matrices Circ(DL) and Circ(D2L).

1. Introduction

Matrices have extensive applications in various branches of mathematics and other scientific fields like
engineering, statistics, physics, and economics. Therefore, researchers have defined different types of ma-
trices and extensively studied their diverse properties. One of these matrices is called the Toeplitz matrix.

A Toeplitz matrix [20, 33], also known as a diagonal-constant matrix, is named after Otto Toeplitz. It
is characterized by having constant values along each descending diagonal from left to right. A circulant
matrix [14], a particular kind of Toeplitz matrix, is a square matrix where all row vectors consist of the same
elements. What makes it remarkable is that each row vector is shifted one element to the right compared
to the previous row vector. An n × n circulant matrix C is of the form

C = Circ(c0, c1, c2, ..., cn−2, cn−1) =



c0 c1 c2 . . . cn−2 cn−1
cn−1 c0 c1 . . . cn−3 cn−2
cn−2 cn−1 c0 . . . cn−4 cn−3
...

...
...
. . .

...
...

c2 c3 c4 . . . c0 c1
c1 c2 c3 . . . cn−1 c0


.

Let r ∈ C \ {0}. An n × n r-circulant matrix [12] Cr is of the form
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Cr = Circr(c0, c1, c2, ..., cn−2, cn−1) =



c0 c1 c2 . . . cn−2 cn−1
rcn−1 c0 c1 . . . cn−3 cn−2
rcn−2 rcn−1 c0 . . . cn−4 cn−3
...

...
...
. . .

...
...

rc2 rc3 rc4 . . . c0 c1
rc1 rc2 rc3 . . . rcn−1 c0


.

Note that an r-circulant matrix, for r = 1, is a circulant matrix. Circulant and r-circulant matrices find
wide applications in various scientific areas, including coding theory, signal processing, image processing,
time-series analysis, etc. (see, for instance, [3, 9, 16, 25, 36]).

The Fibonacci sequence is a well-known sequence of integers that is defined recursively by the relation

F0 = 0,F1 = 1; Fn = Fn−1 + Fn−2,n ≥ 2. (1)

Another well-known sequence, called the Lucas sequence, is defined recursively by the relation

L0 = 2,L1 = 1; Ln = Ln−1 + Ln−2,n ≥ 2. (2)

For further information about Fibonacci and Lucas numbers, we refer to [21]. Let Fn be the nth Fibonacci
number and Ln be the nth Lucas number. The following properties hold [18, 21]:

L−n = (−1)nLn, (3)

Fn−1 + Fn+1 = Ln, (4)

Ln + Ln+2 = 5Fn+1, (5)

L2
n + L2

n−1 = 5F2n−1, (6)

LnLn+1 = L2n+1 + (−1)n, (7)

n∑
k=0

L2
k = LnLn+1 + 2 = L2n+1 + (−1)n + 2. (8)

In recent years, there have been several papers focusing on circulant and r-circulant matrices that contain
special entries like Fibonacci-type numbers. These matrices’ norms have been extensively studied. Solak
[28, 29] introduced the n × n circulant matrices A = [ai j] such that ai j ≡ F(mod( j−i,n)) and B = [bi j] such that
bi j ≡ L(mod( j−i,n)). In other words, the matrix A has the form Circ(F0,F1,F2, ...,Fn−2,Fn−1), where Fn−1 is the
(n − 1)th Fibonacci number. Also, the matrix B has the form Circ(L0,L1,L2, ...,Ln−2,Ln−1), where Ln−1 is
the (n − 1)th Lucas number. The author also gave some bounds for the spectral norms of the matrices A
and B. Then, in [26], Shen and Cen gave upper and lower bounds for the spectral norms of r-circulant
matrices Circr(F0,F1,F2, ...,Fn−2,Fn−1) and Circr(L0,L1,L2, ...,Ln−2,Ln−1). Thus, the authors generalized Solak’s
findings [28, 29] by applying them to r-circulant matrices. For some other related studies, see, for example,
[1, 2, 13, 22, 23, 27, 34, 35].

Ducci sequences were first introduced in 1937 [10]. Ducci sequences’ discovery is attributed to Italian
mathematician Enrico Ducci. From then on, Ducci sequences have been examined in several papers. We
refer to [4–8, 11, 15, 17, 30, 31] and the references given therein. A Ducci sequence is defined as follows:
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Let n be a positive integer, and S = (s1, s2, s3, ..., sn−1, sn) be an n-tuple of integers. A Ducci sequence
generated by S = (s1, s2, s3, ..., sn−1, sn) is a sequence {S,DS,D2S, ...} obtained by iterating the map (called the
Ducci map) D : Zn

→ Zn defined by

DS = D(s1, s2, s3, ..., sn−1, sn) = (|s1 − s2|, |s2 − s3|, ..., |sn−1 − sn|, |sn − s1|).

A cycle is formed by every Ducci sequence {S,DS,D2S, ...}, meaning that there exist integers i and j with
0 ≤ i < j with DiS = D jS. When i and j are as small as possible, a Ducci sequence is said to have a period
( j − i) [4].

In [30], Solak and Bahşi applied the Ducci map to each row of the circulant matrix Circ(a1, a2, a3, ..., an−1, an).
Moreover, the authors established relationships between the Frobenius (or Euclidean) norm, spectral norm,
lp norm, determinant, and eigenvalues of the matrix Circ(a1, a2, a3, ..., an−1, an) and its image under the Ducci
map. Also, the authors gave a numerical example in terms of Fibonacci numbers (see [30] for details). After,
Solak et al. [31] examined some properties of circulant matrices Circ(F), Circ(DF), and Circ(D2F), where
F = (F1,F2,F3, ...,Fn−1,Fn) such that Fn denotes the nth Fibonacci number.

Let L = (L1,L2,L3, ...,Ln−1,Ln) ∈ Zn, where Ln denotes the nth Lucas number. Then, considering Eqs. (2)
and (3), we have

DL = (|L1 − L2|, |L2 − L3|, |L3 − L4|, ..., |Ln−1 − Ln|, |Ln − L1|)
= (L0,L1,L2, ...,Ln−2,Ln − 1)

and

D2L = D(DL)
= (|L0 − L1|, |L1 − L2|, |L2 − L3|, ..., |Ln−2 − (Ln − 1)|, |Ln − 1 − L0|)
= (1,L0,L1, ...,Ln−4,Ln−1 − 1,Ln − 3).

In the present study, let

Circr(L) =



L1 L2 L3 . . . Ln−1 Ln
rLn L1 L2 . . . Ln−2 Ln−1

rLn−1 rLn L1 . . . Ln−3 Ln−2
...

...
...
. . .

...
...

rL3 rL4 rL5 . . . L1 L2
rL2 rL3 rL4 . . . rLn L1


(see [26]),

Circr(DL) =



L0 L1 L2 . . . Ln−2 Ln − 1
r(Ln − 1) L0 L1 . . . Ln−3 Ln−2

rLn−2 r(Ln − 1) L0 . . . Ln−4 Ln−3
...

...
...
. . .

...
...

rL2 rL3 rL4 . . . L0 L1
rL1 rL2 rL3 . . . r(Ln − 1) L0


and

Circr(D2L) =



1 L0 L1 . . . Ln−1 − 1 Ln − 3
r(Ln − 3) 1 L0 . . . Ln−4 Ln−1 − 1

r(Ln−1 − 1) r(Ln − 3) 1 . . . Ln−5 Ln−4
...

...
...
. . .

...
...

rL1 rL2 rL3 . . . 1 L0
rL0 rL1 rL2 . . . r(Ln − 3) 1
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be r-circulant matrices. Note that if we take r = 1, we obtain circulant matrices Circ(L), Circ(DL) and
Circ(D2L), respectively.

The main idea of this paper is to present upper and lower bounds for the spectral norms of the r-circulant
matrices Circr(DL) and Circr(D2L). Furthermore, we establish relationships between the Frobenius norms,
lp norms, and determinants of the circulant matrices Circ(DL) and Circ(D2L) in a similar way to Solak et al.
[31].

Below are some preliminaries that are relevant to our study. Let A be any m × n matrix.
The lp (1 < p < ∞) norm of matrix A is

∥A∥p =

 m∑
i=1

n∑
j=1

|ai j|
p


1
p

.

When we take p = 2 in the lp norm, we have the Frobenius (or Euclidean) norm of matrix A as

∥A∥F =

√√√ m∑
i=1

n∑
j=1

|ai j|
2.

The spectral norm of matrix A is

∥A∥2 =
√

max
i
λi(AHA),

where λi(AHA) are eigenvalues of AHA and AH is conjugate transpose of matrix A. The following relation
between spectral norm and Frobenius norm holds [32]:

1
√

n
∥A∥F ≤ ∥A∥2 ≤ ∥A∥F. (9)

Let A = [ai j] and B = [bi j] be two m × n matrices. Then the Hadamard product [19] of matrices A and B,
denoted by A ◦ B, is defined by

A ◦ B = [ai jbi j].

Lemma 1.1. [19, 24] Let A and B be two m × n matrices. Then we have

∥A ◦ B∥2 ≤ r1(A)c1(B),

where

r1(A) = max
1≤i≤m

√√√ n∑
j=1

|ai j|
2

and

c1(B) = max
1≤ j≤n

√√
m∑

i=1

|bi j|
2.

Lemma 1.2. [30] The determinant of the circulant matrix Circ(DA) satisfies

|detCirc(DA)| ≤
1

n
n
2
∥Circ(DA)∥nF,

where A = (a1, a2, a3, ..., an−1, an) is an n-tuple of integers, and D denotes the Ducci map.
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2. Main Results

Let us first give the following lemma that will be used in the proofs of the next theorems.

Lemma 2.1. For r-circulant matrices Circr(DL) and Circr(D2L), we have

∥Circr(DL)∥2F =
n−2∑
t=0

(n − t)L2
t +

n−2∑
t=1

t|r|2L2
t + (n − 1)|r|2(Ln − 1)2 + (Ln − 1)2

and

∥Circr(D2L)∥
2
F = n +

n−4∑
t=0

(n − 1 − t)L2
t +

n−4∑
t=0

(t + 1)|r|2L2
t + (n − 2)|r|2(Ln−1 − 1)2 + 2(Ln−1 − 1)2

+ (n − 1)|r|2(Ln − 3)2 + (Ln − 3)2.

Proof. The proof is readily obtained by the definition of the Frobenius norm.

The following theorem gives us the upper and lower bounds for the spectral norm of the r-circulant
matrix Circr(DL).

Theorem 2.2. Let ∆1 = Ln−2Ln−1 + (Ln − 1)2 + 2. For the r-circulant matrix Circr(DL), we have

(i) If |r| ≥ 1, then√
∆1 ≤ ∥Circr(DL)∥2 ≤

√
(|r|2(n − 1) + 1)∆1.

(ii) If |r| < 1, then

|r|
√
∆1 ≤ ∥Circr(DL)∥2 ≤

√
n∆1.

Proof. (i) Let |r| ≥ 1. From Lemma 2.1 and Eq. (8), we have

∥Circr(DL)∥2F ≥
n−2∑
t=0

nL2
t + n(Ln − 1)2 = n(Ln−2Ln−1 + (Ln − 1)2 + 2).

It follows that

1
√

n
∥Circr(DL)∥F ≥

√
Ln−2Ln−1 + (Ln − 1)2 + 2.

From Eq. (9), we get

∥Circr(DL)∥2 ≥
√

Ln−2Ln−1 + (Ln − 1)2 + 2

that is√
∆1 ≤ ∥Circr(DL)∥2. (10)

In order to find an upper bound, let matrices A and B be as

A =



1 1 1 . . . 1 1
r 1 1 . . . 1 1
r r 1 . . . 1 1
...
...
...
. . .

...
...

r r r . . . 1 1
r r r . . . r 1


and B =



L0 L1 L2 . . . Ln−2 Ln − 1
Ln − 1 L0 L1 . . . Ln−3 Ln−2
Ln−2 Ln − 1 L0 . . . Ln−4 Ln−3
...

...
...
. . .

...
...

L2 L3 L4 . . . L0 L1
L1 L2 L3 . . . Ln − 1 L0
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such that Circr(DL) = A ◦ B, where A ◦ B is the Hadamard product of A and B. Then we obtain

r1(A) = max
1≤i≤n

√√√ n∑
j=1

|ai j|
2 =

√√√ n∑
j=1

|anj|
2 =

√
|r|2(n − 1) + 1

and

c1(B) = max
1≤ j≤n

√√
n∑

i=1

|bi j|
2 =

√√
n∑

i=1

|bi1|
2 =

√√√n−2∑
k=0

L2
k + (Ln − 1)2 =

√
∆1.

Considering Lemma 1.1, we can write

∥Circr(DL)∥2 ≤
√

(|r|2(n − 1) + 1)∆1. (11)

Hence, from Eqs. (10) and (11), we have√
∆1 ≤ ∥Circr(DL)∥2 ≤

√
(|r|2(n − 1) + 1)∆1.

(ii) Let |r| < 1. From Lemma 2.1 and Eq. (8), we have

∥Circr(DL)∥2F ≥
n−2∑
t=0

n|r|2L2
t + n|r|2(Ln − 1)2 = n|r|2(Ln−2Ln−1 + (Ln − 1)2 + 2).

It follows that

1
√

n
∥Circr(DL)∥F ≥ |r|

√
Ln−2Ln−1 + (Ln − 1)2 + 2.

From Eq. (9), we can write

∥Circr(DL)∥2 ≥ |r|
√

Ln−2Ln−1 + (Ln − 1)2 + 2 = |r|
√
∆1. (12)

Since Circr(DL) = A ◦ B for the matrices A and B defined as in part (i), we obtain

r1(A) = max
1≤i≤n

√√√ n∑
j=1

|ai j|
2 =
√

n

and

c1(B) = max
1≤ j≤n

√√
n∑

i=1

|bi j|
2 =

√√√n−2∑
k=0

L2
k + (Ln − 1)2 =

√
∆1.

From Lemma 1.1, we can write

∥Circr(DL)∥2 ≤
√

n∆1. (13)

From Eqs. (12) and (13), we have

|r|
√
∆1 ≤ ∥Circr(DL)∥2 ≤

√
n∆1.
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The following theorem gives us the upper and lower bounds for the spectral norm of the r-circulant
matrix Circr(D2L).

Theorem 2.3. Let ∆2 = Ln−4Ln−3 + (Ln−1 − 1)2 + (Ln − 3)2 + 3. For the r-circulant matrix Circr(D2L), we have

(i) If |r| ≥ 1, then√
∆2 ≤ ∥Circr(D2L)∥2 ≤

√
(|r|2(n − 1) + 1)∆2.

(ii) If |r| < 1, then

|r|
√
∆2 ≤ ∥Circr(D2L)∥2 ≤

√
n∆2.

Proof. (i) Let |r| ≥ 1. From Lemma 2.1 and Eq. (8), we have

∥Circr(D2L)∥
2
F ≥ n +

n−4∑
t=0

nL2
t + n(Ln−1 − 1)2 + n(Ln − 3)2 = n(Ln−4Ln−3 + (Ln−1 − 1)2 + (Ln − 3)2 + 3).

It follows that

1
√

n
∥Circr(D2L)∥F ≥

√
Ln−4Ln−3 + (Ln−1 − 1)2 + (Ln − 3)2 + 3.

From Eq. (9), we can write√
∆2 ≤ ∥Circr(D2L)∥2. (14)

In order to find an upper bound, let matrices C and D be as

C =



1 1 1 . . . 1 1
r 1 1 . . . 1 1
r r 1 . . . 1 1
...
...
...
. . .

...
...

r r r . . . 1 1
r r r . . . r 1


and D =



1 L0 L1 . . . Ln−1 − 1 Ln − 3
Ln − 3 1 L0 . . . Ln−4 Ln−1 − 1

Ln−1 − 1 Ln − 3 1 . . . Ln−5 Ln−4
...

...
...
. . .

...
...

L1 L2 L3 . . . 1 L0
L0 L1 L2 . . . Ln − 3 1


such that Circr(D2L) = C ◦D. Then we obtain

r1(C) = max
1≤i≤n

√√√ n∑
j=1

|ci j|
2 =

√√√ n∑
j=1

|cnj|
2 =

√
|r|2(n − 1) + 1

and

c1(D) = max
1≤ j≤n

√√
n∑

i=1

|di j|
2 =

√√√
1 + (Ln−1 − 1)2 + (Ln − 3)2 +

n−4∑
k=0

L2
k =
√
∆2.

Considering Lemma 1.1, we can write

∥Circr(D2L)∥2 ≤
√

(|r|2(n − 1) + 1)∆2. (15)

Thus, from Eqs. (14) and (15), we have√
∆2 ≤ ∥Circr(D2L)∥2 ≤

√
(|r|2(n − 1) + 1)∆2.
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(ii) Let |r| < 1. From Lemma 2.1 and Eq. (8), we have

∥Circr(D2L)∥
2
F ≥ n|r|2 +

n−4∑
t=0

n|r|2L2
t + n|r|2(Ln−1 − 1)2 + n|r|2(Ln − 3)2

= n|r|2(Ln−4Ln−3 + (Ln−1 − 1)2 + (Ln − 3)2 + 3).

It follows that

1
√

n
∥Circr(D2L)∥F ≥ |r|

√
Ln−4Ln−3 + (Ln−1 − 1)2 + (Ln − 3)2 + 3.

From Eq. (9), we can write

∥Circr(D2L)∥2 ≥ |r|
√
∆2. (16)

On the other hand, since Circr(D2L) = C ◦D for the matrices C and D defined as in part (i), we get

r1(C) = max
1≤i≤n

√√√ n∑
j=1

|ci j|
2 =
√

n

and

c1(D) = max
1≤ j≤n

√√
n∑

i=1

|di j|
2 =

√√√
1 +

n−4∑
k=0

L2
k + (Ln−1 − 1)2 + (Ln − 3)2 =

√
∆2.

From Lemma 1.1, we obtain

∥Circr(D2L)∥2 ≤
√

n∆2. (17)

Considering Eqs. (16) and (17), we have

|r|
√
∆2 ≤ ∥Circr(D2L)∥2 ≤

√
n∆2.

Now, we consider the circulant matrices

Circ(DL) =



L0 L1 L2 . . . Ln−2 Ln − 1
Ln − 1 L0 L1 . . . Ln−3 Ln−2
Ln−2 Ln − 1 L0 . . . Ln−4 Ln−3
...

...
...
. . .

...
...

L2 L3 L4 . . . L0 L1
L1 L2 L3 . . . Ln − 1 L0


and

Circ(D2L) =



1 L0 L1 . . . Ln−1 − 1 Ln − 3
Ln − 3 1 L0 . . . Ln−4 Ln−1 − 1

Ln−1 − 1 Ln − 3 1 . . . Ln−5 Ln−4
...

...
...
. . .

...
...

L1 L2 L3 . . . 1 L0
L0 L1 L2 . . . Ln − 3 1


.
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Theorem 2.4. For the Frobenius norms of the matrices Circ(DL) and Circ(D2L), we have

∥Circ(DL)∥2F − ∥Circ(D2L)∥
2
F = n(L2

n − 5L2n−3 − 2Ln + 10Fn+1 − 10),

where Fn+1 is the (n + 1)th Fibonacci number, and Ln is the nth Lucas number.

Proof. By virtue of the definition of the Frobenius norm, we have

∥Circ(DL)∥2F = n

n−2∑
k=0

L2
k + (Ln − 1)2

 (18)

and

∥Circ(D2L)∥
2
F = n

1 + n−4∑
k=0

L2
k + (Ln−1 − 1)2 + (Ln − 3)2

 . (19)

Then, from Eqs. (1), (2) and Eqs. (4)-(8), we get

∥Circ(DL)∥2F − ∥Circ(D2L)∥
2
F = n

n−2∑
k=0

L2
k + (Ln − 1)2

− 1 −
n−4∑
k=0

L2
k − (Ln−1 − 1)2

− (Ln − 3)2


= n(Ln−2Ln−1 − Ln−4Ln−3 − L2

n−1 + 4Ln + 2Ln−1 − 10)

= n(L2
n + L2n−3 − L2n−7 − 2Ln − 5F2n−1 + 10Fn+1 − 10)

= n(L2
n − 2Ln + 5F2n−5 − 5F2n−1 + 10Fn+1 − 10)

= n(L2
n − 5L2n−3 − 2Ln + 10Fn+1 − 10).

So the proof is completed.

Theorem 2.5. For the lp norms of the matrices Circ(DL) and Circ(D2L), we have

∥Circ(DL)∥pp − ∥Circ(D2L)∥
p
p = n(Lp

n−3 + Lp
n−2 + (Ln − 1)p

− (Ln−1 − 1)p
− (Ln − 3)p

− 1).

Proof. By virtue of the definition of the lp norm, we have

∥Circ(DL)∥pp = n

n−2∑
k=0

Lp
k + (Ln − 1)p

 (20)

and

∥Circ(D2L)∥
p
p = n

1 + n−4∑
k=0

Lp
k + (Ln−1 − 1)p + (Ln − 3)p

 . (21)

Using Eqs. (20) and (21), we get

∥Circ(DL)∥pp − ∥Circ(D2L)∥
p
p = n

n−2∑
k=0

Lp
k + (Ln − 1)p

−

n−4∑
k=0

Lp
k − (Ln−1 − 1)p

− (Ln − 3)p
− 1


= n

n−4∑
k=0

Lp
k + Lp

n−3 + Lp
n−2 + (Ln − 1)p

−

n−4∑
k=0

Lp
k − (Ln−1 − 1)p

− (Ln − 3)p
− 1


= n(Lp

n−3 + Lp
n−2 + (Ln − 1)p

− (Ln−1 − 1)p
− (Ln − 3)p

− 1).
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Theorem 2.6. For circulant matrices Circ(DL) and Circ(D2L), we have

|detCirc(DL)| ≤
(
L2

n + L2n−3 − 2Ln + (−1)n + 3
) n

2

and

|detCirc(D2L)| ≤ (L2n−7 + 5F2n−1 − 10Fn+1 + (−1)n + 13)
n
2 .

Proof. Considering Lemma 1.2 and Eqs. (7), (8), and (18), we get

|detCirc(DL)| ≤
1

n
n
2
∥Circ(DL)∥nF

=
1

n
n
2


√√√

n

n−2∑
k=0

L2
k + (Ln − 1)2




n

=
1

n
n
2

(√
n
(
L2

n + L2n−3 − 2Ln + (−1)n + 3
))n

=
(
L2

n + L2n−3 − 2Ln + (−1)n + 3
) n

2 .

On the other hand, considering Lemma 1.2, Eqs. (4)-(8), and Eq. (19), we get

|detCirc(D2L)| ≤
1

n
n
2
∥Circ(D2L)∥

n
F

=
1

n
n
2


√√√

n

1 + n−4∑
k=0

L2
k + (Ln−1 − 1)2 + (Ln − 3)2




n

=
1

n
n
2

(√
n (L2n−7 + 5F2n−1 − 10Fn+1 + (−1)n + 13)

)n
= (L2n−7 + 5F2n−1 − 10Fn+1 + (−1)n + 13)

n
2 .

Example 2.7. Let the Lucas sequence be L = (L1,L2,L3,L4) = (1, 3, 4, 7) 4-tuple. Then

DL = D(1, 3, 4, 7) = (|1 − 3|, |3 − 4|, |4 − 7|, |7 − 1|) = (2, 1, 3, 6)

and

D2L = D(DL) = D(2, 1, 3, 6) = (|2 − 1|, |1 − 3|, |3 − 6|, |6 − 2|) = (1, 2, 3, 4).

For considering circulant matrices

Circ(DL) =


2 1 3 6
6 2 1 3
3 6 2 1
1 3 6 2

 and Circ(D2L) =


1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

 ,
it is easy to obtain that detCirc(DL) = −624 and detCirc(D2L) = −160.

On the other hand,

1
16
∥Circ(DL)∥4F =

(
L2

4 + L5 − 2L4 + (−1)4 + 3
)2
= (49 + 11 − 14 + 1 + 3)2 = 2500
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and

1
16
∥Circ(D2L)∥

4
F =
(
L1 + 5F7 − 10F5 + (−1)4 + 13

)2
= (1 + 65 − 50 + 1 + 13)2 = 900.

Clearly, | − 624| < 2500 and | − 160| < 900. Thus, |detCirc(DL)| < 1
16∥Circ(DL)∥4F and |detCirc(D2L)| <

1
16∥Circ(D2L)∥4F.
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[35] Y. Yazlık, N. Taşkara, On the norms of an r-circulant matrix with the generalized k-Horadam numbers, J. Inequal. Appl. 2013 (2013), 394.
[36] G. Zhao, The improved nonsingularity on the r-circulant matrices in signal processing, 2009 International Conference on Computer

Technology and Development, Kota Kinabalu, Malaysia, (2009), 564–567.


