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Abstract. LetB be a base for a nowhere locally compact Tychonoff space X and let bX be a compactification
of X. Then the following two statements hold:

(1) The remainder bX \ X of X is pseudocompact if and only if for any countable infinite subfamilyV
of B there exists an accumulation point of the familyV in bX \ X.

(2) If for any countable infinite subfamilyV of B the set of all accumulation points of the familyV in
X is not a nonempty compact set of X, then bX \ X is pseudocompact.

Let X =
∏

i∈I Xi be a product space and S be a subset of X satisfying the following condition:
(∗) For each nonempty countable set J ⊂ I, the projection pJ : X →

∏
i∈J Xi satisfies that pJ(S) = XJ :=∏

i∈J Xi.
If B is the canonical base for X andVS = {Bi ∩ S : i ∈ ω} is a countable infinite subfamily of BS = {B∩ S :

B ∈ B} such that the set F of all accumulation points of the familyVS in S is nonempty, then for any a ∈ F
there exists a countable subset J of I such that p−1

J (pJ(a))∩ S = p−1
J (pJ(a))∩ F and for any α ∈ I \ J, pα(F) = Xα.

By the above conclusions, we can get two known results in [8]. We finally show that if X =
∏

i∈I Xi is a
product of a family {Xi : i ∈ I} of Tychonoff spaces such that uncountably many of them are non-compact and
Y is a dense subspace of X, then for every compactification bY of Y the remainder bY \Y is pseudocompact.

1. Introduction

A topological space X is called pseudocompact if X is a Tychonoff space and every continuous real-valued
function defined on X is bounded [6]. Recall that a point x of a space X is an accumulation point of a familyV
of subsets of X if every open neighborhood Vx of x meets infinite elements ofV. A subset A of a space X is
said to be bounded in X if every infinite family ξ of open subsets of X such that V ∩ A , ∅, for every V ∈ ξ,
has an accumulation point in X [4]. So a Tychonoff space X is pseudocompact if X is bounded in itself.

A compactification of a space X is any compact space bX containing X as a subspace such that X is dense
in bX. In this note, a compactification of a Tychonoff space is a Hausdorff compactification. A remainder of
a space X is the subspace bX \ X of a compactification bX of X.

Recall that a paratopological group is a group with a topology such that the multiplication on the group is
jointly continuous. A topological group G is a paratopological group such that the inverse mapping of G into
itself associating x−1 with x ∈ G is continuous [5]. Recall that a space X is of countable type if every compact
subspace B of X is contained in a compact subspace F ⊂ X that has a countable base of open neighborhoods
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in X [1]. All metrizable spaces and locally compact spaces are of countable type. In [7], M. Henriksen and
J.R. Isbell proved that a Tychonoff space X is of countable type if and only if the remainder in any (or in
some) Hausdorff compactification of X is Lindelöf. In [2], it was proved that each remainder of a topological
group G is Lindelöf, or each remainder of G is pseudocompact. In [3], Arhangel’skii and Bella investigated,
when a topological group G is pseudocompact at infinity, that is, when bG \ G is pseudocompact, for each
compactification bG of G. Let X =

∏
i∈I Xi be a product space such that uncountably many of the factors

Xi are non-compact. Also, let S be a subspace of X such that pJ(S) = XJ for each countable set J ⊂ I, where
pJ : X → XJ :=

∏
i∈J Xi is the projection. If bS is a compactification of S, then the remainder bS \ S of S is

pseudocompact ([8], Theorem 2.4).
In this note, we also study when a remainder of Tychonoff space is pseudocompact. Recall that a subset

U of a space X is a regular open if U = U
◦

. We first discuss some properties of regular open subsets of a
space. We mainly get the following conclusions. Let B be a base for a nowhere locally compact Tychonoff
space X and let bX be a compactification of X. Then the following two statements hold:

(1) The remainder bX \ X of X is pseudocompact if and only if for any countable infinite subfamilyV of
B there exists an accumulation point of the familyV in bX \ X.

(2) If for any countable infinite subfamilyV of B the set of all accumulation points of the familyV in X
is not a nonempty compact set of X, then bX \ X is pseudocompact.

Let X =
∏

i∈I Xi be a product space and S be a subset of X satisfying the following condition: (∗) For each
nonempty countable set J ⊂ I, the projection pJ : X→

∏
i∈J Xi satisfies that pJ(S) = XJ :=

∏
i∈J Xi.

IfB is the canonical base for X andVS = {Bi∩S : i ∈ ω} is a countable infinite subfamily ofBS = {B∩S : B ∈ B}
such that the set F of all accumulation points of the family VS in S is nonempty, then for any a ∈ F there
exists a countable subset J of I such that p−1

J (pJ(a)) ∩ S = p−1
J (pJ(a)) ∩ F and for any α ∈ I \ J, pα(F) = Xα. By

the above conclusions, we can get two known results in [8]. We finally show that if X =
∏

i∈I Xi is a product
space of a family {Xi : i ∈ I} of Tychonoff spaces such that uncountably many of them are non-compact and
Y is a dense subspace of X, then for every compactification bY of Y the remainder bY \Y is pseudocompact.

The set of all positive integers is denoted byN and ω isN ∪ {0}. Let Z be the set of integers. Let R be
the set of all reals with the natural topology. In notation and terminology we will follow [6]. Let X be a
topological space and let Y be a dense subspace of X and A ⊂ Y. Then the closure of A in the subspace Y of

X is denoted by A
(Y)

and the interior of the set A in the subspace Y of X is denoted by IntYA. The closure of
a subset A of a space X is denoted by A and the interior of the set A in X is denoted by A◦.

2. Main results

Lemma 2.1. Let Y be a Tychonoff topological space. Then Y is not pseudocompact if and only if there exists an infinite
locally finite familyV of nonempty regular open subsets of Y.

Proof. Suppose that Y is not pseudocompact. Then there exists a continuous function f : Y → R such
that f is not bounded. For each y ∈ Y, there exists some n ∈ Z such that f (y) ∈ (n,n + 2). Since f is
not bounded, the set Λ = {n ∈ Z : f (Y) ∩ (n,n + 2) , ∅} is infinite. For each n ∈ Λ, f−1((n,n + 2)) is a
nonempty open subset of X and f ( f−1((n,n + 2))

◦

) ⊂ (n,n + 2) = [n,n + 2]. Since f is not bounded, we have
|{ f−1((n,n + 2))

◦

: n ∈ Λ}| = ω. So there exists an infinite subfamily V ⊂ { f−1((n,n + 2))
◦

: n ∈ Λ} such that
V is a family of pairwise distinct sets. For each y ∈ Y, the set {n ∈ Λ : ( f (y) − 1, f (y) + 1) ∩ [n,n + 2] , ∅} is
finite. Since the mapping f is continuous, the set Oy = f−1( f (y) − 1, f (y) + 1) is an open neighborhood of
the point y in Y and |{V ∈ V : Oy ∩ V , ∅}| < ω. So V is a locally finite family of nonempty regular open
subsets of X such that |V| = ω.

For the converse, it follows from ([6], Theorem 3.10.22).

Lemma 2.2. Let X be a topological space and let Y be a dense subspace of X. If U and V are regular open subsets of
X, then U = V if and only if U ∩ Y = V ∩ Y.
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Proof. Assume that U and V are regular open subsets of X and U ∩ Y = V ∩ Y. Thus U ∩ Y = V ∩ Y. Since
U and V are open in X and Y is dense in X, U ∩ Y = U and V ∩ Y = V. Thus U = V. Since U and V are
regular open subsets of X, U = U

◦

and V = V
◦

. Thus U = V.
For the converse, it is obvious that U ∩ Y = V ∩ Y if U = V.

Lemma 2.3. Let X be a topological space and let Y be a dense subspace of X. If U ⊂ Y is a regular open subset of the
subspace Y of X, then U

◦

is a regular open subset of X such that U = U
◦

∩ Y and U
◦

= V
◦

whenever V is an open
subset of X such that V ∩ Y = U.

Proof. Since U is a regular open subset of Y, U = IntYU
(Y)

. Since U is open in Y, there exists an open subset

V of X such that V ∩ Y = U. Since Y is dense in X, U = V. Thus U
◦

= V
◦

. Since U
(Y)
= U ∩ Y = V ∩ Y, the

set U = V ∩ Y ⊂ V
◦

∩ Y = U
◦

∩ Y ⊂ U ∩ Y = U
(Y)

. Since U = IntYU
(Y)

, we have U = U
◦

∩ Y. By the above
proof, we also know that U

◦

= V
◦

whenever V is an open subset of X such that V ∩ Y = U. Thus U
◦

is a
regular open subset of X and U = U

◦

∩ Y.

Lemma 2.4. Let X be a topological space and let Y be a dense subset of X such that X \Y is a regular dense subspace
of X. If U = {Un : n ∈ ω} is a family of regular open subsets of Y such that U is point-finite in Y and Un , Um

whenever n , m, then {Un
◦

: n ∈ ω} is a family of pairwise distinct regular open subsets of X such that the following
properties hold:

(1) {Un
◦

∩ (X \ Y) : n ∈ ω} is a family of pairwise distinct sets;
(2) Every family {On : n ∈ ω} of open subsets of X \ Y satisfying On ⊂ Un

◦

for each n ∈ ω is infinite, and for each
m ∈ ω the set {n ∈ ω : Om ⊂ Un

◦

} is finite.

Proof. Since Y = X and Un is a regular open subset of Y for each n ∈ ω, it follows from Lemma 2.3 that Un
◦

is a regular open subset of X and Un
◦

∩ Y = Un for each n ∈ ω. Since Un
◦

∩ Y = Un for each n ∈ ω and
Un , Um whenever n , m, we have Un

◦

, Um
◦

whenever n , m. So {Un
◦

: n ∈ ω} is a family of pairwise
distinct regular open subsets of X. Since X \ Y is dense in X, by Lemma 2.2 Un

◦

∩ (X \ Y) , Um
◦

∩ (X \ Y)
whenever n , m. So {Un

◦

∩ (X \ Y) : n ∈ ω} is a family of pairwise distinct open subsets of X \ Y.
Now we assume that On is an open subset of X \ Y such that On ⊂ Un

◦

for each n ∈ ω. Suppose
{On : n ∈ ω} is finite. Then there exists some m ∈ ω such that A = {n ∈ ω : Om ⊂ Un

◦

} is infinite.
Since X \Y is a regular dense subspace of X and Om is a nonempty open subset of the subspace X \Y of

X, there exists an nonempty open (in X \ Y) subset W such that W ⊂ W
(X\Y)

⊂ Om. Thus Int(X\Y)W
(X\Y)

is a

regular open subset of the subspace X \ Y of X. If V = Int(X\Y)W
(X\Y)

, then V ⊂ Un
◦

for each n ∈ A. The set
X \Y is dense in X and V is a regular open subset of the subspace X \Y of X. By Lemma 2.3, V

◦

is a regular
open subset of X. So V

◦

⊂ Un
◦

for each n ∈ A. Since Y is dense in X, the set V
◦

∩ Y , ∅.
Take a point z ∈ V

◦

∩ Y. Then z ∈ Un
◦

∩ Y = Un for each n ∈ A. This contradicts that {Un : n ∈ ω} is
point-finite. Thus {On : n ∈ ω} is infinite.

By the above proof, we know that {n ∈ ω : Om ⊂ Un
◦

} is finite for each m.

Theorem 2.5. Let X be a nowhere locally compact Tychonoff space with a base B and let bX be a compactification of
X and Y = bX \X. If Y is not pseudocompact, then there exists a countable infinite familyV ⊂ B such that the set F
of accumulation points of the familyV in bX is a nonempty compact subset of X.

Proof. Assume that Y is not pseudocompact. Then by Lemma 2.1 Y contains an infinite family U = {Un :
n ∈ ω} of nonempty regular open subsets of Y such thatU is locally finite in Y. We can assume that Un , Um
whenever n , m. Since X and Y are both dense in bX andU is point-finite in Y, the conditions of Lemma

2.4 are satisfied. So it follows from Lemma 2.4 that {IntbXUn
(bX)

: n ∈ ω} is an infinite family of pairwise
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distinct regular open subsets of bX. For each n ∈ ω, the set (IntbXUn
(bX)

) ∩ X is a nonempty open subset of

X. Since B is a base of X, there exists a family {Bn : n ∈ ω} ⊂ B such that Bn , ∅ and Bn ⊂ (IntbXUn
(bX)

) ∩ X
for each n ∈ ω. By Lemma 2.4, the family {Bn : n ∈ ω} is infinite. Thus there exists an infinite subfamily
V ⊂ {Bn : n ∈ ω} such thatV is a family of pairwise distinct sets.

For each n ∈ ω, we let Vn = IntbXUn
(bX)

. Then by Lemma 2.3 Vn is a regular open subset of bX and

Vn ∩ Y = Un for each n ∈ ω. Since Y = bX, we have Vn
(bX)
= Un

(bX)
for each n ∈ ω. Let E = {x ∈ bX : x is

an accumulation point of the family {Vn : n ∈ ω} in bX}. Then E is equal to {x ∈ bX : x is an accumulation
point of the family {Un : n ∈ ω} in bX}. Since {Un : n ∈ ω} is locally finite in Y, the set E is contained in X.
By Lemma 2.4, we know that for each O ∈ V, the set {n ∈ ω : O ⊂ Vn ∩ X} is finite. Thus if a point y ∈ bX
is an accumulation point of the familyV in bX, then y is an accumulation point of the family {Vn : n ∈ ω}.
Denote M = {x ∈ bX : x is an accumulation point of the family V in bX}. Thus M ⊂ E ⊂ X. Since |V| = ω
and bX is compact, M , ∅.

In fact, we have the following result.

Theorem 2.6. Let X be a nowhere locally compact Tychonoff topological space and let bX be a compactification of
X. Let {Un : n ∈ ω} be any locally finite family of nonempty open subsets of bX \ X such that Un , Um whenever
n , m. If Wn is an open subset of bX such that Wn ∩ (bX \X) = Un and Vn is a nonempty open subset of X such that
Vn ⊂Wn ∩ X for each n ∈ ω, thenV = {Vn : n ∈ ω} is infinite and the set F of accumulation points of the familyV
in bX is nonempty and is contained in X.

Proof. Suppose that |{Vn : n ∈ ω}| < ω. Then there exists some m ∈ ω such that |{n ∈ ω : Vn = Vm}| = ω. Let
Vm = O and {n ∈ ω : Vn = O} = {ki : i ∈ ω} such that ki , k j whenever i , j. Then Vki = O ⊂ Wki for each
i ∈ ω. Since O is an open subset of X, there exists an open subset O∗ of bX such that O∗ ∩ X = O. Since
bX \ X = bX, we have O∗ ∩ (bX \ X) , ∅.

Let z be any point of O∗ ∩ (bX \X) and let Mz be any open subset of bX \X such that z ∈Mz. Then there
exists an open subset M∗

z of bX such that M∗
z ∩ (bX \X) =Mz. Thus M∗

z ∩O∗ is an open neighborhood of the
point z in bX. Since X = bX and O∗ ∩ X = O, the set O is dense in O∗. Thus (M∗

z ∩O∗) ∩O , ∅. Let p be any
point of (M∗

z ∩ O∗) ∩ O. Then p ∈ O and M∗
z ∩ O∗ is an open neighborhood of the point p in bX. For each

i ∈ ω, O ⊂Wki and Wki ∩ (bX \X) = Uki . Thus Uki is dense in Wki for each i ∈ ω. So M∗
z ∩O∗ ∩Uki , ∅ for each

i ∈ ω. Since Uki ⊂ bX \X for each i ∈ ω, the set M∗
z ∩O∗ ∩Uki =Mz ∩O∗ ∩Uki , ∅. Thus Mz ∩Uki , ∅ for each

i ∈ ω. This contradicts with that {Un : n ∈ ω} is locally finite in bX \ X. Thus the familyV = {Vn : n ∈ ω} is
infinite. SinceV is infinite, the set F of accumulation points of the familyV in bX is nonempty.

By the proof above, we know that for each n ∈ ω the set {m ∈ ω : Vn ⊂ Wm} is finite. Then the set
F ⊂ {x ∈ bX : x is an accumulation point of the family {Wn : n ∈ ω}} is a nonempty subset of X.

Lemma 2.7. If Y is a dense subset of a space X and U is a regular open subset of X, then U
◦

∩Y = U∩Y is a regular
open subset of Y.

Proof. Since U is a regular open subset of X, we have U
◦

= U. Thus U
◦

∩Y = U∩Y. For any x ∈ IntY(U ∩ Y
(Y)

),

there exists an open subset Ox of the subspace Y of X such that x ∈ Ox ⊂ U ∩ Y
(Y)

. Since Y is a dense subspace

of X, we have U ∩ Y
(Y)
⊂ U ∩ Y = U. Then x ∈ Ox ⊂ U. Thus, there exists an open subset Wx of X such

that Wx ∩ Y = Ox. Since Y is dense in X, we have Wx = Ox. Thus x ∈ Wx ⊂ Wx ⊂ U. So x ∈ U
◦

. Thus
IntY(U ∩ Y

(Y)
) ⊂ U

◦

∩ Y = U ∩ Y. It is obvious that U ∩ Y ⊂ IntY(U ∩ Y
(Y)

). Thus IntY(U ∩ Y
(Y)

) = U ∩ Y.
Then U ∩ Y is a regular open subset of Y.

Lemma 2.8. Let Y1 and Y2 be dense subsets of a space X. If U and V are regular open subsets of Y1 and U , V, then
U
◦

∩ Y2 and V
◦

∩ Y2 are regular open subsets of Y2 and the two sets U
◦

∩ Y2 and V
◦

∩ Y2 are distinct.
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Proof. Since U and V are regular open subsets of Y1 and Y1 = X, it follows from Lemma 2.3 that U
◦

and V
◦

are regular open subsets of X. Thus, by Lemma 2.7 the sets U
◦

∩ Y2 and V
◦

∩ Y2 are regular open subsets
of Y2.

By Lemma 2.3, we have U = U
◦

∩ Y1 and V = V
◦

∩ Y1. Since U , V, we have U
◦

, V
◦

. Since U
◦

and V
◦

are two distinct regular open subsets of X, it follows from Lemma 2.2 that the two sets U
◦

∩Y2 and V
◦

∩Y2
are distinct.

Theorem 2.9. Let X be a nowhere locally compact Tychonoff space and letB be a base for X. If bX is a compactification
of X, then bX\X is pseudocompact if and only if for any countable infinite subfamilyV ofB there exists an accumulation
point of the familyV in bX \ X.

Proof. (⇒) Assume that bX \ X is pseudocompact. Let V ⊂ B be any countable infinite subfamily of
B. Without loss of generality, we assume that V = {Vn : n ∈ ω} and Vn , Vm whenever n,m ∈ ω and
n , m. Since X is regular, for every n ∈ ω there exists a nonempty regular open subset Un of X such
that Un ⊂ Un ⊂ Vn. If |{Un : n ∈ ω}| < ω, then there exists k ∈ ω such that |{m ∈ ω : Um = Uk}| = ω. If
z ∈ Int(bX)Uk

(bX)
∩ (bX \ X), then z is an accumulation point of the family V in bX. Now we assume that

for every k ∈ ω, the set {m ∈ ω : Um = Uk} is finite. Without loss of generality, we assume that Un , Um
whenever n , m.

It follows from Lemma 2.8 that {Int(bX)Un
(bX)
∩ (bX \ X) : n ∈ ω} is a family of regular open subsets of

bX \X and Int(bX)Un
(bX)
∩ (bX \X) , Int(bX)Um

(bX)
∩ (bX \X) whenever n , m. Since bX \X is pseudocompact,

the family {Int(bX)Un
(bX)
∩ (bX \ X) : n ∈ ω} has an accumulation point z in bX \ X. Then the point z is an

accumulation point of the family {Int(bX)Un
(bX)

: n ∈ ω}. By Lemma 2.3, we have Un = Int(bX)Un
(bX)
∩ X for

every n ∈ ω. Thus the point z is an accumulation point of the familyV.
(⇐) It follows from Theorem 2.5 that the remainder bX \ X of X is pseudocompact.

Recall that a π-base of a space X at a subset F of X is a family V of nonempty open subsets of X such
that every open neighborhood of F contains at least one element of V. A strong π-base of a space X at a
subset F of X is an infinite familyV of nonempty open subsets of X such that every open neighborhood of
F contains all but finitely many elements ofV ([2], p. 120).

Lemma 2.10. ([2], Lemma 2.1) Suppose that X is a nowhere locally compact Tychonoff space, and bX is a compact-
ification of X. Then the following two conditions are equivalent:

(1) The remainder Y = bX \ X is not pseudocompact;
(2) There exists a nonempty compact subspace F of X which has a strong countable π-base in X.

Lemma 2.11. Let X be a regular space and B be a base for X. Then the following two conditions are equivalent:

(1) There exists a countable infinite subfamily V = {Vn : n ∈ ω} ⊂ B such that the set F = {x ∈ X : x is
an accumulation point of the family V in X} is a nonempty compact subset of X and any infinite family
{Wn : n ∈ ω} of open subsets of X, with Wn ⊂ Vn for every n ∈ ω, has an accumulation point in X.

(2) There exists a nonempty compact subspace F of X which has a strong countable π-baseV′ ⊂ B.

Proof. (1)⇒ (2) Assume that there exists a countable infinite subfamilyV = {Vn : n ∈ ω} ⊂ B such that the
set F = {x ∈ X : x is an accumulation point of the family V in X} is a nonempty compact subset of X and
any infinite family {Wn : n ∈ ω} of open subsets of X, with Wn ⊂ Vn for every n ∈ ω, has an accumulation
point in X

Claim. The familyV is a strong countable π-base at the compact subset F of X.
Proof of Claim. Take any open neighborhood O of the set F in X. Since X is regular and F is compact,

there exists an open set W of X such that F ⊂W ⊂ O. Suppose |{V ∈ V : V \W , ∅}| = ω.
Case 1 |{V \W : V ∈ V,V \W , ∅}| = ω.
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Then the family {V \W : V ∈ V,V \W , ∅} has an accumulation point y in X. Then y ∈ F. On the other
hand, V \W ⊂ X \W for every V ∈ V. Then the point y <W. This contradicts with F ⊂W.

Case 2 |{V \W : V ∈ V,V \W , ∅}| < ω.
Since |{V ∈ V : V \ W , ∅}| = ω, there exists a countable infinite subfamily V1 ⊂ V such that

|{V ∈ V1 : V \W , ∅}| = ω and |{V \W : V ∈ V1}| = 1. For any V ∈ V1, take a point x ∈ V \W. Then
x ∈
⋂
V1. Thus the point x is an accumulation point of the familyV1 in bX. Then x ∈ F. A contradiction.

Thus there exists a nonempty compact subspace F of X which has a strong countable π-baseV′ ⊂ B.
(2)⇒ (1) LetV′ ⊂ B be a strong countable π-base at a nonempty compact subspace F of X.
Case 1 If {V ∈ V′ : V ⊂ F} is infinite, then there exists a countable infinite subfamily V = {Vn : n ∈

ω} ⊂ {V ∈ V′ : V ⊂ F} such that Vn , Vm whenever n , m. Since F is compact, the set A = {x ∈ X : x is an
accumulation point of the familyV} is a nonempty closed subset of F. Then A is compact. It is obvious that
for any infinite family {Wn : n ∈ ω} of open subsets of X with Wn ⊂ Vn for every n ∈ ω has an accumulation
point in X.

Case 2 Now we assume that {V ∈ V′ : V \ F , ∅} is infinite. Without loss of generality, we assume that
V \ F , ∅ for every V ∈ V′. For every V ∈ V′, there exists a nonempty set OV ∈ B such that OV ⊂ V and
OV∩F = ∅. SinceV′ is a strong countable π-base at F and OV∩F = ∅ for every V ∈ V′, the set {OV : V ∈ V′}
is infinite. Thus there exists a subfamily {Vn : n ∈ ω} ⊂ V′ such that OVn , OVm whenever n , m. Then
V = {OVn : n ∈ ω} is also a strong countable π-base at F. Since F is compact and V = {OVn : n ∈ ω} is a
strong countable π-base at F, the set A of accumulation points of the familyV in X is a nonempty compact
subset of X.

LetW = {Wn : n ∈ ω} be any infinite family of open subsets of X with Wn ⊂ OVn for every n ∈ ω. Since
V = {OVn : n ∈ ω} is a strong countable π-base at the compact set F and Wn ⊂ OVn for every n ∈ ω, there
exists an accumulation point y ∈ F of the familyW in X. Thus (1) holds.

Theorem 2.12. Let X be a nowhere locally compact Tychonoff space and let B be a base for X. Then for any
compactification bX of X, the following two conditions are equivalent:

(1) The remainder Y = bX \ X is not pseudocompact;
(2) There exists a nonempty compact subspace F of X which has a strong countable π-base γ ⊂ B.

Proof. (2)⇒ (1) Suppose that there exists a nonempty compact subspace F of X which has a strong countable
π-base γ ⊂ B. Then by Lemma 2.10, bX \ X is not pseudocompact.

(1) ⇒ (2) Now we prove the converse. Suppose that bX \ X is not pseudocompact. By Theorem 2.9,
there exists a countable infinite subfamily V ⊂ B such that V has no accumulation points in bX \ X. We
can assume thatV = {Vn : n ∈ ω} is such that Vn , Vm whenever n , m.

Let F1 = {x ∈ bX : x is an accumulation point of the family V in bX}. Then F1 is a nonempty closed
compact subset of bX. Since the family V has no accumulation points in bX \ X, the set F1 ⊂ X. Let
W = {Wn : n ∈ ω} by any infinite family of open subsets of X with Wn ⊂ Vn for every n ∈ ω. Then the
familyW has an accumulation point in bX. Then the set A of accumulation points of the familyW in bX
is a nonempty subset of F1. Thus A is contained in X. Then the familyW has an accumulation point in
X. By Lemma 2.11, there exists a nonempty compact subspace F of X which has a strong countable π-base
γ ⊂ B.

Theorem 2.13. LetB be a base for a nowhere locally compact Tychonoff space X and bX be a compactification of X. If
for any countable infinite subfamilyV of B the set of all accumulation points of the familyV in X is not a nonempty
compact set, then bX \ X is pseudocompact.

Proof. Suppose that bX\X is not pseudocompact. By Theorem 2.5, there exists a countable infinite subfamily
V of B such that the set A of all accumulation points of the familyV in bX is nonempty and contained in
X. Since the set A is closed in bX, the set A is compact. Since A ⊂ X, the set A is equal to {x ∈ X : x is an
accumulation point of the familyV in X} and A is compact. A contradiction.
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Theorem 2.14. Let X =
∏

i∈I Xi be a product space and S be a subset of X satisfying the following condition:
(∗) For each nonempty countable set J ⊂ I, the projection pJ : X→

∏
i∈J Xi satisfies that pJ(S) = XJ :=

∏
i∈J Xi.

If B is the canonical base for X andVS = {Bi ∩ S : i ∈ ω} is a countable infinite subfamily of BS = {B ∩ S : B ∈ B}
such that the set F of all accumulation points of the family VS in S is nonempty, then for any a ∈ F there exists a
countable subset J of I such that p−1

J (pJ(a)) ∩ S = p−1
J (pJ(a)) ∩ F and for any α ∈ I \ J, pα(F) = Xα.

Proof. Let B be the canonical base for X and let BS = {B ∩ S : B ∈ B}. Then BS is a base for S. Let
VS = {Bi ∩ S : i ∈ ω} be a countable infinite subfamily of BS such that the set F of all accumulation points of
the familyVS in S is nonempty.

For every i ∈ ω, let Bi =
⋂
α∈Ai

p−1
α (Uα) for some finite subset Ai of I and Uα is open in Xα for each α ∈ Ai.

If J =
⋃
{Ai : i ∈ ω}, then |J| ≤ ω and J ⊂ I.

Since F , ∅, we take a ∈ F. Let aJ = pJ(a) and let b be any element of p−1
J (aJ) ∩ S. In what follows,

we show that b ∈ F. Let Ob be any open neighborhood of the point b in X and Ob ∈ B. Assume that
Ob =

⋂
k≤n p−1

αk
(Oαk ), where n ∈ N, αk ∈ I and Oαk is open in Xαk for each k ≤ n. We can assume that n > 1,

{α1, ..., αi} ⊂ J for some 1 ≤ i < n and {αi+1, ..., αn} ⊂ I \ J. If C =
⋂

k≤i p−1
αk

(Oαk ), then the set C is an open
neighborhood of the point a in X.

Since a ∈ F, we have |{m ∈ ω : C∩Bm ∩ S , ∅}| = ω. If m ∈ ω and C∩Bm ∩ S , ∅, then let ym ∈ C∩Bm ∩ S.
For any i + 1 ≤ k ≤ n, we let yαk ∈ Oαk . Since J ∪ {αi+1, ..., αn} ⊂ I is countable, there exists xm ∈ S
such that pJ(xm) = pJ(ym) and pαi+t (xm) = yαi+t for each t ∈ {1, ...,n − i}. Then xm ∈ Ob ∩ Bm ∩ S. Then
|{m ∈ ω : Ob ∩ Bm ∩ S , ∅}| = ω. Thus b ∈ F ∩ S = F. Then we have proved p−1

J (aJ) ∩ S ⊂ p−1
J (aJ) ∩ F. Since

F ⊂ S, we have p−1
J (aJ) ∩ F ⊂ p−1

J (aJ) ∩ S. Thus p−1
J (aJ) ∩ S = p−1

J (aJ) ∩ F.
Now we prove the last part of this result. Let α ∈ I \ J, then {α} ∪ J = J1 ⊂ I is countable. If xα ∈ Xα, then

there exists y ∈ S such that pJ(y) = pJ(a) and pα(y) = xα. Then y ∈ S ∩ p−1
J (pJ(a)).

Since p−1
J (pJ(a)) ∩ S = p−1

J (pJ(a)) ∩ F, the point y ∈ F. Thus xα ∈ pα(F). Hence pα(F) = Xα for each
α ∈ I \ J.

Proposition 2.15. Let Xi be a Tychonoff space for each i ∈ I and X =
∏

i∈I Xi be a product space. Let S be a subset of
X satisfying the following conditions:

(1) pJ(S) = XJ :=
∏

i∈J Xi for each nonempty countable subset J ⊂ I;
(2) for each nonempty countable subset J ⊂ I and each y ∈ XJ, the intersection p−1

J (y) ∩ S is not compact.

Then for the canonical base B for X and for any infinite family VS of BS = {B ∩ S : B ∈ B}, the set F of all
accumulation points of the familyVS in S is not a nonempty compact set.

Proof. Suppose that there exists a countable infinite subfamilyVS = {Bi ∩ S : i ∈ ω} of BS such that the set F
of all accumulation points of the family VS in S is a nonempty compact subset of S. Then it follows from
Theorem 2.14 that for any a ∈ F there exists a countable subset J of I such that p−1

J (pJ(a))∩ S = p−1
J (pJ(a))∩ F.

Since the set p−1
J (pJ(a)) ∩ F is a closed subset of F and F is compact, the set p−1

J (pJ(a)) ∩ F is compact. Then
p−1

J (pJ(a)) ∩ S is compact. A contradiction.

Proposition 2.16. ([8], Corollary 2.7) Let Xi be a Tychonoff space for each i ∈ I. Let X =
∏

i∈I Xi be a product space
and S be a subset of X satisfying the following conditions:

(1) pJ(S) = XJ :=
∏

i∈J Xi, for each nonempty countable subset J ⊂ I;
(2) for each nonempty countable subset J ⊂ I and each y ∈ XJ, the intersection p−1

J (y) ∩ S is not compact.

If bS is a compactification of S, then the remainder Y = bS \ S is pseudocompact.

Proof. It can be gotten by Theorem 2.13 and Proposition 2.15.

Theorem 2.17. ([8], Theorem 2.4) Let X =
∏

i∈I Xi be a product of Tychonoff spaces such that uncountably many
of the factors Xi are non-compact. Also, let S be a subspace of X such that pJ(S) = XJ for each countable set J ⊂ I,
where pJ : X → XJ =

∏
i∈J Xi is the projection. If bS is a compactification of S, then the remainder Y = bS \ S is

pseudocompact.
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Proof. It is obvious that the subspace S of X is dense in X and it is nowhere locally compact. Let B be the
canonical base for X and let BS = {B ∩ S : B ∈ B}. Then BS is a base for S. Suppose there exists a countable
infinite subfamilyVS = {Bi ∩ S : i ∈ ω} of BS such that the set F of all accumulation points of the familyVS
in S is a nonempty compact subset of S. Then by Theorem 2.14 there exists a countable subset J of I such
that for any α ∈ I \ J, pα(F) = Xα. Since the set F is compact and the mapping pJ |S is continuous, the space
Xα is compact for every α ∈ I \ J. A contradiction.

Thus for any infinite subfamily VS of BS = {B ∩ S : B ∈ B}, the set F of all accumulation points of
the family VS in S is not a nonempty compact set. Then it follows from Theorem 2.13 that bS \ S is
pseudocompact.

Corollary 2.18. ([8], Corollary 2.5) Let {Xi : i ∈ I} be a family of Tychonoff spaces such that uncountably many of
them are non-compact. If bX is a compactification of the product X =

∏
i∈I Xi, then the remainder Y = bX \ X is

pseudocompact.

Lemma 2.19. Let X be a regular space. If Y is a dense subspace of X and there exists a nonempty compact subspace
F of Y which has a strong countable π-base in Y, then the set F has a strong countable π-base in X.

Proof. Let V = {Vn : n ∈ ω} be a family of nonempty open subsets of Y such that V is a strong countable
π-base at a nonempty compact set F in Y.

For every n ∈ ω, there exists an open subset Un of X such that Un ∩ Y = Vn. Let O be any open
neighborhood of F in X. By regularity of X and compactness of F, there exists an open set W of X such that
F ⊂ W ⊂ W ⊂ O. Then there exists m ∈ ω such that Vn ⊂ W ∩ Y for every n ≥ m. Thus Vn ⊂ W ⊂ O for
every n ≥ m. Since Y = X and Un is open in X such that Un ∩ Y = Vn for every n ≥ m, we have Vn = Un.
Thus for every n ≥ m, Un ⊂ Un ⊂ O. Then {Un : n ∈ ω} is a strong countable π-base at F in X.

Theorem 2.20. Let X be a Tychonoff space and let Y be a dense subspace of X. If X is a nowhere locally compact
space such that for every compactification bX of X the remainder bX \ X of X is pseudocompact, then for every
compactification bY of Y the remainder bY \ Y of Y is pseudocompact.

Proof. Let bY be any compactification of Y. Since X is nowhere locally compact and Y is dense in X, the
subspace Y of X is nowhere locally compact. Then bY \ Y is dense in bY.

Suppose that the remainder bY \ Y is not pseudocompact. By Lemma 2.10, there exists a nonempty
compact subspace F of Y which has a strong countable π-base in Y. By Lemma 2.19, the set F has a strong
countable π-base in X. If bX is a compactification of X, then it follows from Lemma 2.10 that the remainder
bX \X of X is not pseudocompact. A contradiction. Thus the remainder bY \ Y of Y is pseudocompact.

By Corollary 2.18 and Theorem 2.20, we have the following result.

Theorem 2.21. Let {Xi : i ∈ I} be a family of Tychonoff spaces such that uncountably many of them are non-compact.
If X =

∏
i∈I Xi is a product space and Y is a dense subspace of X, then for every compactification bY of Y the remainder

bY \ Y is pseudocompact.

In ([8], Theorem 3.7), it was proved that if X is an uncountable space and G is a non-compact topological
group, then the remainder of Cp(X,G) in any Hausdorff compactification is pseudocompact.

We denote the family of continuous functions from X to Y by C(X,Y). The set with the topology inherited
from the product space YX (that is, the pointwise convergence topology) is denoted by Cp(X,Y). Every space
of the form Cp(X,Y) is assumed to be dense in YX ([8], p. 360). By Theorem 2.21, we have the following
result.

Theorem 2.22. Let Y be a non-compact Tychonoff space. If X is uncountable and Cp(X,Y) is dense in YX, then for
any compactification bCp(X,Y) of Cp(X,Y), the remainder bCp(X,Y) \ Cp(X,Y) is pseudocompact.

Proof. Since X is uncountable and Y is non-compact such that Cp(X,Y) is dense YX, by Theorem 2.21, for
any compactification bCp(X,Y) of Cp(X,Y), the remainder bCp(X,Y) \ Cp(X,Y) is pseudocompact.



L.-X. Peng, X.-Y. Hu / Filomat 38:20 (2024), 7091–7099 7099

Acknowledgement

The authors would like to thank the referee for his (or her) valuable remarks and suggestions which
greatly improved the paper.

References

[1] A. V. Arhangel’skii, A class of spaces containing all metric and all locally compact spaces, Mat. Sb. 67(109) (1965), 55–88 (in Russian);
English translation: Amer. Math. Soc. Transl. 92 (1970), 1–39.

[2] A. V. Arhangel’skii, Two types of remainders of topological groups, Comment. Math. Univ. Carolin. 49 (2008), 119–126.
[3] A. V. Arhangel’skii, A. Bella, On pseudocompactness of remainders of topological groups and some classes of mappings, Topology Appl.

111 (2001), 21–33.
[4] A. V. Arhangel’skii, D. K. Burke, Spaces with a regular Gδ-diagonal, Topology Appl. 153 (2006), 1917–1929.
[5] A. V. Arhangel’skii, M. Tkachenko, Topological Groups and Related Structures, Atlantis Stud. Math., Vol. 1, Atlantis Press/World

Scientific, Paris, Amsterdam, 2008.
[6] R. Engelking, General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed. 1989.
[7] M. Henriksen, J. R. Isbell, Some properties of compactifications, Duke Math. J. 25 (1958), 83–105.
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