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Abstract.
Based on a completely distributive lattice L, the degree to which an L-subset in a vector space is an

L-fuzzy subspace is introduced via the implication operation on L. By using four kinds of cut sets, several
characterizations of L-fuzzy subspace degree are given. Further, it is shown that the L-fuzzy subspace degree
of a vector space can induce an L-fuzzy convexity in a natural way and the linear mappings between vector
spaces are L-fuzzy convexity-preserving and L-fuzzy convex-to-convex mappings between the induced
L-fuzzy convex spaces.

1. Introduction

Convexity as an important mathematical property originated from Euclidean spaces. The concept of
convexity was substantially defined and studied in Rn in the works of the pioneers like Newton and
Minkowski as described in [1, 3, 28]. Generally, a set in an n-dimensional Euclidean space is convex if and
only if it contains all the segments which join each two of its points. Due to the extensional existence of
convex sets, convexities could also be found in many other mathematical structures such as vector spaces,
lattices, graphs, matroids, median algebras and so on [2, 25–27, 31].

Motivated by the axiomatic approach, the concept of convex structures (also called convexities) was
proposed. Concretely, a convexity on a set X is defined as a family C of subsets of X, when it contains both
X itself and the empty set ∅ and it is closed under arbitrary intersections and nested unions. The members
of C are called convex sets [28]. So this kind of convex set exists with respect to a convex structure. In this
sense, more different types of convex sets emerge in mathematical environments. For example, a subspace
of a vector space can be treated as a convex set which is different from the standard convex set since the
family of all subspaces of a vector space is exactly a convexity on the vector space.

Since Zadeh introduced fuzzy sets, many mathematical structures have been endowed with fuzzy set
theory [4, 7, 8, 10, 11, 37], which leads to different types of fuzzy convexities. Rosa [20] first introduced the
concept of fuzzy convex spaces with the real unit interval [0,1] as the lattice background. Later, Maruyama
[13] generalized the interval [0,1] to a completely distributive lattice L and proposed the concept of L-fuzzy
convexity spaces. These two kinds of fuzzy convex structures are called L-convex structures nowadays
[6, 16, 35, 38]. In recent years, a new approach to the fuzzification of convex spaces was introduced in
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[22], known as M-fuzzifying convex spaces, in which each subset of X can be seen as a convex set to some
degree. Up to now, M-fuzzifying convex spaces have deserved more and more attention [30, 32–34]. In
2017, Shi and Xiu [23] extended convexity to a more general case, known as (L,M)-fuzzy convex spaces
[14, 15, 36]. Note that (L,M)-fuzzy convex spaces can include L-convex spaces and M-fuzzifying convex
spaces as special cases.

Katsaras and Liu [10] first generalized the concept of vector spaces to the fuzzy case. Afterwards, many
scholars developed the theory of fuzzy vector spaces [8, 11, 12]. In [39], Zhong and Shi proposed the concept
of an L-fuzzy subspace of a vector space. In this sense, an L-fuzzy set in a vector space is either an L-fuzzy
subspace or not. It lacks “fuzziness” to some extent. By this motivation, we will consider equipping each
L-subset in a vector space with some degree to become an L-fuzzy subspace. Since a subset of a vector
space can be treated as a convex subset from the axiomatic aspect, we will treat the degree to which an
L-subset of a vector space becomes an L-fuzzy subspace as a “convexity degree”. Following this trend,
we will construct an L-fuzzy convexity in a natural way from a vector space. In other words, there exists
naturally an L-fuzzy convexity in a vector space. The aim of this paper is to define the degree to which an
L-subset in a vector space is an L-fuzzy subspace via the implication operation on the lattice background
L. Then an L-fuzzy convexity on a vector space is naturally constructed. Also, the relationships between
linear mapping, L-fuzzy convexity-preserving and L-fuzzy convex-to-convex mappings are discussed.

2. Preliminaries

Throughout this paper, unless otherwise stated, L denotes a completely distributive lattice. The smallest
element and the largest element in L are denoted by ⊥ and ⊤, respectively. Let X be a vector space over the
real fieldK. The family of all L-subsets on X is denoted by LX. LX is also a complete lattice when it inherits
the structure of the lattice L in a pointwise way. The smallest element and the largest element in LX are
denoted by χ∅ and χX, respectively. Also, we adopt the convention that

∧
∅ = ⊤ and

∨
∅ = ⊥.

An element a in L is called co-prime if a ⩽ b ∨ c implies a ⩽ c or a ⩽ b [5]. The set of non-zero co-prime
elements in L is denoted by J(L). An element a in L is called prime if b∧ c ⩽ a implies c ⩽ a or b ⩽ a. The set
of non-unit prime elements in L is denoted by P(L).

For each a, b ∈ L, we say that a is wedge below b in L, in symbols a ≺ b, if for every subset D ⊆ L, b ⩽
∨

D
implies a ⩽ d for some d ∈ D. The set {a ∈ L | a ≺ b}, denoted by β(b), is called the greatest minimal family
of b in the sense of [29]. Dually, we can define a binary relation ≺op as follows: for all a, b ∈ L, a ≺op b if and
only if for every subset D ⊆ L,

∧
D ⩽ a implies d ⩽ b for some d ∈ D. The set {b ∈ M | a ≺op b}, denoted by

α(a), is called the greatest maximal family of a in the sense of [29]. For convenience, let β∗(b) = β(b) ∩ J(L).
and α∗(b) = α(b) ∩ P(L). A complete lattice L is a completely distributive if and only if b =

∨
β(b) (resp.

b =
∨
β⋆(b)) for each b ∈ L if and only if a =

∧
α(a) (resp. a =

∧
α⋆(a)) for each a ∈ L .

Theorem 2.1. ([29]) Let {ai | i ∈ Ω} ⊆ L. Then

(1) α(
∧
i∈Ω

ai) =
⋃
i∈Ω
α(ai).

(2) β(
∨
i∈Ω

ai) =
⋃
i∈Ω
β(ai).

In [21], Shi introduced four kinds of cut sets of an L-subset as a basic theoretical tool to study fuzzy set
theory.

Definition 2.2. ([21]) Let µ ∈ LX and a ∈ L. We define

(1) µ[a] = {x ∈ X | a ⩽ µ(x)}.

(2) µ(a) = {x ∈ X | a ∈ β(µ(x))}.

(3) µ(a) = {x ∈ X | µ(x) ⩽̸ a}.
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(4) µ[a] = {x ∈ X | a < α(µ(x))}.

Lemma 2.3. Let x, y ∈ L. Then the following statements are equivalent:

(1) x ⩽ y;

(2) for each a ∈ J(L), a ⩽ x⇒ a ⩽ y;

(3) for each a ∈ α(⊥), a < α(x)⇒ a < α(y);

(4) for each a ∈ P(L), x ⩽̸ a⇒ y ⩽̸ a;

(5) for each a ∈ β(⊤), a ∈ β(x)⇒ a ∈ β(y).

Proof. It is trivial and omitted here.

In a completely distributive lattice L, there exists an implication operator

→: L × L −→ L.

The operator is the right adjoint for the meet operation ∧ by

a→ b =
∨
{c ∈ L | a ∧ c ⩽ b}.

We list some properties of the implication operation in the following lemma.

Lemma 2.4. ([7]) For all a, b, c ∈ L, {ai}i∈I ⊆ L, the following statements hold:

(1) ⊤ → a = a;

(2) c ⩽ a→ b⇔ a ∧ c ⩽ b;

(3) a→ b = ⊤ ⇔ a ⩽ b;

(4) a→ (
∧

i∈I ai) =
∧

i∈I(a→ ai), hence a→ b ⩽ a→ c whenever b ⩽ c;

(5) (
∨

i∈I ai)→ b =
∧

i∈I(ai → b), hence b→ c ⩽ a→ c whenever a ⩽ b;

(6) (a→ c) ∧ (c→ b) ⩽ a→ b;

(7) (a→ b) ∧ (c→ d) ⩽ a ∧ c→ b ∧ d.

In what follows, we recall the concept of (L,M)-fuzzy convexities.

Definition 2.5. ([23]) A mapping C : LX
−→ M is called an (L,M)-fuzzy convexity on X if it satisfies the

following conditions:

(LMC1) C(χ∅) = C(χX) = ⊤M;

(LMC2) if {Ai | i ∈ Ω} ⊆ LX is nonempty, then
∧

i∈Ω C(Ai) ⩽ C(
∧

i∈Ω Ai);

(LMC3) if {Ai | i ∈ Ω} ⊆ LX is nonempty and totally ordered, then
∧

i∈Ω C(Ai) ⩽ C(
∨

i∈Ω Ai).

For an (L,M)-fuzzy convexity on X, the pair (X,C) is called an (L,M)-fuzzy convex space. An (L,L)-fuzzy
convex space is called an L-fuzzy convex space for short.
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Let 2 denote the two element chain, that is, 2 = {0, 1}. Then an (L, 2)-fuzzy convexity is an L-convexity in
[13, 17, 18], an (I, 2)-fuzzy convexity is a fuzzy convexity in [20], where I=[0,1], a (2,M)-fuzzy convexity is an
M-fuzzifying convexity in [22], a (2, 2)-fuzzy convexity is a convexity in [9, 24, 28].

Given a mapping f : X −→ Y, define f→L : LX
−→ LY and f←L : LY

−→ LX [19] by

f→L (A)(y) =
∨

f (x)=y

A(x), f←L (B) = B ◦ f

for all A ∈ LX, y ∈ Y, B ∈ LY and x ∈ X.

Definition 2.6. ([39]) Let X be a vector space over K. µ ∈ LX is called an L-fuzzy subspace of X if for all
x, y ∈ X and for all k, l ∈ K, µ(kx + ly) ⩾ µ(x) ∧ µ(y).

3. Degrees of L-fuzzy subspaces

According to Definition 2.6, we know that an L-subset µ of a vector space X is either an L-fuzzy subspace
or not. In this sense, there is no fuzziness to describe this notion. Adhering to the essential idea of fuzzy
set theory, it is necessary to endow a “fuzziness degree” with an L-fuzzy subspace.

By means of the implication operation on L, we will equip an L-subset in a vector space some “fuzziness
degree” to characterize the degree to which an L-subset in a vector space is an L-fuzzy subspace.

Definition 3.1. Let X be a vector space over K and µ ∈ LX. The degree to which µ is an L-fuzzy subspace
on X (or called the L-fuzzy subspace degree of µ) is defined as follows:

D(µ) =
∧

x,y∈X,k,l∈K

(
µ(x) ∧ µ(y)→ µ(kx + ly)

)
.

Remark 3.2. It is obvious thatD(µ) = ⊤ if and only if µ is an L-fuzzy subspace on X.

Example 3.3. Let X = K and define µ ∈ [0, 1]K as follows:

µ(x) =
{

0.7, if x ∈ K, x , 0,
0.4, if x = 0 ∈ K.

Then it is easy to check that µ is not a fuzzy subspace ofK, but we can easily compute thatD(µ) = 0.4.

Lemma 3.4. Let X be a vector space overK. Then for each µ ∈ LX and a ∈ L, a ⩽ D(µ) if and only if for all x, y ∈ X
and for each k, l ∈ K, µ(x) ∧ µ(y) ∧ a ⩽ µ(kx + ly).

Proof. By Lemma 2.4(2), it is straightforward.

Theorem 3.5. Let X be a vector space overK. Then for each µ ∈ LX, we have

D(µ) =
∨{

a ∈ L
∣∣∣ µ(x) ∧ µ(y) ∧ a ⩽ µ(kx + ly),∀x, y ∈ X,∀k, l ∈ K

}
.

Proof. By Lemma 3.4, it is obvious.

In what follows, we will provide some characterizations of the L-fuzzy subspace degree via four kinds
of cut sets.

Theorem 3.6. Let X be a vector space overK and µ ∈ LX. Then

D(µ) =
∨{

a ∈ L | ∀b ⩽ a, µ[b] is a subspace of X
}
.
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Proof. Take any a ∈ L such that µ(x)∧µ(y)∧ a ⩽ µ(kx+ ly) for any x, y ∈ X and for any k, l ∈ K. For any b ⩽ a
and x, y ∈ µ[b], we have µ(kx + ly) ⩾ µ(x)∧ µ(y)∧ a ⩾ b∧ a = b, i.e., kx + ly ∈ µ[b]. Hence µ[b] is a subspace of
X. By Theorem 3.5, we know

D(µ) ⩽
∨
{a ∈ L | ∀b ⩽ a, µ[b] is a subspace of X}.

Conversely, suppose that µ[b] is a subspace of X for any b ⩽ a. It suffices to verify that for all x, y ∈ X and
for all k, l ∈ K, µ(x) ∧ µ(y) ∧ a ⩽ µ(kx + ly).

Suppose that b ∈ L with b ⩽ µ(x) ∧ µ(y) ∧ a. Then b ⩽ µ(x), b ⩽ µ(y) and b ⩽ a. So x, y ∈ µ[b]. Since µ[b] is
a subspace of X for any b ⩽ a, it follows that kx + ly ∈ µ[b], i.e., µ(kx + ly) ⩾ b. By the arbitrariness of b, we
can obtain µ(x) ∧ µ(y) ∧ a ⩽ µ(kx + ly). By Theorem 3.5, we know

D(µ) ⩾
∨
{a ∈ L | ∀b ⩽ a, µ[b] is a subspace of X}.

Theorem 3.7. Let X be a vector space overK and µ ∈ LX. Then

D(µ) =
∨{

a ∈ L
∣∣∣ ∀b ∈ P(L), a ⩽̸ b, µ(b) is a subspace of X

}
.

Proof. Take any a ∈ L such that µ(x) ∧ µ(y) ∧ a ⩽ µ(kx + ly) for any x, y ∈ X and for any k, l ∈ K. For each
b ∈ P(L) with a ⩽̸ b and for all x, y ∈ µ(b), we have µ(x) ∧ µ(y) ∧ a ⩽̸ b by µ(x) ⩽̸ b and µ(y) ⩽̸ b. Since
µ(x)∧ µ(y)∧ a ⩽ µ(kx+ ly), it follows that µ(kx+ ly) ⩽̸ b, i.e., kx+ ly ∈ µ(b). Hence µ(b) is a subspace of X. By
Theorem 3.5, we know

D(µ) ⩽
∨{

a ∈ L
∣∣∣ ∀b ∈ P(L), a ⩽̸ b, µ(b) is a subspace of X

}
.

Conversely, suppose that µ(b) is a subspace of X for any b ∈ P(L) with a ⩽̸ b. It remains to verify that for
all x, y ∈ X and for all k, l ∈ K, µ(x) ∧ µ(y) ∧ a ⩽ µ(kx + ly).

Suppose that b ∈ P(L) with µ(x) ∧ µ(y) ∧ a ⩽̸ b. Then µ(x) ⩽̸ b, µ(y) ⩽̸ b and a ⩽̸ b. So x, y ∈ µ(b). Since
µ(b) is a subspace of X for any b ∈ P(L) with a ⩽̸ b, it follows that kx + ly ∈ µ(b), i.e., µ(kx + ly) ⩽̸ b. By the
arbitrariness of b, we can obtain µ(x) ∧ µ(y) ∧ a ⩽ µ(kx + ly). By Theorem 3.5, we know

D(µ) ⩾
∨{

a ∈ L
∣∣∣ ∀b ∈ P(L), a ⩽̸ b, µ(b) is a subspace of X

}
.

Theorem 3.8. Let X be a vector space overK and µ ∈ LX. Then

D(µ) =
∨{

a ∈ L | ∀b < α(a), µ[b] is a subspace
}
.

Proof. Take any a ∈ L such that µ(x) ∧ µ(y) ∧ a ⩽ µ(kx + ly) for any x, y ∈ X and for any k, l ∈ K. For any
b < α(a) and for all x, y ∈ µ[b], i.e., b < α(µ(x)), b < α(µ(y)), we have

b < α(µ(x)) ∪ α(µ(y)) ∪ α(a).

By α(µ(x))∪α(µ(y))∪α(a) = α(µ(x)∧µ(y)∧a) we obtain b < α(µ(x)∧µ(y)∧a). Further, becauseµ(x)∧µ(y)∧a ⩽
µ(kx + ly), we can know that b < α(µ(kx + ly)), i.e., kx + ly ∈ µ[b]. Hence µ[b] is a subspace of X. By Theorem
3.5, we know

D(µ) ⩽
∨{

a ∈ L | ∀b < α(a), µ[b] is a subspace
}
.

Conversely, suppose that µ[b] is a subspace of X for all b < α(a). It suffices to prove that for all x, y ∈ X
and for all k, l ∈ K, µ(x) ∧ µ(y) ∧ a ⩽ µ(kx + ly).
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Suppose that b ∈ L with b < α(µ(x)∧µ(y)∧a). We obtain b < α(µ(x))∪α(µ(y))∪α(a) by α(µ(x)∧µ(y)∧a) =
α(µ(x)) ∪ α(µ(y)) ∪ α(a). Then b < α(µ(x)), b < α(µ(y)) and b < α(a). So x, y ∈ µ[b]. Since µ[b] is a
subspace of X, it follows that kx + ly ∈ µ[b], i.e. , b < α(µ(kx + ly)). By the arbitrariness of b, we have
α(µ(kx + ly)) ⊆ α(µ(x) ∧ µ(y) ∧ a). Then it follows that

µ(x) ∧ µ(y) ∧ a =
∧
α(µ(x) ∧ µ(y) ∧ a)

⩽
∧
α(µ(kx + ly))

= µ(kx + ly).

By Theorem 3.5, we knowD(µ) ⩾
∨
{a ∈ L | ∀b < α(a), µ[b] is a subspace}.

Theorem 3.9. Let X be a vector space overK. If β(a∧ b) = β(a)∩ β(b) for all a, b ∈ L, then for each µ ∈ LX, we have

D(µ) =
∨
{a ∈ L | ∀b ∈ β(a), µ(b) is a subspace}.

Proof. Take any a ∈ L such that µ(x)∧µ(y)∧a ⩽ µ(kx+ly) for any x, y ∈ X and k, l ∈ K. For any b ∈ β(a) and for
all x, y ∈ µ(b), we have b ∈ β(µ(x))∩β(µ(y))∩β(a) by b ∈ β(µ(x)) and b ∈ β(µ(y)). We obtain b ∈ β(µ(x)∧µ(y)∧a)
by β(µ(x)) ∩ β(µ(y)) ∩ β(a) = β(µ(x) ∧ µ(y) ∧ a). Since µ(x) ∧ µ(y) ∧ a ⩽ µ(kx + ly), it follows that

b ∈ β(µ(kx + by)), i.e., kx + ly ∈ µ(b).

Hence µ(b) is a subspace of X. By Theorem 3.5, we know

D(µ) ⩽
∨
{a ∈ L | ∀b ∈ β(a), µ(b) is a subspace}.

Conversely, suppose that µ(b) is a subspace of X for any b ∈ β(a). It remains to prove that for all x, y ∈ X
and for all k, l ∈ K, µ(x) ∧ µ(y) ∧ a ⩽ µ(kx + ly).

Suppose that b ∈ L with b ∈ β(µ(x)∧ µ(y)∧ a). We have b ∈ β(µ(x))∩ β(µ(y))∩ β(a) by β(µ(x)∧ µ(y)∧ a) =
β(µ(x)) ∩ β(µ(y)) ∩ β(a). Then b ∈ β(µ(x)), b ∈ β(µ(y)) and b ∈ β(a). So we have x, y ∈ µ(b). Since µ(b) is a
subspace of X for any b ∈ β(a), it follows that kx + ly ∈ µ(b), i.e., b ∈ β(µ(kx + ly)). By the arbitrariness of b,
we have β(µ(x) ∧ µ(y) ∧ a) ⊆ β(µ(kx + ly)) and

µ(x) ∧ µ(y) ∧ a =
∨
β(µ(x) ∧ µ(y) ∧ a)

⩽
∨
β(µ(kx + ly))

= µ(kx + ly).

By Theorem 3.5, we knowD(µ) ⩾
∨
{a ∈ L | ∀b ∈ β(a), µ(b) is a subspace}.

4. L-fuzzy convexity induced by L-fuzzy subspace degree

In the classical case, all the subspaces of a vector space consist a convexity on the vector space. In the
above section, we considered the degree to which an L-subset of a vector space becomes a subspace. This
motivates us to consider the relationships between the L-fuzzy subspace degrees and fuzzy convexities.
In this section, by means of an L-fuzzy subspace degree, we construct an L-fuzzy convexity on a vector
space. Furthermore, we shall explore its corresponding L-fuzzy convexity preserving mapping and L-fuzzy
convex-to-convex mapping.

By the definition of D(µ), we know that D can be naturally considered as a mapping D : LX
−→ L

defined by µ 7−→ D(µ). The following theorem shows thatD is an L-fuzzy convexity on X.

Theorem 4.1. Let X be a vector space overK. Then the mappingD: LX
−→ L defined by µ 7−→ D(µ) is an L-fuzzy

convexity on X, which is called the L-fuzzy convexity induced by L-fuzzy subspace degree on X.
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Proof. It is enough to show thatD satisfies (LMC1)–(LMC3).
(LMC1) It is straightforward.
(LMC2) Take any nonempty subfamily {Ai | i ∈ Ω} ⊆ LX and a ∈ L such that a ⩽

∧
i∈Ω
D(Ai). By Lemma

3.4, for all i ∈ Ω, we have Ai(x) ∧ Ai(y) ∧ a ⩽ Ai(kx + ly) for all x, y ∈ X and for each k, l ∈ K. This implies∧
i∈Ω

Ai(x)

 ∧
∧

j∈Ω

A j(y)

 ∧ a ⩽
∧
i∈Ω

(Ai(x) ∧ Ai(y) ∧ a)

⩽
∧
i∈Ω

Ai(kx + ly).

By Lemma 3.4, we have a ⩽ D(
∧
i∈Ω

Ai). By the arbitrariness of a, we obtain
∧
i∈Ω
D(Ai) ⩽ D(

∧
i∈Ω

Ai).

(LMC3) Take any nonempty and totally ordered subfamily {Ai | i ∈ Ω} ⊆ LX and a ∈ L such that
a ⩽

∧
i∈Ω
D(Ai). By Lemma 3.4, for all i ∈ Ω, we have Ai(x)∧Ai(y)∧ a ⩽ Ai(kx+ ly) for all x, y ∈ X and k, l ∈ K.

Take any b ∈ J(L) such that

b ≺

∨
i∈Ω

Ai(x)

 ∧
∨

i∈Ω

Ai(y)

 ∧ a.

Then we have b ≺
∨
i∈Ω

Ai(x), b ≺
∨
i∈Ω

Ai(y) and b ⩽ a. Hence there exists some i, j ∈ Ω such that b ⩽ Ai(x),

b ⩽ A j(y) and b ⩽ a. Since {Ai | i ∈ Ω} is totally ordered, we assume A j ⩽ Ai. Then it follows that
b ⩽ Ai(x) ∧ Ai(y) ∧ a. By Ai(x) ∧ Ai(y) ∧ a ⩽ Ai(kx + ly), we obtain b ⩽ Ai(kx + ly). Hence b ⩽

∨
i∈Ω

Ai(kx + ly).

By the arbitrariness of b, we have∨
i∈Ω

Ai(x)

 ∧
∨

i∈Ω

Ai(y)

 ∧ a ⩽
∨
i∈Ω

Ai(kx + ly).

Combining Lemma 3.4, we have a ⩽ D
(∨

i∈Ω
Ai

)
. By the arbitrariness of a, we obtain

∧
i∈Ω

D(Ai) ⩽ D

∨
i∈Ω

Ai

 .
This shows thatD is an L-fuzzy convexity on X.

Example 4.2. Let X = {a, b, c} be a vector space with a field K and L = {0, 1
2 , 1}. For each µ ∈ LX, denote its

range by ran(µ). By the formula

D(µ) =
∧

x,y∈X,k,l∈K

(
µ(x) ∧ µ(y)→ µ(kx + ly)

)
,

we can compute the values ofD(µ) according to ran(µ) as follows:

D(µ) =


0, if ran(µ) = {0, 1

2 } or {0, 1} or {0, 1
2 , 1},

1
2 , if ran(µ) = { 12 , 1},
1, if ran(µ) = {0} or { 12 } or {1}.

ThenD is an L-fuzzy convexity on X.

Convexity-preserving mappings play an important role in the theory of convexity theory. In the frame-
work of fuzzy convexities, Shi and Xiu [23] introduced the notion of (L,M)-fuzzy convexity-preserving
mappings.
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Definition 4.3. ([23]) Let (X,C) and (Y,D) be (L,M)-fuzzy convex spaces. A mapping f : X −→ Y is called
an (L,M)-fuzzy convexity-preserving mapping providedD(µ) ⩽ C( f←L (µ)) for all µ ∈ LY.

An (L,L)-fuzzy convexity-preserving mapping is called an L-fuzzy convexity-preserving mapping for short.
An (L, 2)-fuzzy convexity preserving mapping is exactly an L-convexity preserving mapping in [13].

Linear mappings are important to establish the relationships between vector spaces, while L-fuzzy
convexity-preserving mappings are important to establish the relationships between L-fuzzy convex spaces.
This motivates us to consider the relationships between linear mappings and L-fuzzy convexity-preserving
mappings.

Theorem 4.4. Let X and Y be two vector spaces over K and DX and DY be the L-fuzzy convexities induced by
L-fuzzy subspace degrees on X and Y, respectively. If f : X −→ Y is a linear mapping between vector spaces, then
f : (X,DX) −→ (Y,DY) is an L-fuzzy convexity-preserving mapping.

Proof. Take any a ∈ L such that a ⩽ DY(µ). That is,

a ⩽
∧

y1,y2∈Y,k,l∈K

(
µ(y1) ∧ µ(y2)→ µ(ky1 + ly2)

)
.

By Lemma 3.4, we have that for any y1, y2 ∈ Y and k, l ∈ K, µ(y1) ∧ µ(y2) ∧ a ⩽ µ(ky1 + ly2). Note that f is a
linear mapping, we have that for all x1, x2 ∈ X,

f←L (µ)(x1) ∧ f←L (µ)(x2) ∧ a = µ( f (x1)) ∧ µ( f (x2)) ∧ a
⩽ µ(k f (x1) + l f (x2))
= µ( f (kx1 + lx2))
= f←L (µ)(kx1 + lx2).

By Lemma 3.4, we have a ⩽ DX( f←L (µ)). By the arbitrariness of a, we obtain DY(µ) ⩽ DX( f←L (µ)), which
shows that f : (X,DX) −→ (Y,DY) is an L-fuzzy convexity-preserving mapping.

In the classical case, if f : X −→ Y is a surjective and linear mapping between vector spaces, then Z is a
subspace of Y if and only if f←(Z) = {x | f (x) ∈ Z} is a subspace of X. Now we give its fuzzy counterpart.

Theorem 4.5. Let X and Y be two vector spaces over K and DX and DY be the L-fuzzy convexities induced by
L-fuzzy subspace degrees on X and Y, respectively. If f : X −→ Y is a surjective and linear mapping between vector
spaces, thenDX( f←L (µ)) = DY(µ).

Proof. Since f is surjective, we have

DX( f←L (µ)) =
∧

x1,x2∈X,k,l∈K

( f←L (µ)(x1) ∧ f←L (µ)(x2)→ f←L (µ)(kx1 + lx2))

=
∧

x1,x2∈X,k,l∈K

(µ( f (x1)) ∧ µ( f (x2))→ µ( f (kx1 + lx2)))

=
∧

x1,x2∈X,k,l∈K

(µ( f (x1)) ∧ µ( f (x2))→ µ(k f (x1) + l f (x2)))

=
∧

y1,y2∈Y,k,l∈K

(µ(y1) ∧ µ(y2)→ µ(ky1 + ly2))

= DY(µ).

Convex-to-convex mappings also play an important role in the theory of convexity theory. In the
framework of fuzzy convexities, Shi and Xiu [23] introduced the notion of (L,M)-fuzzy convex-to-convex
mappings.
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Definition 4.6. ([23]) Let (X,C) and (Y,D) be (L,M)-fuzzy convex spaces. A mapping f : X −→ Y is called
an (L,M)-fuzzy convex-to-convex mapping provided C(µ) ⩽ D( f→L (µ)) for all µ ∈ LX.

An (L,L)-fuzzy convex-to-convex mapping is called an L-fuzzy convex-to-convex mapping for short.
An (L, 2)-fuzzy convex-to-convex mapping is exactly an L-convex-to-convex mapping in [13].

L-fuzzy convexity-preserving mappings are also important to establish the relationships between L-
fuzzy convex spaces. This motivates us to consider the relationships between linear mappings and L-fuzzy
convex-to-convex mappings.

Theorem 4.7. Let X and Y be two vector spaces over K and DX and DY be the L-fuzzy convexities induced by
L-fuzzy subspace degrees on X and Y, respectively. If f : X −→ Y is a linear mapping between vector spaces, then
f : (X,DX) −→ (Y,DY) is an L-fuzzy convex-to-convex mapping.

Proof. Take any a ∈ L such that a ⩽ DX(λ). By Lemma 3.4, we have

λ(x1) ∧ λ(x2) ∧ a ⩽ λ(kx1 + lx2)

for any x1, x2 ∈ X and k, l ∈ K. Then for all y1, y2 ∈ Y, we have

f→L (λ)(y1) ∧ f→L (λ)(y2) ∧ a =
∨

f (x1)=y1

λ(x1) ∧
∨

f (x2)=y2

λ(x2) ∧ a

=
∨{
λ(x1) ∧ λ(x2) ∧ a

∣∣∣ f (x1) = y1, f (x2) = y2
}

⩽
∨{
λ(kx1 + lx2)

∣∣∣ f (x1) = y1, f (x2) = y2
}

⩽
∨{
λ(kx1 + lx2)

∣∣∣ f (kx1 + lx2) = ky1 + ly2
}

= f→L (λ)(ky1 + ly2).

By Lemma 3.4, we have a ⩽ DY

(
f→L (λ)

)
. By the arbitrariness of a, we obtain DX(λ) ⩽ DY

(
f→L (λ)

)
, which

shows that f : (X,DX) −→ (Y,DY) is an L-fuzzy convex-to-convex mapping.

In the classical case, if f : X −→ Y is an injective and linear mapping between vector spaces, then Z is a
subspace of X if and only if f→(X) = { f (x) | x ∈ Z} is a subspace of Y. Now we give the fuzzy case of this
conclusion.

Theorem 4.8. Let X and Y be two vector spaces over K and DX and DY be the L-fuzzy convexities induced by
L-fuzzy subspace degrees on X and Y, respectively. If f : X −→ Y is a injective and linear mapping between vector
spaces, thenDY

(
f→L (λ)

)
= DX(λ).

Proof. By Theorem 4.7, it suffices to prove thatDY

(
f→L (λ)

)
⩽ DX(λ). Take any a ∈ L such that a ⩽ DY

(
f→L (λ)

)
.

By Lemma 3.4, we have f→L (λ)(y1) ∧ f→L (λ)(y2) ∧ a ⩽ f→L (λ)(ky1 + ly2) for all y1, y2 ∈ Y and k, l ∈ K. For any
x1, x2 ∈ X, let y1 = f (x1), y2 = f (x2). Since f is injective and linear, it follows that

f→L (λ)( f (x1)) =
∨

f (x)= f (x1)

λ(x) = λ(x1),

f→L (λ)( f (x2)) =
∨

f (x)= f (x2)

λ(x) = λ(x2) and

f→L (λ)(ky1 + ly2)) =
∨

f (x)= f (kx1+lx2)

λ(x) = λ(kx1 + lx2).
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Hence

λ(x1) ∧ λ(x2) ∧ a = f→L (λ)( f (x1)) ∧ f→L (λ)( f (x2)) ∧ a
⩽ f→L (λ)(k f (x1) + l f (x2))
= λ(kx1 + lx2).

Then it follows from Lemma 3.4 that a ⩽ DX(λ). We obtain DY

(
f→L (λ)

)
⩽ DX(λ) by the arbitrariness of

a.

Definition 4.9. ([23]) Let (X,C) and (Y,D) be (L,M)-fuzzy convex spaces. A mapping f : X −→ Y is called
an (L,M)-fuzzy isomorphism provided f is bijective, (L,M)-fuzzy convexity preserving and (L,M)-fuzzy
convex-to-convex.

An (L,L)-fuzzy isomorphism is called an L-fuzzy isomorphism for short.
An (L, 2)-fuzzy isomorphism is exactly an L-isomorphism [13].

According to Theorems 4.4 and 4.7, we have the following theorem.

Theorem 4.10. Let X and Y be two vector spaces over K and DX and DY be the L-fuzzy convexities induced by
L-fuzzy subspace degrees on X and Y, respectively. If f : X −→ Y is a bijective and linear mapping between vector
spaces, then f : (X,DX) −→ (Y,DY) is an L-fuzzy isomorphism.

5. Conclusions

In this paper, the concept of degree to which an L-subset of a vector space is an L-fuzzy subspace was
proposed. Then an L-fuzzy convexity on a vector space is naturally constructed and some properties of this
kind of L-fuzzy convexity are studied.

It is worth noting that the same thought can be applied to different algebraic systems such as groups,
rings, fields and so on. Thus L-fuzzy convexities can be induced by different algebraic systems. The above
facts will be useful to help further investigations.
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