Filomat 38:20 (2024), 7091–7099 https://doi.org/10.2298/FIL2420091P

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On pseudocompactness of remainders of certain spaces

Liang-Xue Penga,[∗] **, Xing-Yu Hu^a**

^aDepartment of Mathematics, School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing 100124, China

Abstract. Let B be a base for a nowhere locally compact Tychonoff space *X* and let *bX* be a compactification of *X*. Then the following two statements hold:

(1) The remainder $bX \setminus X$ of X is pseudocompact if and only if for any countable infinite subfamily $\mathcal V$ of \mathcal{B} there exists an accumulation point of the family \mathcal{V} in $bX \setminus X$.

(2) If for any countable infinite subfamily V of $\mathcal B$ the set of all accumulation points of the family V in *X* is not a nonempty compact set of *X*, then $bX \setminus X$ is pseudocompact.

Let $X = \prod_{i \in I} X_i$ be a product space and *S* be a subset of *X* satisfying the following condition:

(*) For each nonempty countable set *J* ⊂ *I*, the projection p_j : $\widetilde{X} \to \prod_{i \in J} X_i$ satisfies that $p_j(S) = X_j := \prod_{i \in J} X_i$. *ⁱ*∈*^J Xⁱ* .

If B is the canonical base for X and $\mathcal{V}_S = \{B_i \cap S : i \in \omega\}$ is a countable infinite subfamily of $\mathcal{B}_S = \{B \cap S : j \in \omega\}$ *B* ∈ *B*} such that the set *F* of all accumulation points of the family V_S in *S* is nonempty, then for any *a* ∈ *F* there exists a countable subset *J* of *I* such that $p_f^{-1}(p_J(a)) \cap S = p_f^{-1}(p_J(a)) \cap F$ and for any $\alpha \in I \setminus J$, $p_\alpha(F) = X_\alpha$.

By the above conclusions, we can get two known results in [8]. We finally show that if $X = \prod_{i \in I} X_i$ is a product of a family {*Xⁱ* : *i* ∈ *I*} of Tychonoff spaces such that uncountably many of them are non-compact and *Y* is a dense subspace of *X*, then for every compactification *bY* of *Y* the remainder *bY* \ *Y* is pseudocompact.

1. Introduction

A topological space *X* is called *pseudocompact* if *X* is a Tychonoff space and every continuous real-valued function defined on *X* is bounded [6]. Recall that a point *x* of a space *X* is an *accumulation point of a family* V of subsets of *X* if every open neighborhood V_x of *x* meets infinite elements of V . A subset *A* of a space *X* is said to be *bounded in* X if every infinite family ξ of open subsets of X such that $V \cap A \neq \emptyset$, for every $V \in \xi$, has an accumulation point in *X* [4]. So a Tychonoff space *X* is pseudocompact if *X* is bounded in itself.

A *compactification* of a space *X* is any compact space *bX* containing *X* as a subspace such that *X* is dense in *bX*. In this note, a compactification of a Tychonoff space is a Hausdorff compactification. A *remainder* of a space *X* is the subspace *bX* \ *X* of a compactification *bX* of *X*.

Recall that a *paratopological group* is a group with a topology such that the multiplication on the group is jointly continuous. A *topological group G* is a paratopological group such that the inverse mapping of *G* into itself associating *x* [−]¹ with *x* ∈ *G* is continuous [5]. Recall that a space *X* is of *countable type* if every compact subspace *B* of *X* is contained in a compact subspace $F \subset X$ that has a countable base of open neighborhoods

Keywords. Pseudocompact, remainder, regular open set, compactification.

Received: 27 October 2023; Revised: 28 January 2024; Accepted: 01 February 2024

Communicated by Ljubiša D. R. Kočinac

²⁰²⁰ *Mathematics Subject Classification*. Primary 54D40

Research supported by the National Natural Science Foundation of China (Grant No. 12171015).

^{*} Corresponding author: Liang-Xue Peng

Email addresses: pengliangxue@bjut.edu.cn (Liang-Xue Peng), 2021650586@qq.com (Xing-Yu Hu)

in *X* [1]. All metrizable spaces and locally compact spaces are of countable type. In [7], M. Henriksen and J.R. Isbell proved that a Tychonoff space *X* is of countable type if and only if the remainder in any (or in some) Hausdorff compactification of *X* is Lindelöf. In [2], it was proved that each remainder of a topological group *G* is Lindelöf, or each remainder of *G* is pseudocompact. In [3], Arhangel'skii and Bella investigated, when a topological group *G* is pseudocompact at infinity, that is, when $bG \setminus G$ is pseudocompact, for each compactification *bG* of *G*. Let $X = \prod_{i \in I} X_i$ be a product space such that uncountably many of the factors *X*^{*i*} are non-compact. Also, let *S* be a subspace of *X* such that $p_I(S) = X_I$ for each countable set $J \subset I$, where $p_j: X \to X_j := \prod_{i \in J} X_i$ is the projection. If *bS* is a compactification of *S*, then the remainder *bS* \ *S* of *S* is pseudocompact ([8], Theorem 2.4).

In this note, we also study when a remainder of Tychonoff space is pseudocompact. Recall that a subset ◦ *U* of a space *X* is a *regular open* if *U* = *U* . We first discuss some properties of regular open subsets of a space. We mainly get the following conclusions. Let $\mathcal B$ be a base for a nowhere locally compact Tychonoff space *X* and let *bX* be a compactification of *X*. Then the following two statements hold:

- (1) The remainder $bX \setminus X$ of *X* is pseudocompact if and only if for any countable infinite subfamily $\mathcal V$ of *B* there exists an accumulation point of the family V in $bX \setminus X$.
- (2) If for any countable infinite subfamily $\mathcal V$ of $\mathcal B$ the set of all accumulation points of the family $\mathcal V$ in X is not a nonempty compact set of X , then $bX \setminus X$ is pseudocompact.

Let $X = \prod_{i \in I} X_i$ be a product space and *S* be a subset of *X* satisfying the following condition: (*) For each nonempty countable set $J \subset I$, the projection $p_J : X \to \prod_{i \in J} X_i$ satisfies that $p_J(S) = X_J := \prod_{i \in J} X_i$. If B is the canonical base for X and $V_S = \{B_i \cap S : i \in \omega\}$ is a countable infinite subfamily of $B_S = \{B \cap S : B \in \mathcal{B}\}$ such that the set *F* of all accumulation points of the family V_S in *S* is nonempty, then for any $a \in F$ there exists a countable subset *J* of *I* such that $p_f^{-1}(p_f(a)) \cap S = p_f^{-1}(p_f(a)) \cap F$ and for any $\alpha \in I \setminus J$, $p_\alpha(F) = X_\alpha$. By the above conclusions, we can get two known results in [8]. We finally show that if $X = \prod_{i \in I} X_i$ is a product space of a family $\{X_i : i \in I\}$ of Tychonoff spaces such that uncountably many of them are non-compact and *Y* is a dense subspace of *X*, then for every compactification *bY* of *Y* the remainder *bY* \ *Y* is pseudocompact.

The set of all positive integers is denoted by N and ω is N ∪ {0}. Let $\mathbb Z$ be the set of integers. Let R be the set of all reals with the natural topology. In notation and terminology we will follow [6]. Let *X* be a topological space and let *Y* be a dense subspace of *X* and *A* ⊂ *Y*. Then the closure of *A* in the subspace *Y* of *X* is denoted by $\overline{A}^{(Y)}$ and the interior of the set *A* in the subspace *Y* of *X* is denoted by *Int*_{*Y*}*A*. The closure of a subset *A* of a space *X* is denoted by \overline{A} and the interior of the set *A* in *X* is denoted by A° .

2. Main results

Lemma 2.1. *Let Y be a Tychono*ff *topological space. Then Y is not pseudocompact if and only if there exists an infinite locally finite family* V *of nonempty regular open subsets of Y.*

Proof. Suppose that *Y* is not pseudocompact. Then there exists a continuous function $f : Y \to \mathbb{R}$ such that *f* is not bounded. For each $y \in Y$, there exists some $n \in \mathbb{Z}$ such that $f(y) \in (n, n + 2)$. Since *f* is not bounded, the set $\Lambda = \{n \in \mathbb{Z} : f(Y) \cap (n, n + 2) \neq \emptyset\}$ is infinite. For each $n \in \Lambda$, $f^{-1}((n, n + 2))$ is a nonempty open subset of *X* and $f(f^{-1}((n, n+2))$ $) \subset (n, n+2) = [n, n+2]$. Since *f* is not bounded, we have $|\{\overline{f^{-1}((n, n+2))} : n \in \Lambda\}| = \omega$. So there exists an infinite subfamily $\mathcal{V} \subset {\overline{f^{-1}((n, n+2))}} : n \in \Lambda\}$ such that V is a family of pairwise distinct sets. For each $y \in Y$, the set $\{n \in \Lambda : (f(y) - 1, f(y) + 1) \cap [n, n + 2] \neq \emptyset\}$ is finite. Since the mapping *f* is continuous, the set $O_y = f^{-1}(f(y) - 1, f(y) + 1)$ is an open neighborhood of the point *y* in *Y* and $|\{V \in \mathcal{V} : O_v \cap V \neq \emptyset\}| < \omega$. So *V* is a locally finite family of nonempty regular open subsets of *X* such that $|V| = \omega$.

For the converse, it follows from ([6], Theorem 3.10.22). \Box

Lemma 2.2. *Let X be a topological space and let Y be a dense subspace of X. If U and V are regular open subsets of X*, then $U = V$ if and only if $U \cap Y = V \cap Y$.

Proof. Assume that *U* and *V* are regular open subsets of *X* and *U* ∩ *Y* = *V* ∩ *Y*. Thus $\overline{U \cap Y} = \overline{V \cap Y}$. Since *U* and *V* are open in *X* and *Y* is dense in *X*, $\overline{U \cap Y} = \overline{U}$ and $\overline{V \cap Y} = \overline{V}$. Thus $\overline{U} = \overline{V}$. Since *U* and *V* are regular open subsets of *X*, $U = \overline{U}^{\circ}$ and $V = \overline{V}^{\circ}$. Thus $U = V$.

For the converse, it is obvious that $U \cap Y = V \cap Y$ if $U = V$.

Lemma 2.3. *Let X be a topological space and let Y be a dense subspace of X. If U* ⊂ *Y is a regular open subset of the subspace Y of X, then* \overline{U}° *is a regular open subset of X such that* $U = \overline{U}^{\circ} \cap Y$ *and* $\overline{U}^{\circ} = \overline{V}^{\circ}$ *whenever V is an open subset of X such that* $V \cap Y = U$.

Proof. Since *U* is a regular open subset of *Y*, $U = Int_Y \overline{U}^{(Y)}$. Since *U* is open in *Y*, there exists an open subset V of X such that $V \cap Y = U$. Since Y is dense in X, $\overline{U} = \overline{V}$. Thus $\overline{U}^{\circ} = \overline{V}^{\circ}$. Since $\overline{U}^{(Y)} = \overline{U} \cap Y = \overline{V} \cap Y$, the set $U = V \cap Y \subset \overline{V}^{\circ} \cap Y = \overline{U}^{\circ} \cap Y \subset \overline{U} \cap Y = \overline{U}^{(Y)}$. Since $U = Int_Y \overline{U}^{(Y)}$, we have $U = \overline{U}^{\circ} \cap Y$. By the above proof, we also know that $\overline{U}^{\circ} = \overline{V}^{\circ}$ whenever *V* is an open subset of *X* such that $V \cap Y = U$. Thus \overline{U}° is a regular open subset of *X* and $U = \overline{U}^{\circ} \cap Y$.

Lemma 2.4. *Let X be a topological space and let Y be a dense subset of X such that X* \ *Y is a regular dense subspace of X.* If $\mathcal{U} = \{U_n : n \in \omega\}$ *is a family of regular open subsets of Y such that* \mathcal{U} *is point-finite in Y and* $U_n \neq U_m$ *whenever* $n \neq m$, then $\{\overline{U_n}^\circ : n \in \omega\}$ *is a family of pairwise distinct regular open subsets of X such that the following properties hold:*

- *(1)* $\{\overline{U_n}^\circ \cap (X \setminus Y) : n \in \omega\}$ is a family of pairwise distinct sets;
- *(2) Every family* {*Oⁿ* : *n* ∈ ω} *of open subsets of X* \ *Y satisfying Oⁿ* ⊂ *Uⁿ for each n* ∈ ω *is infinite, and for each m* \in ω *the set* {*n* \in ω : $O_m \subset \overline{U_n}^{\circ}$ } *is finite.*

Proof. Since $\overline{Y} = X$ and U_n is a regular open subset of *Y* for each $n \in \omega$, it follows from Lemma 2.3 that $\overline{U_n}^{\circ}$ is a regular open subset of *X* and $\overline{U_n}^{\circ} \cap Y = U_n$ for each $n \in \omega$. Since $\overline{U_n}^{\circ} \cap Y = U_n$ for each $n \in \omega$ and $U_n \neq U_m$ whenever $n \neq m$, we have $\overline{U_n}^{\circ} \neq \overline{U_m}^{\circ}$ whenever $n \neq m$. So $\{\overline{U_n}^{\circ} : n \in \omega\}$ is a family of pairwise distinct regular open subsets of *X*. Since $X \setminus Y$ is dense in *X*, by Lemma 2.2 $\overline{U_n}^{\circ} \cap (X \setminus Y) \neq \overline{U_m}^{\circ} \cap (X \setminus Y)$ whenever $n \neq m$. So $\{\overline{U_n}^{\circ} \cap (X \setminus Y) : n \in \omega\}$ is a family of pairwise distinct open subsets of *X* \ *Y*.

Now we assume that O_n is an open subset of $X \setminus Y$ such that $O_n \subset \overline{U_n}^{\circ}$ for each $n \in \omega$. Suppose { O_n : $n \in \omega$ } is finite. Then there exists some $m \in \omega$ such that $A = \{n \in \omega : O_m \subset \overline{U_n}^{\circ}\}$ is infinite.

Since *X* \ *Y* is a regular dense subspace of *X* and O_m is a nonempty open subset of the subspace *X* \ *Y* of *X*, there exists an nonempty open (in *X* \ *Y*) subset *W* such that $W \subset \overline{W}^{(X\setminus Y)} \subset O_m$. Thus $Int_{(X\setminus Y)} \overline{W}^{(X\setminus Y)}$ is a regular open subset of the subspace $X \setminus Y$ of X . If $V = Int_{(X \setminus Y)} \overline{W}^{(X \setminus Y)}$, then $V \subset \overline{U_n}^{\circ}$ for each $n \in A$. The set $X \setminus Y$ is dense in X and V is a regular open subset of the subspace $X \setminus Y$ of X . By Lemma 2.3, \overline{V}° is a regular open subset of *X*. So $\overline{V}^{\circ} \subset \overline{U_n}^{\circ}$ for each $n \in A$. Since *Y* is dense in *X*, the set $\overline{V}^{\circ} \cap Y \neq \emptyset$.

Take a point $z \in \overline{V}^{\circ} \cap Y$. Then $z \in \overline{U_n}^{\circ} \cap Y = U_n$ for each $n \in A$. This contradicts that $\{U_n : n \in \omega\}$ is point-finite. Thus $\{O_n : n \in \omega\}$ is infinite.

By the above proof, we know that $\{n \in \omega : O_m \subset \overline{U_n}^{\circ}\}$ is finite for each *m*.

Theorem 2.5. *Let X be a nowhere locally compact Tychono*ff *space with a base* B *and let bX be a compactification of X* and $Y = bX \setminus X$. If Y is not pseudocompact, then there exists a countable infinite family $V \subset B$ such that the set F *of accumulation points of the family* V *in bX is a nonempty compact subset of X.*

Proof. Assume that *Y* is not pseudocompact. Then by Lemma 2.1 *Y* contains an infinite family $\mathcal{U} = \{U_n :$ $n \in \omega$ of nonempty regular open subsets of *Y* such that *U* is locally finite in *Y*. We can assume that $U_n \neq U_m$ whenever $n \neq m$. Since *X* and *Y* are both dense in *bX* and *U* is point-finite in *Y*, the conditions of Lemma 2.4 are satisfied. So it follows from Lemma 2.4 that $\{Int_{bx}\overline{U_n}^{(bX)} : n \in \omega\}$ is an infinite family of pairwise

distinct regular open subsets of bX . For each $n \in \omega$, the set $(Int_{bX}\overline{U_n}^{(bX)}) \cap X$ is a nonempty open subset of *X*. Since \mathcal{B} is a base of *X*, there exists a family $\{B_n : n \in \omega\} \subset \mathcal{B}$ such that $B_n \neq \emptyset$ and $B_n \subset (Int_{bX}\overline{U_n}^{(bX)}) \cap X$ for each $n \in \omega$. By Lemma 2.4, the family $\{\hat{B}_n : n \in \omega\}$ is infinite. Thus there exists an infinite subfamily $\mathcal{V} \subset \{B_n : n \in \omega\}$ such that $\mathcal V$ is a family of pairwise distinct sets.

For each $n \in \omega$, we let $V_n = Int_{bX} \overline{U_n}^{(bX)}$. Then by Lemma 2.3 V_n is a regular open subset of bX and $V_n \cap Y = U_n$ for each $n \in \omega$. Since $\overline{Y} = bX$, we have $\overline{V_n}^{(bX)} = \overline{U_n}^{(bX)}$ for each $n \in \omega$. Let $E = \{x \in bX : x \text{ is } 0 \leq x \leq bX\}$. an accumulation point of the family ${V_n : n \in \omega}$ in *bX* $}$. Then *E* is equal to ${x \in bX : x$ is an accumulation point of the family $\{U_n : n \in \omega\}$ in bX . Since $\{U_n : n \in \omega\}$ is locally finite in *Y*, the set *E* is contained in *X*. By Lemma 2.4, we know that for each $O \in V$, the set $\{n \in \omega : O \subset V_n \cap X\}$ is finite. Thus if a point $y \in bX$ is an accumulation point of the family V in bX , then γ is an accumulation point of the family $\{V_n : n \in \omega\}$. Denote $M = \{x \in bX : x \text{ is an accumulation point of the family } \mathcal{V} \text{ in } bX\}$. Thus $M \subset E \subset X$. Since $|\mathcal{V}| = \omega$ and *bX* is compact, $M \neq \emptyset$. \square

In fact, we have the following result.

Theorem 2.6. *Let X be a nowhere locally compact Tychono*ff *topological space and let bX be a compactification of X.* Let $\{U_n : n \in \omega\}$ be any locally finite family of nonempty open subsets of $bX \setminus X$ such that $U_n \neq U_m$ whenever *n* ≠ *m.* If W_n is an open subset of bX such that $W_n \cap (bX \setminus X) = U_n$ and V_n is a nonempty open subset of X such that $V_n \subset W_n \cap X$ for each $n \in \omega$, then $V = \{V_n : n \in \omega\}$ is infinite and the set F of accumulation points of the family V *in bX is nonempty and is contained in X.*

Proof. Suppose that $|{V_n : n \in \omega}| < \omega$. Then there exists some $m \in \omega$ such that $|{n \in \omega : V_n = V_m}| = \omega$. Let $V_m = O$ and $\{n \in \omega : V_n = O\} = \{k_i : i \in \omega\}$ such that $k_i \neq k_j$ whenever $i \neq j$. Then $V_{k_i} = O \subset W_{k_i}$ for each *i* ∈ ω . Since *O* is an open subset of *X*, there exists an open subset *O*[∗] of *bX* such that *O*[∗] ∩ *X* = *O*. Since $\overline{bX \setminus X} = bX$, we have $O^* \cap (bX \setminus X) \neq \emptyset$.

Let *z* be any point of *O*[∗] ∩ (*bX* \ *X*) and let M_z be any open subset of *bX* \ *X* such that $z \in M_z$. Then there exists an open subset M_z^* of bX such that $M_z^* \cap (bX \setminus X) = M_z$. Thus $M_z^* \cap O^*$ is an open neighborhood of the point *z* in bX . Since $\overline{X} = bX$ and $O^* \cap X = O$, the set *O* is dense in O^* . Thus $(M^*_z \cap O^*) \cap O \neq \emptyset$. Let *p* be any point of $(M^*_z \cap O^*) \cap O$. Then $p \in O$ and $M^*_z \cap O^*$ is an open neighborhood of the point *p* in *bX*. For each $\vec{i} \in \omega$, $O \subset \tilde{W}_{k_i}$ and $W_{k_i} \cap (bX \setminus X) = U_{k_i}$. Thus U_{k_i} is dense in W_{k_i} for each $i \in \omega$. So $M_z^* \cap O^* \cap U_{k_i} \neq \emptyset$ for each $i\in\omega$. Since $U_{k_i}\subset bX\setminus X$ for each $i\in\omega$, the set $M_z^*\cap O^*\cap U_{k_i}=M_z\cap O^*\cap U_{k_i}\neq\emptyset$. Thus $M_z\cap U_{k_i}^*\neq\emptyset$ for each *i* ∈ ω . This contradicts with that $\{U_n : n \in \omega\}$ is locally finite in $bX \setminus X$. Thus the family $\mathcal{V} = \{V_n : n \in \omega\}$ is infinite. Since V is infinite, the set F of accumulation points of the family V in bX is nonempty.

By the proof above, we know that for each $n \in \omega$ the set { $m \in \omega : V_n \subset W_m$ } is finite. Then the set *F* ⊂ {*x* ∈ *bX* : *x* is an accumulation point of the family { W_n : *n* ∈ ω}} is a nonempty subset of *X*. □

Lemma 2.7. If Y is a dense subset of a space X and U is a regular open subset of X, then $\overline{U}^{\circ} \cap Y = U \cap Y$ is a regular *open subset of Y.*

Proof. Since *U* is a regular open subset of *X*, we have $\overline{U}^{\circ} = U$. Thus $\overline{U}^{\circ} \cap Y = U \cap Y$. For any $x \in Int_{Y}(\overline{U \cap Y}^{(Y)}),$ there exists an open subset O_x of the subspace Y of X such that $x\in O_x\subset \overline{U\cap Y}^{(Y)}$. Since Y is a dense subspace of *X*, we have $\overline{U \cap Y}^{(Y)} \subset \overline{U \cap Y} = \overline{U}$. Then $x \in O_x \subset \overline{U}$. Thus, there exists an open subset W_x of *X* such that $W_x \cap Y = O_x$. Since Y is dense in X, we have $\overline{W_x} = \overline{O_x}$. Thus $x \in W_x \subset \overline{W_x} \subset \overline{U}$. So $x \in \overline{U}^{\circ}$. Thus $Int_Y(\overline{U \cap Y}^{(Y)}) \subset \overline{U}^{\circ} \cap Y = U \cap Y$. It is obvious that $U \cap Y \subset Int_Y(\overline{U \cap Y}^{(Y)})$. Thus $Int_Y(\overline{U \cap Y}^{(Y)}) = U \cap Y$. Then $U \cap Y$ is a regular open subset of Y . \square

Lemma 2.8. Let Y_1 and Y_2 be dense subsets of a space X. If U and V are regular open subsets of Y_1 and $U \neq V$, then $\overline{U}^{\circ} \cap Y_2$ *and* $\overline{V}^{\circ} \cap Y_2$ *are regular open subsets of* Y_2 *and the two sets* $\overline{U}^{\circ} \cap Y_2$ *and* $\overline{V}^{\circ} \cap Y_2$ *are distinct.*

Proof. Since *U* and *V* are regular open subsets of Y_1 and $\overline{Y_1} = X$, it follows from Lemma 2.3 that \overline{U}° and \overline{V}° are regular open subsets of *X*. Thus, by Lemma 2.7 the sets $\overline{U}^{\circ} \cap Y_2$ and $\overline{V}^{\circ} \cap Y_2$ are regular open subsets of *Y*2.

By Lemma 2.3, we have $U = \overline{U}^{\circ} \cap Y_1$ and $V = \overline{V}^{\circ} \cap Y_1$. Since $U \neq V$, we have $\overline{U}^{\circ} \neq \overline{V}^{\circ}$. Since \overline{U}° and \overline{V}° are two distinct regular open subsets of *X*, it follows from Lemma 2.2 that the two sets $\overline{U}^{\circ} \cap Y_2$ and $\overline{V}^{\circ} \cap Y_2$ are distinct. \square

Theorem 2.9. *Let X be a nowhere locally compact Tychono*ff *space and let* B *be a base for X. If bX is a compactification of X, then bX**X is pseudocompact if and only if for any countable infinite subfamily*V *of* B *there exists an accumulation point of the family* V *in bX* \setminus *X*.

Proof. (\Rightarrow) Assume that *bX* \ *X* is pseudocompact. Let $\mathcal{V} \subset \mathcal{B}$ be any countable infinite subfamily of B. Without loss of generality, we assume that $V = \{V_n : n \in \omega\}$ and $V_n \neq V_m$ whenever $n, m \in \omega$ and $n \neq m$. Since *X* is regular, for every $n \in \omega$ there exists a nonempty regular open subset U_n of *X* such that $U_n \subset \overline{U_n} \subset V_n$. If $|\{U_n : n \in \omega\}| < \omega$, then there exists $k \in \omega$ such that $|\{m \in \omega : U_m = U_k\}| = \omega$. If *z* ∈ *Int*_(*bX*) $\overline{U_k}^{(bX)} \cap (bX \setminus X)$, then *z* is an accumulation point of the family $\mathcal V$ in *bX*. Now we assume that for every $k \in \omega$, the set $\{m \in \omega : U_m = U_k\}$ is finite. Without loss of generality, we assume that $U_n \neq U_m$ whenever $n \neq m$.

It follows from Lemma 2.8 that $\{Int_{(bX)}\overline{U_n}^{(bX)}\cap (bX\setminus X):n\in\omega\}$ is a family of regular open subsets of $bX\setminus X$ and $Int_{(bX)}\overline{U_n}^{(bX)}\cap (bX\setminus X)\neq Int_{(bX)}\overline{U_m}^{(bX)}\cap (bX\setminus X)$ whenever $n\neq m$. Since $bX\setminus X$ is pseudocompact, the family $\{Int_{(bX)}\overline{U_n}^{(bX)} \cap (bX \setminus X) : n \in \omega\}$ has an accumulation point *z* in $bX \setminus X$. Then the point *z* is an accumulation point of the family $\{Int_{(bX)}\overline{U_n}^{(bX)} : n \in \omega\}$. By Lemma 2.3, we have $U_n = Int_{(bX)}\overline{U_n}^{(bX)} \cap X$ for every $n \in \omega$. Thus the point *z* is an accumulation point of the family *V*.

(←) It follows from Theorem 2.5 that the remainder $bX \setminus X$ of *X* is pseudocompact. $□$

Recall that a π*-base* of a space *X* at a subset *F* of *X* is a family V of nonempty open subsets of *X* such that every open neighborhood of *F* contains at least one element of V. A *strong* π*-base* of a space *X* at a subset *F* of *X* is an infinite family V of nonempty open subsets of *X* such that every open neighborhood of *F* contains all but finitely many elements of V ([2], p. 120).

Lemma 2.10. ([2], Lemma 2.1) *Suppose that X is a nowhere locally compact Tychono*ff *space, and bX is a compactification of X. Then the following two conditions are equivalent:*

- *(1)* The remainder $Y = bX \setminus X$ is not pseudocompact;
- *(2) There exists a nonempty compact subspace F of X which has a strong countable* π-base in X.

Lemma 2.11. *Let X be a regular space and* B *be a base for X. Then the following two conditions are equivalent:*

- *(1) There exists a countable infinite subfamily* V = {*Vⁿ* : *n* ∈ ω} ⊂ B *such that the set F* = {*x* ∈ *X* : *x is an accumulation point of the family* V *in X*} *is a nonempty compact subset of X and any infinite family* ${W_n : n \in \omega}$ *of open subsets of X, with* $W_n \subset V_n$ *for every* $n \in \omega$, has an accumulation point in X.
- *(2)* There exists a nonempty compact subspace F of X which has a strong countable π-base $V' \subset B$ *.*

Proof. (1) \Rightarrow (2) Assume that there exists a countable infinite subfamily $V = \{V_n : n \in \omega\} \subset \mathcal{B}$ such that the set $F = \{x \in X : x \text{ is an accumulation point of the family } \mathcal{V} \text{ in } X\}$ is a nonempty compact subset of *X* and any infinite family $\{W_n : n \in \omega\}$ of open subsets of *X*, with $W_n \subset V_n$ for every $n \in \omega$, has an accumulation point in *X*

Claim. The family V is a strong countable π -base at the compact subset *F* of *X*.

Proof of Claim. Take any open neighborhood *O* of the set *F* in *X*. Since *X* is regular and *F* is compact, there exists an open set *W* of *X* such that $F \subset \overline{W} \subset O$. Suppose $|\{V \in \mathcal{V} : V \setminus \overline{W} \neq \emptyset\}| = \omega$.

Case 1 $|\{V \setminus \overline{W} : V \in V, V \setminus \overline{W} \neq \emptyset\}| = \omega$.

Then the family $\{V \setminus \overline{W} : V \in V, V \setminus \overline{W} \neq \emptyset\}$ has an accumulation point *y* in *X*. Then $y \in F$. On the other hand, *V* $\setminus \overline{W}$ ⊂ *X* \setminus *W* for every *V* ∈ *V*. Then the point *y* ∉ *W*. This contradicts with *F* ⊂ *W*.

Case 2 $|\{V \setminus \overline{W} : V \in V, V \setminus \overline{W} \neq \emptyset\}| < \omega$.

Since $|\{V \in \mathcal{V} : V \setminus \overline{W} \neq \emptyset\}| = \omega$, there exists a countable infinite subfamily $\mathcal{V}_1 \subset \mathcal{V}$ such that $|{V \in V_1 : V \setminus \overline{W} \neq \emptyset}| = \omega$ and $|{V \setminus \overline{W} : V \in V_1}| = 1$. For any $V \in V_1$, take a point $x \in V \setminus \overline{W}$. Then *x* ∈ \cap \mathcal{V}_1 . Thus the point *x* is an accumulation point of the family \mathcal{V}_1 in *bX*. Then \hat{x} ∈ *F*. A contradiction.

Thus there exists a nonempty compact subspace *F* of *X* which has a strong countable π -base $\mathcal{V}' \subset \mathcal{B}$.

(2) ⇒ (1) Let V′ ⊂ B be a strong countable π-base at a nonempty compact subspace *F* of *X*.

Case 1 If $\{V \in \mathcal{V}' : V \subset F\}$ is infinite, then there exists a countable infinite subfamily $\mathcal{V} = \{V_n : n \in \mathcal{V}'\}$ ω } ⊂ {*V* ∈ *V'* : *V* ⊂ *F*} such that $V_n \neq V_m$ whenever $n \neq m$. Since *F* is compact, the set $A = \{x \in X : x \text{ is an } x \in X_m\}$ accumulation point of the family V} is a nonempty closed subset of *F*. Then *A* is compact. It is obvious that for any infinite family $\{W_n : n \in \omega\}$ of open subsets of *X* with $W_n \subset V_n$ for every $n \in \omega$ has an accumulation point in *X*.

Case 2 Now we assume that ${V \in V' : V \setminus F \neq \emptyset}$ is infinite. Without loss of generality, we assume that *V* \ *F* ≠ Ø for every *V* ∈ *V'*. For every *V* ∈ *V'*, there exists a nonempty set *O*_{*V*} ∈ *B* such that *O*_{*V*} ⊂ *V* and $\overline{O_V}$ ∩*F* = ∅. Since V' is a strong countable π-base at *F* and $\overline{O_V}$ ∩ *F* = ∅ for every $V \in V'$, the set { $O_V : V \in V'$ } is infinite. Thus there exists a subfamily $\{V_n : n \in \omega\} \subset V'$ such that $O_{V_n} \neq O_{V_m}$ whenever $n \neq m$. Then $V = \{O_{V_n} : n \in \omega\}$ is also a strong countable π -base at *F*. Since *F* is compact and $V = \{O_{V_n} : n \in \omega\}$ is a strong countable π-base at *F*, the set *A* of accumulation points of the family V in *X* is a nonempty compact subset of *X*.

Let $W = \{W_n : n \in \omega\}$ be any infinite family of open subsets of *X* with $W_n \subset O_{V_n}$ for every $n \in \omega$. Since $V = \{O_{V_n} : n \in \omega\}$ is a strong countable π -base at the compact set *F* and $W_n \subset O_{V_n}$ for every $n \in \omega$, there exists an accumulation point *y* ∈ *F* of the family *W* in *X*. Thus (1) holds. $□$

Theorem 2.12. *Let X be a nowhere locally compact Tychono*ff *space and let* B *be a base for X. Then for any compactification bX of X, the following two conditions are equivalent:*

- *(1)* The remainder $Y = bX \setminus X$ is not pseudocompact;
- *(2) There exists a nonempty compact subspace F of X which has a strong countable* $π$ *-base* $γ ⊂ B$ *.*

Proof. (2) ⇒ (1) Suppose that there exists a nonempty compact subspace *F* of *X* which has a strong countable π -base $\gamma \subset \mathcal{B}$. Then by Lemma 2.10, $bX \setminus X$ is not pseudocompact.

(1) \Rightarrow (2) Now we prove the converse. Suppose that *bX* \ *X* is not pseudocompact. By Theorem 2.9, there exists a countable infinite subfamily $\mathcal{V} \subset \mathcal{B}$ such that \mathcal{V} has no accumulation points in $bX \setminus X$. We can assume that $V = \{V_n : n \in \omega\}$ is such that $V_n \neq V_m$ whenever $n \neq m$.

Let $F_1 = \{x \in bX : x \text{ is an accumulation point of the family } \mathcal{V} \text{ in } bX\}$. Then F_1 is a nonempty closed compact subset of *bX*. Since the family $\mathcal V$ has no accumulation points in *bX* \ *X*, the set $F_1 \subset X$. Let $W = \{W_n : n \in \omega\}$ by any infinite family of open subsets of *X* with $W_n \subset V_n$ for every $n \in \omega$. Then the family W has an accumulation point in *bX*. Then the set *A* of accumulation points of the family W in *bX* is a nonempty subset of F_1 . Thus A is contained in X . Then the family W has an accumulation point in *X*. By Lemma 2.11, there exists a nonempty compact subspace *F* of *X* which has a strong countable π-base $\gamma \subset \mathcal{B}$. \Box

Theorem 2.13. *Let* B *be a base for a nowhere locally compact Tychono*ff *space X and bX be a compactification of X. If for any countable infinite subfamily* V *of* B *the set of all accumulation points of the family* V *in X is not a nonempty compact set, then bX* \ *X is pseudocompact.*

Proof. Suppose that *bX**X* is not pseudocompact. By Theorem 2.5, there exists a countable infinite subfamily V of B such that the set A of all accumulation points of the family V in bX is nonempty and contained in *X*. Since the set *A* is closed in *bX*, the set *A* is compact. Since $A \subset X$, the set *A* is equal to {*x* ∈ *X* : *x* is an accumulation point of the family $\mathcal V$ in X and A is compact. A contradiction. \Box

Theorem 2.14. Let $X = \prod_{i \in I} X_i$ be a product space and S be a subset of X satisfying the following condition:

(*) For each nonempty countable set $J \subset I$, the projection $p_J : X \to \prod_{i \in J} X_i$ satisfies that $p_J(S) = X_J := \prod_{i \in J} X_i$. *If* B *is the canonical base for* X *and* $V_S = \{B_i \cap S : i \in \omega\}$ *is a countable infinite subfamily of* $B_S = \{B \cap S : B \in \mathcal{B}\}$ *such that the set F of all accumulation points of the family* V_s *in S is nonempty, then for any a* \in *F there exists a* countable subset J of I such that $p_I^{-1}(p_I(a)) \cap S = p_I^{-1}(p_I(a)) \cap F$ and for any $\alpha \in I \setminus J$, $p_\alpha(F) = X_\alpha$.

Proof. Let B be the canonical base for *X* and let $B_S = \{B \cap S : B \in B\}$. Then B_S is a base for *S*. Let $V_S = \{B_i \cap S : i \in \omega\}$ be a countable infinite subfamily of B_S such that the set *F* of all accumulation points of the family V_S in *S* is nonempty.

For every $i \in \omega$, let $B_i = \bigcap_{\alpha \in A_i} \rho_{\alpha}^{-1}(U_{\alpha})$ for some finite subset A_i of *I* and U_{α} is open in X_{α} for each $\alpha \in A_i$. If $J = \bigcup \{A_i : i \in \omega\}$, then $|J| \leq \omega$ and $J \subset I$.

Since *F* ≠ 0, we take $a \in F$. Let $a_j = p_j(a)$ and let *b* be any element of $p_j^{-1}(a_j) \cap S$. In what follows, we show that $b \in F$. Let O_b be any open neighborhood of the point *b* in *X* and $O_b \in \mathcal{B}$. Assume that $O_b = \bigcap_{k \le n} p_{\alpha_k}^{-1}(O_{\alpha_k})$, where $n \in \mathbb{N}$, $\alpha_k \in I$ and O_{α_k} is open in X_{α_k} for each $k \le n$. We can assume that $n > 1$, $\{\alpha_1,...,\alpha_i\} \subset \tilde{J}$ for some $1 \leq i < n$ and $\{\alpha_{i+1},...,\alpha_n\} \subset \tilde{I} \setminus J$. If $C = \bigcap_{k \leq i} p_{\alpha_k}^{-1}(O_{\alpha_k})$, then the set C is an open neighborhood of the point *a* in *X*.

Since $a \in F$, we have $|\{m \in \omega : C \cap B_m \cap S \neq \emptyset\}| = \omega$. If $m \in \omega$ and $C \cap B_m \cap S \neq \emptyset$, then let $y_m \in C \cap B_m \cap S$. For any $i + 1 \le k \le n$, we let $y_{\alpha_k} \in O_{\alpha_k}$. Since $J \cup \{\alpha_{i+1},...,\alpha_n\} \subset I$ is countable, there exists $x_m \in S$ such that $p_j(x_m) = p_j(y_m)$ and $p_{\alpha_{i+1}}(x_m) = y_{\alpha_{i+1}}$ for each $t \in \{1, ..., n-i\}$. Then $x_m \in O_b \cap B_m \cap S$. Then $|\{m \in \omega : O_b \cap B_m \cap S \neq \emptyset\}| = \omega$. Thus $b \in F \cap S = F$. Then we have proved $p_f^{-1}(a_f) \cap S \subset p_f^{-1}(a_f) \cap F$. Since *F* ⊂ *S*, we have $p_j^{-1}(a_j)$ ∩ *F* ⊂ $p_j^{-1}(a_j)$ ∩ *S*. Thus $p_j^{-1}(a_j)$ ∩ *S* = $p_j^{-1}(a_j)$ ∩ *F*.

Now we prove the last part of this result. Let $\alpha \in I \setminus J$, then $\{\alpha\} \cup J = J_1 \subset I$ is countable. If $x_\alpha \in X_\alpha$, then there exists $y \in S$ such that $p_J(y) = p_J(a)$ and $p_\alpha(y) = x_\alpha$. Then $y \in S \cap p_J^{-1}(p_J(a))$.

Since $p_J^{-1}(p_J(a)) \cap S = p_J^{-1}(p_J(a)) \cap F$, the point $y \in F$. Thus $x_\alpha \in p_\alpha(F)$. Hence $p_\alpha(F) = X_\alpha$ for each $\alpha \in I \setminus I$. \Box

Proposition 2.15. Let X_i be a Tychonoff space for each $i \in I$ and $X = \prod_{i \in I} X_i$ be a product space. Let S be a subset of *X satisfying the following conditions:*

(1) $p_J(S) = X_J := ∏_I ∈_J X_i for each nonempty countable subset $J ⊂ I$;$

(2) for each nonempty countable subset $J ⊂ I$ and each $y ∈ X_J$, the intersection $p_J^{-1}(y) ∩ S$ is not compact.

Then for the canonical base $\mathcal B$ *for* X *and for any infinite family* V_S *of* $\mathcal B_S = \{B \cap S : B \in \mathcal B\}$ *, the set* F *of all accumulation points of the family* V*^S in S is not a nonempty compact set.*

Proof. Suppose that there exists a countable infinite subfamily $V_s = \{B_i \cap S : i \in \omega\}$ of B_s such that the set *F* of all accumulation points of the family V*^S* in *S* is a nonempty compact subset of *S*. Then it follows from Theorem 2.14 that for any $a \in F$ there exists a countable subset \tilde{J} of I such that $p_I^{-1}(p_I(a)) \cap S = p_I^{-1}(p_I(a)) \cap F$. Since the set $p_j^{-1}(p_j(a)) \cap F$ is a closed subset of *F* and *F* is compact, the set $p_j^{-1}(p_j(a)) \cap F$ is compact. Then $p_J^{-1}(p_J(a))$ ∩ *S* is compact. A contradiction.

Proposition 2.16. ([8], Corollary 2.7) *Let* X_i *be a Tychonoff space for each i* \in *I. Let* $X = \prod_{i \in I} X_i$ *be a product space and S be a subset of X satisfying the following conditions:*

(1) $p_J(S) = X_J := ∏_{i∈J} X_i$, for each nonempty countable subset $J ⊂ I$;

(2) for each nonempty countable subset $J ⊂ I$ and each $y ∈ X_J$, the intersection $p_J^{-1}(y) ∩ S$ is not compact.

If bS is a compactification of S, then the remainder $Y = bS \setminus S$ *is pseudocompact.*

Proof. It can be gotten by Theorem 2.13 and Proposition 2.15. □

Theorem 2.17. ([8], Theorem 2.4) Let $X = \prod_{i \in I} X_i$ be a product of Tychonoff spaces such that uncountably many *of the factors* X_i *are non-compact. Also, let S be a subspace of X such that* $p_J(S) = X_J$ *for each countable set J* $\subset I$ *,* $\overline{\text{where}}$ $p_j: X \to X_j = \prod_{i \in J} X_i$ is the projection. If bS is a compactification of S, then the remainder $Y = bS \setminus S$ is *pseudocompact.*

Proof. It is obvious that the subspace *S* of *X* is dense in *X* and it is nowhere locally compact. Let B be the canonical base for *X* and let $\mathcal{B}_S = \{B \cap S : B \in \mathcal{B}\}\$. Then \mathcal{B}_S is a base for *S*. Suppose there exists a countable infinite subfamily $V_s = {B_i \cap S : i \in \omega}$ of B_s such that the set *F* of all accumulation points of the family V_s in *S* is a nonempty compact subset of *S*. Then by Theorem 2.14 there exists a countable subset *J* of *I* such that for any $\alpha \in I \setminus J$, $p_\alpha(F) = X_\alpha$. Since the set *F* is compact and the mapping $p_J|S$ is continuous, the space *X*_α is compact for every $\alpha \in I \setminus J$. A contradiction.

Thus for any infinite subfamily V_S of $\mathcal{B}_S = \{B \cap S : B \in \mathcal{B}\}\$, the set *F* of all accumulation points of the family V_S in *S* is not a nonempty compact set. Then it follows from Theorem 2.13 that $bS \setminus S$ is pseudocompact.

Corollary 2.18. ([8], Corollary 2.5) Let $\{X_i : i \in I\}$ be a family of Tychonoff spaces such that uncountably many of *them are non-compact.* If bX is a compactification of the product $X = \prod_{i\in I} X_i$, then the remainder $Y = bX \setminus X$ is *pseudocompact.*

Lemma 2.19. *Let X be a regular space. If Y is a dense subspace of X and there exists a nonempty compact subspace F of Y which has a strong countable* π*-base in Y, then the set F has a strong countable* π*-base in X.*

Proof. Let $V = \{V_n : n \in \omega\}$ be a family of nonempty open subsets of *Y* such that V is a strong countable π-base at a nonempty compact set *F* in *Y*.

For every $n \in \omega$, there exists an open subset U_n of X such that $U_n \cap Y = V_n$. Let O be any open neighborhood of *F* in *X*. By regularity of *X* and compactness of *F*, there exists an open set *W* of *X* such that *F* ⊂ *W* ⊂ *W* ⊂ *O*. Then there exists *m* ∈ ω such that V_n ⊂ *W* ∩ *Y* for every *n* ≥ *m*. Thus $\overline{V_n}$ ⊂ \overline{W} ⊂ *O* for every $n \ge m$. Since $\overline{Y} = X$ and U_n is open in X such that $U_n \cap Y = V_n$ for every $n \ge m$, we have $\overline{V_n} = \overline{U_n}$. Thus for every $n \ge m$, $U_n \subset \overline{U_n} \subset O$. Then $\{U_n : n \in \omega\}$ is a strong countable π -base at *F* in *X*.

Theorem 2.20. *Let X be a Tychono*ff *space and let Y be a dense subspace of X. If X is a nowhere locally compact space such that for every compactification bX of X the remainder bX* \ *X of X is pseudocompact, then for every compactification bY of Y the remainder bY* \ *Y of Y is pseudocompact.*

Proof. Let *bY* be any compactification of *Y*. Since *X* is nowhere locally compact and *Y* is dense in *X*, the subspace *Y* of *X* is nowhere locally compact. Then $bY \setminus Y$ is dense in bY .

Suppose that the remainder $bY \setminus Y$ is not pseudocompact. By Lemma 2.10, there exists a nonempty compact subspace *F* of *Y* which has a strong countable π-base in *Y*. By Lemma 2.19, the set *F* has a strong countable π-base in *X*. If *bX* is a compactification of *X*, then it follows from Lemma 2.10 that the remainder $bX \setminus X$ of *X* is not pseudocompact. A contradiction. Thus the remainder $bY \setminus Y$ of *Y* is pseudocompact. \Box

By Corollary 2.18 and Theorem 2.20, we have the following result.

Theorem 2.21. Let $\{X_i : i \in I\}$ be a family of Tychonoff spaces such that uncountably many of them are non-compact. *If* X = $\prod_{i\in I}X_i$ is a product space and Y is a dense subspace of X, then for every compactification bY of Y the remainder *bY* \ *Y is pseudocompact.*

In ([8], Theorem 3.7), it was proved that if *X* is an uncountable space and *G* is a non-compact topological group, then the remainder of *Cp*(*X*, *G*) in any Hausdorff compactification is pseudocompact.

We denote the family of continuous functions from *X* to *Y* by *C*(*X*,*Y*). The set with the topology inherited from the product space Y^X (that is, the pointwise convergence topology) is denoted by $C_p(X, Y)$. Every space of the form $C_p(X, Y)$ is assumed to be dense in Y^X ([8], p. 360). By Theorem 2.21, we have the following result.

Theorem 2.22. Let Y be a non-compact Tychonoff space. If X is uncountable and $C_p(X, Y)$ is dense in Y^X *, then for any compactification b* $C_p(X, Y)$ *of* $C_p(X, Y)$ *, the remainder b* $C_p(X, Y) \setminus C_p(X, Y)$ *is pseudocompact.*

Proof. Since *X* is uncountable and *Y* is non-compact such that $C_p(X, Y)$ is dense Y^X , by Theorem 2.21, for any compactification $bC_p(X, Y)$ of $C_p(X, Y)$, the remainder $bC_p(X, Y) \setminus C_p(X, Y)$ is pseudocompact. \Box

Acknowledgement

The authors would like to thank the referee for his (or her) valuable remarks and suggestions which greatly improved the paper.

References

- [1] A. V. Arhangel'skii, *A class of spaces containing all metric and all locally compact spaces*, Mat. Sb. **67(109)** (1965), 55–88 (in Russian); English translation: Amer. Math. Soc. Transl. **92** (1970), 1–39.
- [2] A. V. Arhangel'skii, *Two types of remainders of topological groups*, Comment. Math. Univ. Carolin. **49** (2008), 119–126.
- [3] A. V. Arhangel'skii, A. Bella, *On pseudocompactness of remainders of topological groups and some classes of mappings*, Topology Appl. **111** (2001), 21–33.
- [4] A. V. Arhangel'skii, D. K. Burke, *Spaces with a regular G*δ*-diagonal*, Topology Appl. **153** (2006), 1917–1929.
- [5] A. V. Arhangel'skii, M. Tkachenko, *Topological Groups and Related Structures*, Atlantis Stud. Math., Vol. 1, Atlantis Press/World Scientific, Paris, Amsterdam, 2008.
- [6] R. Engelking, *General Topology*, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed. 1989.
- [7] M. Henriksen, J. R. Isbell, *Some properties of compactifications*, Duke Math. J. **25** (1958), 83–105.
- [8] Á. Tamariz-Mascarúa, M. G. Tkachenko, *Remainders of products, topological groups and C_p-spaces*, Topology Appl. **258** (2019), 358–377.