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Abstract. LetH be a complex infinite dimensional separable Hilbert space and letB(H) denote the algebra
of bounded linear operators acting on H . In this paper, we mainly characterize these bounded linear
operators T onH and their function calculus that satisfy property (R) by the new spectrum originated from
the single-valued extension property. Meanwhile, the relationship between property (R) and hypercyclic
property is also explored.

1. Introduction and preliminaries

Throughout this paper, C andN denote the set of all complex numbers and the set of all non-negative
integers, respectively. Let H be a complex infinite dimensional separable Hilbert space and B(H) denote
the algebra of all bounded linear operators onH . The unit closed disk on the complex plane C is denoted
by D. For T ∈ B(H), T∗, N(T) and R(T) stand for the adjoint, the kernel and the range of T, respectively.
If R(T) is closed and n(T) < ∞, then we call T is an upper semi-Fredholm operator, while T is said to be
lower semi-Fredholm if d(T) < ∞, where n(T) and d(T) denote the dimension of N(T) and the codimension
of R(T), respectively. T ∈ B(H) is a semi-Fredholm operator if T is either an upper semi-Fredholm operator
or a lower semi-Fredholm operator, while T ∈ B(H) is a Fredholm operator if T is both an upper semi-
Fredholm operator and a lower semi-Fredholm operator. If T is semi-Fredholm, the index of T is defined
as ind(T) = n(T) − d(T). In particular, we call T ∈ B(H) is a bounded below operator if T is upper semi-
Fredholm with n(T) = 0. If T is semi-Fredholm with ind(T) = 0, then T is said to be a Weyl operator.
The ascent and descent of T are defined respectively by asc(T) = inf{n ∈ N : N(Tn) = N(Tn+1)} and
des(T) = inf{n ∈ N : R(Tn) = R(Tn+1)}. If the infimum does not exist, then we write asc(T) = ∞ (resp.
des(T) = ∞). T is called a Browder operator if it is Fredholm of finite ascent and descent, equivalently, T
is semi-Fredholm and T − λI is invertible for sufficiently small λ , 0 in C. T is called an upper semi-Weyl
operator if it is upper semi-Fredholm with ind(T) ≤ 0, while T is called an upper semi-Browder operator
if it is upper semi-Fredholm of finite ascent. The spectrum σ(T), the approximate point spectrum σa(T),
the upper semi-Fredholm spectrum σSF+ (T), the semi-Fredholm spectrum σSF(T), the essential approximate
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point spectrum σea(T), the Browder essential approximate point spectrum σab(T), the Weyl spectrum σw(T)
and the Browder spectrum σb(T) of T are defined respectively by

σ(T) = {λ ∈ C : T − λI is not an invertible operator},

σa(T) = {λ ∈ C : T − λI is not a bounded below operator},

σSF+ (T) = {λ ∈ C : T − λI is not an upper semi-Fredholm operator},

σea(T) = {λ ∈ C : T − λI is not an upper semi-Weyl operator},

σab(T) = {λ ∈ C : T − λI is not an upper semi-Browder operator},

σw(T) = {λ ∈ C : T − λI is not a Weyl operator},

σb(T) = {λ ∈ C : T − λI is not a Browder operator},

σSF(T) = {λ ∈ C : T − λI is not a semi-Fredholm operator}.

Let ρ(T) = C \ σ(T), ρa(T) = C \ σa(T), ρw(T) = C \ σw(T), ρSF+ (T) = C \ σSF+ (T), ρSF(T) = C \ σSF(T),
ρab(T) = C \ σab(T) and ρb(T) = C \ σb(T). σ0(T) is denoted by the set of all normal eigenvalues of T, that is
σ0(T) = σ(T) \ σb(T). For a set E ⊆ C, we write ∂E, intE, isoE and accE as the set of boundary points, interior
point, isolated points and accumulation points of E.

For a Cauchy domain ([1]) Ω, if all the curves of ∂Ω are regular analytic Jordan curves, we say that Ω
is an analytic Cauchy domain. For T ∈ B(H), if σ is a clopen subset of σ(T), then there exists an analytic
Cauchy domainΩ such that σ ⊆ Ω and [σ(T) \ σ]∩Ω = ∅, whereΩ is the closure ofΩ. We denote by E(σ; T)
the Riesz idempotent of corresponding to σ, i.e.,

E(σ; T) =
1

2πi

∫
Γ

(λI − T)−1dλ,

where Γ = ∂Ω is positively oriented with respect to Ω in the sense of complex variable theory. In this
case, we have H(σ; T) = R(E(σ; T)). Clearly, if λ ∈ isoσ(T), then {λ} is a clopen subset of σ(T). We write
H(σ; T) = R(E(σ; T)). We writeH(λ; T) instead ofH({λ}; T); if in addition, dimH(λ; T) < ∞, then λ ∈ σ0(T).

The single-valued property (SVEP) plays an important role for bounded operators on complex Hilbert
spaces. T ∈ B(H) is said to have the single-valued extension property at λ0 ∈ C (SVEP at λ0 for short)
if for any open disc Dλ0 centered at λ0, the only analytic function f : Dλ0 → X satisfying the equation
(T − λI) f (λ) = 0 for all λ ∈ Dλ0 is the function f ≡ 0 ([2]). Moreover, T ∈ B(H) is said to have SVEP if T has
SVEP at every point λ ∈ C.

It is evident that T ∈ B(H) has SVEP at every point of the resolvent ρ(T) and T has SVEP at every
point of the bounded ∂σ(T) of the spectrum σ(T) according to the identity theorem for analytic functions.
Especially, T has SVEP at every isolated point of the spectrum σ(T). Besides, if asc(T) < ∞, then T has SVEP
at 0 and n(T) ≤ d(T) ([3]).

The variants of Weyl’s theorem have been explored in lots of papers [5-6] since Weyl’s theorem was
discovered by Weyl ([4]) in 1909. Property (R) is one of these variants that has been introduced by Aiena,P.
in 2011, and was discussed by many authors ([8, 9]). T ∈ B(H) is said to satisfy property (R) ([7, Definition
2.3]), if

σa(T)\σab(T) = π00(T),

where π00(T) = {λ ∈ isoσ(T) : 0 < n(T−λI) < ∞}. In the following, we will define a new spectrum stemmed
from the single-valued extension property to continue to study the property R.

The new spectrum set is defined as follows. Let

ρ1(T) = {λ ∈ C : n(T − λI) < ∞, there exists ϵ > 0 such that T and T∗

both have SVEP at µ if 0 < |µ − λ| < ϵ},

and let σ1(T) = C \ ρ1(T). Obviously, σ1(T) ⊆ σb(T) ⊆ σ(T).
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Remark 1.1. (i) σ1(T) may be an emptyset.
For instance, let T ∈ B(ℓ2) be defined by

T(x1, x2, x3, · · · ) = (0, 0,
x2

2
,

x3

3
, · · · ).

Then T is a quasinilpotent operator with n(T) = 0 and σ(T) = σ(T∗) = {0}. Thus T and T∗ both have SVEP at every
λ ∈ B0(0), where B0(0) is a deleted neighbourhood of 0. Hence σ1(T) = ∅ by the definition of ρ1(T).

(ii) σ1(T) is a clopen set.
(a) If intσ(T) = ∅ and n(T − λ0I) < ∞ for some λ0 ∈ σ(T) ∩ acc{λ ∈ C : n(T − λI) = ∞}, then σ1(T) is not a

closed set.
For example, let A,B ∈ B(ℓ2) be defined by

A(x1, x2, x3, · · · ) = (0, x1,
x2

2
,

x3

3
, · · · ),B(x1, x2, x3, · · · ) = (0, x1, 0,

x3

3
, 0,

x5

5
, · · · )

and T ∈ B(ℓ2 ⊕ ℓ2) be defined by T =


A 0 0 · · ·

0 B + I 0 · · ·

0 0 B + I
2 · · ·

...
...

...
. . .

, then 0 ∈ σ(T), n(T) = 0 < ∞ and 0 ∈ acc{λ ∈ C :

n(T − λI) = ∞} ⊆ accσ1(T), but 0 < σ1(T). Therefore σ1(T) is not a closed set.
(b) σ1(T) is a closed set when n(T − λI) < ∞ or d(T − λI) < ∞ for any λ ∈ intσ(T).
Suppose that n(T−λI) < ∞ for any λ ∈ intσ(T), then we claim that σ1(T) is a closed set. In fact, if not, then there

exists a point λ0 ∈ ∂σ1(T) ∩ ρ1(T). We can get there exists a deleted neighbourhood B0(λ0) of λ0 such that T and T∗

have SVEP at every λ ∈ B0(λ0) by the definition of ρ1(T). Take λ1 ∈ B0(λ0)∩σ1(T), then there exists a neighbourhood
B(λ1) ⊆ B0(λ0) of λ1 such that B(λ1) ⊆ σ1(T). That is to say that λ1 ∈ intσ1(T) ⊆ intσ(T). Then n(T − λ1I) < ∞
and T and T∗ both have SVEP at every λ ∈ B0(λ1) ⊆ B0(λ0), hence λ1 ∈ ρ1(T), which is a contradiction.

Assume that d(T−λI) < ∞ for any λ ∈ intσ(T). Similar to the proof of the above, we can take λ1 ∈ B0(λ0)∩σ1(T),
then we know λ1 ∈ intσ1(T) ⊆ intσ(T). Thus d(T − λ1I) < ∞. So then, T − λ1I is Browder ([10, Lemma 3.4])
according to T and T∗ both have SVEP at λ1, which is a contradiction to λ1 ∈ intσ(T).

2. Property (R) for bounded linear operators and their operator functions

In this section, we will give some characterizations for bounded linear operators and their function
calculus that satisfy property (R) by way of the new spectrum set σ1(T). Let σd(T) = {λ ∈ C : R(T−λI) is not
closed }. Then we have the following inclusions.

Theorem 2.1. Let T ∈ B(H), then the following statements are equivalent:
(1) T satisfies the property (R);
(2) σb(T) = [σ1(T) ∩ σab(T)] ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0}.

Proof. (1) ⇒ (2). The inclusion “ ⊇ ” is obvious. For the opposite inclusion, take arbitrarily λ0 < [σ1(T) ∩
σab(T)] ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0}, without loss of generality, suppose that λ0 ∈ σ(T),
then n(T − λ0I) > 0.

Case1 Suppose that λ0 < σ1(T), then 0 < n(T − λ0I) < ∞ and there exists ϵ1 > 0 such that T and T∗

both have SVEP at every λ ∈ B0(λ0, ϵ1), where B0(λ0, ϵ1) is a deleted neighbourhood of λ0. If λ0 < accσ(T),
then λ0 ∈ π00(T). Since T satisfies property (R), we can get λ0 < σb(T). If λ0 < σd(T), then T − λ0I is
an upper semi-Fredholm operator. By the punctured neighborhood theorem of semi-Fredholm operators,

there exists ϵ < ϵ1 such that T−λI is upper semi-Fredholm and N(T−λI) ⊆
∞⋂

n=1
R[(T−λI)n)] if 0 < |λ−λ0| < ϵ.

Noting that T and T∗ both have SVEP at λ, we know T − λI is a Browder operator ([10, Lemma 3.4]). From

N(T − λI) ⊆
∞⋂

n=1
R[(T − λI)n)], we see T − λI is invertible. Namely, λ0 ∈ isoσ(T). Therefore λ0 < σb(T)

combining with the fact that T − λ0I is an upper semi-Fredholm operator.
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Case2 Suppose that λ0 < σab(T), then λ0 ∈ σa(T) \ σab(T). Since T satisfies property (R), we can get
λ0 < σb(T).

(2) ⇒ (1). It is obvious that {[σa(T)\σab(T)] ∪ π00(T)} ∩ [σ1(T) ∩ σab(T)] = ∅, {[σa(T)\σab(T)] ∪ π00(T)} ∩
[accσ(T)∩σd(T)] = ∅, and {[σa(T)\σab(T)]∪π00(T)}∩{λ ∈ σ(T) : n(T−λI) = 0} = ∅. Accordingly, [σa(T)\σab(T)]∪
π00(T) = σ0(T). It follows that T ∈ (R).

Remark 2.2. In Theorem 2.1, suppose T ∈ B(H) satisfies property (R), then each part of the decomposition of σb(T)
can not be deleted.

(a) Let T ∈ B(ℓ2) be defined by
T(x1, x2, x3, · · · ) = (0, x2, x3, · · · ),

then we have σa(T) = {0, 1}, σab(T) = {1} and π00(T) = {0}. So T ∈ (R). But σb(T) , [accσ(T)∩ σd(T)]∪ {λ ∈ σ(T) :
n(T − λI) = 0}. That is σ1(T) ∩ σab(T) can not deleted.

(b) Let A,B ∈ B(ℓ2) be defined by

A = (ai j), ai j =

{
1, |i − j| = 1
0, |i − j| , 1 ,B(x1, x2, x3, · · · ) = (0, 0,

x2

2
,

x3

3
, · · · ),

and put T ∈ B(ℓ2 ⊕ ℓ2) be T =
(

A 0
0 B

)
, then we have σa(T) = σab(T) = [−2, 2] and π00(T) = ∅. Clearly, T ∈ (R).

However, σb(T) , [σ1(T) ∩ σab(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0}. So accσ(T) ∩ σd(T) can not deleted.
(c) Let T ∈ B(ℓ2) be defined by

T(x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ),

then σa(T) = σab(T) = ∂D and π00(T) = ∅. It follows that T ∈ (R). But σb(T) , [σ1(T)∩σab(T)]∪ [accσ(T)∩σd(T)],
we know {λ ∈ σ(T) : n(T − λI) = 0} can not deleted.

Corollary 2.3. Let T ∈ B(H), then the following statements are equivalent:
(1) T ∈ (R);
(2) σb(T) = [σ1(T) ∩ σSF+ (T)] ∪ accσa(T) ∪ {λ ∈ σ(T) : n(T − λI) = 0};
(3) σb(T) = ∂σ1(T) ∪ [intσ1(T) ∩ σSF+ (T)] ∪ accσa(T) ∪ {λ ∈ σ(T) : n(T − λI) = 0};
(4) σb(T) = ∂σ1(T) ∪ [accσ(T) ∩ σab(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0}.

Proof. (1)⇒ (2) By Theorem 2.1 we know that σb(T) = [σ1(T)∩ σab(T)]∪ [accσ(T)∩ σd(T)]∪ {λ ∈ σ(T) : n(T−
λI) = 0}.Since [σ1(T)∩σab(T)] = [σ1(T)∩σab(T)∩σSF+ (T)]∪[σ1(T)∩σab(T)∩ρSF+ (T)] ⊆ [σ1(T)∩σSF+(T)]∪accσa(T),
and accσ(T)∩σd(T) = [accσ(T)∩σd(T)∩accσa(T)]∪ [accσ(T)∩σd(T)∩ isoσa(T)] ⊆ accσa(T)∪ [σ1(T)∩σSF+ (T)],
we can get σb(T) ⊆ [σ1(T) ∩ σSF+ (T)] ∪ accσa(T) ∪ {λ ∈ σ(T) : n(T − λI) = 0}. The opposite inclusion is clear,
then we have σb(T) = [σ1(T) ∩ σSF+ (T)] ∪ accσa(T) ∪ {λ ∈ σ(T) : n(T − λI) = 0}.

(2)⇒ (1) We only need to prove that σb(T) = [σ1(T)∩σab(T)]∪ [accσ(T)∩σd(T)]∪{λ ∈ σ(T) : n(T−λI) = 0}
by Theorem 2.1. The “ ⊇ ” is clear. Next we prove the opposite inclusion. accσa(T) = [accσa(T) ∩ σd(T)] ∪
[accσa(T)∩ρd(T)] ⊆ [accσ(T)∩σd(T)]∪ [σ1(T)∩σab(T)], thus σb(T) ⊆ [σ1(T)∩σab(T)]∪ [accσ(T)∩σd(T)]∪{λ ∈
σ(T) : n(T − λI) = 0}. It follows that T ∈ (R) by Theorem 2.1.

(2)⇒ (3) Noting that σ1(T)∩σSF+ (T) = [σ1(T)∩σSF+ (T)∩∂σ1(T)]∪[intσ1(T)∩σSF+ (T)] ⊆ ∂σ1(T)∪[intσ1(T)∩
σSF+ (T)], then σb(T) ⊆ ∂σ1(T)∪ [intσ1(T)∩ σSF+ (T)]∪ accσa(T)∪ {λ ∈ σ(T) : n(T − λI) = 0}. Also, the opposite
inclusion is obvious. Hence σb(T) = ∂σ1(T) ∪ [intσ1(T) ∩ σSF+ (T)] ∪ accσa(T) ∪ {λ ∈ σ(T) : n(T − λI) = 0}.

(3)⇒ (2) Since ∂σ1(T) = [∂σ1(T) ∩ σ1(T)] ∪ [∂σ1(T) ∩ ρ1(T)] ⊆ [σ1(T) ∩ σSF+ (T)] ∪ accσa(T) and intσ1(T) ∩
σSF+ (T)] ⊆ σ1(T) ∩ σSF+ (T), σb(T) ⊆ [σ1(T) ∩ σSF+ (T)] ∪ accσa(T) ∪ {λ ∈ σ(T) : n(T − λI) = 0}, we have
σb(T) = [σ1(T) ∩ σSF+ (T)] ∪ accσa(T) ∪ {λ ∈ σ(T) : n(T − λI) = 0}.

(1)⇒ (4) By Theorem 2.1 we haveσb(T) = [σ1(T)∩σab(T)]∪ [accσ(T)∩σd(T)]∪{λ ∈ σ(T) : n(T−λI) = 0}. It is
evident that accσ(T)∩σd(T) ⊆ accσ(T)∩σab(T). Moreover, [σ1(T)∩σab(T)] = [σ1(T)∩σab(T)∩∂σ1(T)]∪[intσ1(T)∩
σab(T)] ⊆ ∂σ1(T) ∪ [accσ(T) ∩ σab(T)], thus σb(T) = ∂σ1(T) ∪ [accσ(T) ∩ σab(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0}.

(4)⇒ (1) Observing that ∂σ1(T) = [∂σ1(T)∩ σ1(T)]∪ [∂σ1(T)∩ ρ1(T)], [∂σ1(T)∩ σ1(T)] = [∂σ1(T)∩ σ1(T)∩
σab(T)] ∪ [∂σ1(T) ∩ σ1(T) ∩ ρab(T)] ⊆ σ1(T) ∩ σab(T), and ∂σ1(T) ∩ ρ1(T) = [∂σ1(T) ∩ ρ1(T) ∩ σd(T)] ∪ [∂σ1(T) ∩
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ρ1(T) ∩ ρd(T)] ⊆ [accσ(T) ∩ σd(T)], we can acquire ∂σ1(T) ⊆ [σ1(T) ∩ σab(T)] ∪ [accσ(T) ∩ σd(T)]. Besides,
accσ(T)∩ σab(T) = [accσ(T)∩ σab(T)∩ σd(T)]∪ [accσ(T)∩ σab(T)∩ ρd(T)] ⊆ [accσ(T)∩ σd(T)]∪ [σ1(T)∩ σab(T)],
then ∂σ1(T) ∪ [accσ(T) ∩ σab(T)] ⊆ [σ1(T) ∩ σab(T)] ∪ [accσ(T) ∩ σd(T)]. Combining with the fact that the
opposite inclusion is clear, we know that σb(T) = [σ1(T)∩σab(T)]∪ [accσ(T)∩σd(T)]∪{λ ∈ σ(T) : n(T−λI) = 0}.
Therefore T ∈ (R) according to Theorem 2.1.

It is easy to see that if σa(T)\σab(T) ⊆ ρw(T) = σ(T)\σw(T) and π00(T) ⊆ ρw(T), then T satisfies property
(R). Therefore the property (R) is closely related to σw(T), then we get the following inclusions.

Corollary 2.4. Let T ∈ B(H), then the following statements are equivalent:
(1) T ∈ (R);
(2) σw(T) = [σ1(T) ∩ σSF+ (T)] ∪ {λ ∈ accσa(T) : n(T − λI) , d(T − λI)} ∪ {λ ∈ σ(T) : n(T − λI) = 0}.

Proof. (1)⇒ (2) The “ ⊇ ” is evident. By Corollary 2.3 we know that σb(T) = [σ1(T)∩σSF+ (T)]∪accσa(T)∪{λ ∈
σ(T) : n(T − λI) = 0}. According to σw(T) ⊆ σb(T), we have σw(T) ⊆ [σ1(T) ∩ σSF+ (T)] ∪ accσa(T) ∪ {λ ∈ σ(T) :
n(T − λI) = 0} = [σ1(T) ∩ σSF+ (T)] ∪ {λ ∈ accσa(T) : n(T − λI) , d(T − λI)} ∪ {λ ∈ accσa(T) : n(T − λI) =
d(T − λI)} ∪ {λ ∈ σ(T) : n(T − λI) = 0} ⊆ [σ1(T) ∩ σSF+ (T)] ∪ {λ ∈ accσa(T) : n(T − λI) , d(T − λI)} ∪ {λ ∈
accσa(T) : n(T − λI) = d(T − λI) = ∞} ∪ {λ ∈ C : n(T − λI) = d(T − λI) < ∞} ∪ {λ ∈ σ(T) : n(T − λI) = 0}, and
{λ ∈ accσa(T) : n(T−λI) = d(T−λI) = ∞} ⊆ σ1(T)∩σSF+ (T). Hence σw(T) ⊆ [σ1(T)∩σSF+ (T)]∪ {λ ∈ accσa(T) :
n(T − λI) , d(T − λI)} ∪ {λ ∈ σ(T) : n(T − λI) = 0}. It follows that σw(T) = [σ1(T) ∩ σSF+ (T)] ∪ {λ ∈ accσa(T) :
n(T − λI) , d(T − λI)} ∪ {λ ∈ σ(T) : n(T − λI) = 0}.

(2)⇒ (1) Noting that σb(T) = σw(T)∪ [σb(T)∩ρw(T)] ⊆ [σ1(T)∩σSF+ (T)]∪accσa(T)∪{λ ∈ σ(T) : n(T−λI) =
0} ∪ [σb(T) ∩ ρw(T)], and σb(T) ∩ ρw(T) ⊆ accσa(T), we see that σb(T) ⊆ [σ1(T) ∩ σSF+ (T)] ∪ accσa(T) ∪ {λ ∈
σ(T) : n(T − λI) = 0}. Also, σb(T) ⊇ [σ1(T) ∩ σSF+ (T)] ∪ accσa(T) ∪ {λ ∈ σ(T) : n(T − λI) = 0} is evident. Thus
T ∈ (R) by Corollary 2.3.

Similarly, in Corollary 2.4, we can also get each part of the decomposition of σw(T) can not be deleted
when T ∈ B(H) satisfies property (R) and we can get the following fact from Corollary 2.3.

Corollary 2.5. Let T ∈ B(H), then the following statements are equivalent:
(1) T ∈ (R);
(2) σw(T) = ∂σ1(T)∪ [intσ1(T)∩σSF+ (T)]∪ {λ ∈ accσa(T) : n(T−λI) , d(T−λI)} ∪ {λ ∈ σ(T) : n(T−λI) = 0};
(3) σw(T) = ∂σ1(T)∪ [accσ(T)∩ σSF+ (T)]∪ {λ ∈ accσa(T) : n(T −λI) , d(T −λI)} ∪ {λ ∈ σ(T) : n(T −λI) = 0}.

For T ∈ B(H), Hol(σ(T)) denotes the set of all functions which are analytic on a neighborhood of σ(T)
and are not constant on any component of σ(T). Given f ∈ Hol(σ(T)), we let f (T) denote the Riesz-Dounford
functional calculus of T with respect to f ([12]). Before giving the results that f (T) ∈ (R) for all f ∈ Hol(σ(T)),
we pay attention to the following fact firstly.

Remark 2.6. (i) T ∈ B(H) satisfies property (R) does not imply f (T) satisfies property (R) for all f ∈ Hol(σ(T)).
Let A,B ∈ B(ℓ2) be defined by

A(x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ),B(x1, x2, x3, · · · ) = (0, x2, x3, · · · ),

and put T =
(

A + I 0
0 B − I

)
, then σa(T) = {λ ∈ C : |λ − 1| = 1} ∪ {−1}, σab(T) = {λ ∈ C : |λ − 1| = 1} and

π00(T) = {−1}. So T ∈ (R). Set f1(z) = (z + 1)(z − 1), then 0 ∈ σa( f1(T))\σab( f1(T)), but 0 < π00( f1(T)). That is
f1(T) < (R).

(ii) We can not get T ∈ (R) if there exists some f ∈ Hol(σ(T)) such that f (T) satisfies property (R).
Let A ∈ B(ℓ2) be defined by (1) and let B ∈ B(ℓ2) be defined by B(x1, x2, x3, · · · ) = (0, 0, x2

2 ,
x3
3 , · · · ), and put

T =
(

A + I 0
0 B − I

)
, then σa(T2) = σab(T2) = {reiθ : r = 2(1 + cosθ),−π2 ≤ θ ≤

π
2 } ∪ {1} and π00(T2) = ∅. Hence

T2
∈ (R). However, σa(T) = σab(T) = {λ ∈ C : |λ − 1| = 1} ∪ {−1} and π00(T) = {−1}. It follows that T < (R).
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From the above Remark, T and f (T) satisfy property (R) are not directly connected. In the following, we
will give the sufficient and necessary conditions such that f (T) ∈ (R) for all f ∈ Hol(σ(T)) by means of σ1(T).

Theorem 2.7. Let T ∈ B(H), then f (T) ∈ (R) for all f ∈ Hol(σ(T)) if and only if the following conditions hold:
(1) T ∈ (R);
(2) if σ0(T) , ∅, then σb(T) = [σ1(T) ∩ σab(T)] ∪ [accσ(T) ∩ σd(T)].

Proof. “⇒ ” (1) holds evidently.
For (2), “ ⊇ ” is clear. For the converse, we take λ1 ∈ σ0(T) when σ0(T) , ∅. Then we firstly claim that

σ(T) = σa(T) and isoσ(T) ⊆ σp(T), where σp(T) = {λ ∈ C : n(T − λI) > 0}. In fact, take λ2 ∈ ρa(T) and put
f (z) = (z − λ1)(z − λ2), then 0 ∈ σa( f (T)) \ σab( f (T)). Since f (T) ∈ (R), we have f (T) is Browder and so is
T − λ2I. Accordingly, T − λ2I is invertible. So σ(T) = σa(T).

Next, we prove isoσ(T) ⊆ σp(T). Take λ3 ∈ isoσ(T) with n(T − λI) = 0 and set σ1 = {λ1}, σ2 = {λ3} and

σ3 = σ(T)\{λ1, λ3}. Then T can be represented as T =

 T1 0 0
0 T2 0
0 0 T3

 H(σ1; T)
H(σ2; T)
H(σ3; T),

by [11, Theorem 2.10],

where σ(Ti) = σi, i = 1, 2, 3. Let f (z) = (z − λ1)(z − λ3), then f (T) =

 f (T1) 0 0
0 f (T2) 0
0 0 f (T3)

 H(σ1; T)
H(σ2; T)
H(σ3; T)

. We

see that 0 ∈ isoσ( f (T)) and 0 < n( f (T)) < ∞. So, 0 ∈ π00( f (T)). It follows that f (T) is Browder and so is T−λ3I
according to f (T) ∈ (R). Then we get T − λ3I is invertible which is a contradiction. Hence isoσ(T) ⊆ σp(T).
We can obtain σb(T) = [σ1(T) ∩ σab(T)] ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0} by Theorem 2.1.
What’s more, {λ ∈ σ(T) : n(T − λI) = 0} ⊆ accσ(T) ∩ σd(T) according to σ(T) = σa(T) and isoσ(T) ⊆ σp(T).
Consequently, σb(T) = [σ1(T) ∩ σab(T)] ∪ [accσ(T) ∩ σd(T)].

“⇐ ” Take µ0 ∈ σa( f (T))\σab( f (T)) and assume that

f (T) − µ0I = (T − λ1I)n1 (T − λ2I)n2 · · · (T − λtI)nt1(T), (∗)

where λi , λ j if i , j and 1(T) is invertible. Since σab(T) satisfies the spectral mapping theorem, then
we have λi ∈ ρa(T) ∪ [σa(T) \ σab(T)] and there must exist some j(1 ≤ j ≤ t) such that λ j ∈ σa(T) \ σab(T).
Combining (1) we have λ j ∈ σ0(T), hence σ0(T) , ∅. From (2), noting that {λ ∈ isoσ(T) : n(T − λI) =
0} ∩ {[σ1(T) ∩ σab(T)] ∪ [accσ(T) ∩ σd(T)]} = ∅ and ρa(T) ∩ {[σ1(T) ∩ σab(T)] ∪ [accσ(T) ∩ σd(T)]} = ∅, thus
isoσ(T) ⊆ σp(T) and σa(T) = σ(T). Then T − λiI is Browder and so is f (T). Hence µ0 ∈ π00( f (T)). For the
converse, take arbitrarily µ0 ∈ π00( f (T)) and supposed that f (T)−µ0I has the same decomposition as above
(∗). Then λi ∈ isoσ(T) ∪ ρ(T) and n(T − λiI) < ∞ for 1 ≤ i ≤ t and there must exist some j(1 ≤ j ≤ t) such
that λ j ∈ isoσ(T) with n(T − λ jI) > 0. Combining (1) we have λ j ∈ σ0(T), hence σ(T) , ∅. Then we can
get λ j ∈ π00(T) according to isoσ(T) ⊆ σp(T). Due to T ∈ (R), then λ j ∈ σ0(T). Accordingly, λi < σb(T) for
1 ≤ i ≤ t. It follows that f (T) − µ0I is Browder. It suggests that π00( f (T)) ∈ σa( f (T)) \ σab( f (T)). Therefore,
f (T) ∈ (R).

Corollary 2.8. Let T ∈ B(H). Then f (T) ∈ (R) for all f ∈ Hol(σ(T)) if and only if one of the following conditions
hold:

(1) σ(T) = [σ1(T) ∩ σab(T)] ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0};
(2) σb(T) = [σ1(T) ∩ σab(T)] ∪ [accσ(T) ∩ σd(T)].

Proof. We firstly prove the sufficiency. If (1) holds, then σ0(T) = ∅ from σ0(T)∩ {[σ1(T)∩ σab(T)]∪ [accσ(T)∩
σd(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0}} = ∅. Hence we have σb(T) = [σ1(T) ∩ σab(T)] ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈
σ(T) : n(T − λI) = 0}. Then T ∈ (R) by Theorem 2.1. Also, σa(T) = σab(T) and π00(T) = ∅ due to the fact
that σ0(T) = ∅. In this case, σa( f (T)) = f (σa(T)) = f (σab(T)) = σab( f (T)) due to both σa(T) and σab(T) satisfy
the spectral mapping theorem. It is easy see that π00( f (T)) ⊆ f (π00(T)). Ultimately, f (T) ∈ (R) for all
f ∈ Hol(σ(T)).

If (2) holds, then T ∈ (R) is clear by Theorem 2.1. Suppose that σ0(T) = ∅, we have f (T) ∈ (R) combining
with the fact that T ∈ (R). Furthermore, we can get f (T) ∈ (R) for all f ∈ Hol(σ(T)) by Theorem 2.7 when
σ0(T) , ∅.
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Next, we will prove the necessity. We know T ∈ (R) is evident, so σb(T) = [σ1(T) ∩ σab(T)] ∪ [accσ(T) ∩
σd(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0} by Theorem 2.1;

Case 1 We can conclude σ(T) = [σ1(T) ∩ σab(T)] ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0} under the
condition σ0(T) = ∅. Namely, (1) holds.

Case 2 Under the condition σ0(T) , ∅, we can get (2) holds by Theorem 2.7.

From Corollary 2.3 and Corollary 2.4 we can describe the property (R) for operator functions through
σw(T).

Corollary 2.9. Let T ∈ B(H), then f (T) ∈ (R) for all f ∈ Hol(σ(T)) if and only if one of the following conditions
hold:

(1) σ(T) = [σ1(T) ∩ σSF+ (T)] ∪ accσa(T) ∪ {λ ∈ σ(T) : n(T − λI) = 0};
(2) σw(T) = [σ1(T) ∩ σSF+ (T)] ∪ {λ ∈ accσa(T) : n(T − λI) , d(T − λI)}.

3. Property (R) and Hypercyclic Operators

For an operator T ∈ B(H) and a vector x ∈ H , the orbit of x under T is the set of images of x under
successive iterates of T:

Orb(T, x) = {x,Tx,T2x,T3x, · · · }.

A vector x ∈ H is said to be hypercyclic if the set Orb(T, x) is norm dense in the whole space H . An
operator T ∈ B(H) is called hypercyclic if it has a hypercyclic vector. HC(H) denotes the norm-closure of all
hypercyclic operators inB(H) and T ∈ B(H) is said to have hypercyclic property if T ∈ HC(H). Hypercyclic
property was proposed by Hilden and Wallen ([14]) in 1974. Kitai has studied many fundamental results
regarding the theory of hypercyclic property in her thesis [15]. Also, the relationship between hypercyclic
property and Weyl type theorem was explored by Cao ([16]). Then we will continue the work. The following
lemma gives the simple description of hypercyclic property due to Herrero ([17]).

Lemma 3.1. Let T ∈ B(H), then T ∈ HC(H) if and only if the following statements hold:
(1) σw(T) ∪ ∂D is connected;
(2) σ0(T) = σ(T)\σb(T) = ∅;
(3) ∀λ ∈ ρSF(T), ind(T − λI) ≥ 0.

To begin with, we give examples which indicate that there is no direct relationship between property
(R) and hypercyclic property for T ∈ B(H) firstly.

Example 3.2. For instance: (i) Let A ∈ B(ℓ2) be defined by

A(x1, x2, x3, · · · ) = (0, 0,
x2

2
,

x3

3
, · · · ),

and put T = A + I, then T ∈ HC(H) by Lemma 3.1. But since σa(T) = σab(T) = π00(T) = {1}, we know T < (R).
Therefore T ∈ HC(H)⇏ T ∈ (R).

(ii) Let T ∈ B(ℓ2) be defined by
T(x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ),

then T ∈ (R). However, since ∀λ ∈ ρSF(T), ind(T−λI) ≤ 0, we have T < HC(H). Therefore T ∈ (R)⇏ T ∈ HC(H).
(iii) Let T ∈ B(ℓ2) be defined by A,B ∈ B(ℓ2) :

A(x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ),B(x1, x2, x3, · · · ) = (0, x2, x3, x4, · · · ),

and let T ∈ B(ℓ2 ⊕ ℓ2) be defined by T =
(

A 0
0 B

)
, then we have σa(T) = ∂D ∪ {0}, σa(T) = ∂D and π00(T) = ∅.

Also, ∀λ ∈ ρSF(T), ind(T − λI) ≤ 0. So T < (R) and T < HC(H). Thus there exists T ∈ B(H) such that T < (R) and
T < HC(H).
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(iv) Let T ∈ B(ℓ2) be defined by
T(x1, x2, x3, · · · ) = (x2, x3, · · · ),

then it is easy to see that T ∈ HC(H) by Lemma 3.1 and T ∈ (R). It follows that there exists T ∈ B(H) such that
T ∈ (R) and T ∈ HC(H).

In the following, we will give the conditions such that T ∈ (R) and T ∈ HC(H).

Theorem 3.3. Let T ∈ B(H). Suppose that σ(T) = [σ1(T) ∩ {λ ∈ C : n(T − λI) ≥ d(T − λI)}] ∪ [accσ(T) ∩ σd(T)]
and σw(T) ∪ ∂D is connected, then T ∈ HC(H) and T ∈ (R).

Proof. We can acquire σ0(T) = ∅ from σ0(T)∩ {[σ1(T)∩ {λ ∈ C : n(T−λI) ≥ d(T−λI)}]∪ [accσ(T)∩ σd(T)] = ∅.
Also, {λ ∈ ρSF(T) : ind(T − λI) > 0} ∩ {[σ1(T) ∩ {λ ∈ C : n(T − λI) ≥ d(T − λI)}] ∪ [accσ(T) ∩ σd(T)] = ∅, so
∀λ ∈ ρSF(T), ind(T − λI) ≥ 0. Therefore T ∈ HC(H) combining the fact that σw(T) ∪ ∂D is connected by
Lemma 3.1.

Next, we will prove T ∈ (R). It follows from (2) and (3) of Lemma 3.1 that σ(T) = σa(T) = σab(T) = σb(T)
. Observing that σ1(T) ∩ {λ ∈ C : n(T − λI) ≥ d(T − λI)} ⊆ σ1(T) = σ1(T) ∩ σ(T) = σ1(T) ∩ σab(T), thus
σb(T) ⊆ [σ1(T)∩ σab(T)]∪ [accσ(T)∩ σd(T)] ⊆ [σ1(T)∩ σab(T)]∪ [accσ(T)∩ σd(T)]∪ {λ ∈ σ(T) : n(T − λI) = 0}.
Moreover, [σ1(T) ∩ σab(T)] ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0} ⊆ σb(T) is evident. Hence
σb(T) = [σ1(T) ∩ σab(T)] ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0}. It follows that T ∈ (R) by Theorem
2.1.

Remark 3.4. If T ∈ (R) and T ∈ HC(H), we can not get σ(T) = [σ1(T) ∩ {λ ∈ C : n(T − λI) ≥ d(T − λI)}] ∪
[accσ(T) ∩ σd(T)].

For example: Let A ∈ B(ℓ2) be defined by

A(x1, x2, x3, · · · ) = (0, x1,
x2

2
,

x3

3
, · · · ),

and put T = A+ I, it is easy to see that T ∈ HC(H) and T ∈ (R). But since σ(T) = {1}, σ1(T)∩ {λ ∈ C : n(T − λI) ≥
d(T − λI)} = accσ(T) ∩ σd(T) = ∅, σ(T) , [σ1(T) ∩ {λ ∈ C : n(T − λI) ≥ d(T − λI)}] ∪ [accσ(T) ∩ σd(T)]. Then we
will give the necessary and sufficient conditions for which T ∈ HC(H) and T ∈ (R).

Corollary 3.5. Let T ∈ B(H), then T ∈ HC(H) and T ∈ (R) if and only if σ(T) = [σ1(T) ∩ {λ ∈ C : n(T − λI) ≥
d(T − λI)}] ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈ σa(T) : n(T − λI) = 0} and σw(T) ∪ ∂D is connected.

Proof. “⇒ ” We only need to prove σ(T) = [σ1(T)∩ {λ ∈ C : n(T −λI) ≥ d(T −λI)}]∪ [accσ(T)∩ σd(T)]∪ {λ ∈
σa(T) : n(T − λI) = 0} by Lemma 3.1. The inclusion “ ⊇ ” is clear. For the opposite inclusion, we know that
σb(T) = [σ1(T) ∩ σab(T)] ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0} by Theorem 2.1. It follows from
T ∈ HC(H) that σ(T) = σ1(T) ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈ σa(T) : n(T − λI) = 0} = [σ1(T) ∩ {λ ∈ C : n(T − λI) ≥
d(T−λI)}]∪[σ1(T)∩{λ ∈ C : n(T−λI) < d(T−λI)}]∪[accσ(T)∩σd(T)]∪{λ ∈ σa(T) : n(T−λI) = 0}. Meanwhile,
noting that σ1(T)∩ {λ ∈ C : n(T − λI) < d(T − λI)} ⊆ accσ(T)∩ σd(T), thus σ(T) = [σ1(T)∩ {λ ∈ C : n(T − λI) ≥
d(T − λI)}] ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈ σa(T) : n(T − λI) = 0}.

“ ⇐ ” Using the same way from the proof of Theorem 3.1, we can conclude that T ∈ HC(H) and
T ∈ (R).

Remark 3.6. In Corollary 3.5, each part of the decomposition of σb(T) can not be deleted when T ∈ (R) and
T ∈ HC(H).

(i) “σ1(T) ∩ {λ ∈ C : n(T − λI) ≥ d(T − λI)}” can not deleted.
Let T ∈ B(ℓ2) be defined by

T(x1, x2, x3, · · · ) = (x2, x3, · · · ),

then T ∈ HC(H) and T ∈ (R) by Lemma 3.1. But since σ(T) = D and accσ(T) ∩ σd(T) = {λ ∈ σa(T) : n(T − λI) =
0} = ∂D, we have σ(T) , [accσ(T) ∩ σd(T)] ∪ {λ ∈ σa(T) : n(T − λI) = 0}.
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(ii) “accσ(T) ∩ σd(T)” cannot deleted.
Let A,B ∈ B(ℓ2) be defined by

A = (ai j), ai j =

{
1, |i − j| = 1
0, |i − j| , 1 ,B(x1, x2, x3, · · · ) = (0, 0,

x2

2
,

x3

3
, · · · ),

and set T =
(

A 0
0 B

)
. Then T ∈ HC(H) by 3.1 and T ∈ (R) . But since σ(T) = [−2, 2], σ1(T)∩{λ ∈ C : n(T−λI) ≥

d(T − λI)} = ∅, and {λ ∈ σa(T) : n(T − λI) = 0} = [−2, 0) ∪ (0, 2], we have σ(T) , [σ1(T) ∩ {λ ∈ C : n(T − λI) ≥
d(T − λI)}] ∪ {λ ∈ σa(T) : n(T − λI) = 0}.

(iii) “{λ ∈ σa(T) : n(T − λI) = 0}” can not deleted.
Let A ∈ B(ℓ2) be defined by

A(x1, x2, x3, · · · ) = (0, x1,
x2

2
,

x3

3
, · · · ),

and let T = A+I. Then T ∈ HC(H) by Lemma 3.1 and T ∈ (R). But since σ(T) = {1} and σ1(T)∩{λ ∈ C : n(T−λI) ≥
d(T − λI)} = accσ(T) ∩ σd(T) = ∅, we have σ(T) , [σ1(T) ∩ {λ ∈ C : n(T − λI) ≥ d(T − λI)}] ∪ [accσ(T) ∩ σd(T)].

From Corollary 2.3, we can acquire the following results.

Corollary 3.7. Let T ∈ B(H), then the following statements are equivalent:
(1) T ∈ (R) and T ∈ HC(H);
(2) σ(T) = ∂σ1(T)∪ [accσ(T)∩{λ ∈ C : n(T−λI) ≥ d(T−λI)}]∪ [accσ(T)∩σd(T)]∪{λ ∈ σa(T) : n(T−λI) = 0}

and σw(T) ∪ ∂D is connected;
(3) σ(T) = ∂σ1(T) ∪ [accσ(T) ∩ σSF+ (T)] ∪ {λ ∈ accσa(T) : n(T − λI) , d(T − λI)} ∪ {λ ∈ σa(T) : n(T − λI) = 0}

and σw(T) ∪ ∂D is connected.

In the following, suppose that T ∈ HC(H), then the condition of equivalence that T ∈ (R) will change.
We get the following results.

Theorem 3.8. Let T ∈ B(H). Suppose that T ∈ HC(H), then T ∈ (R) if and only if σ(T) = σ1(T) ∪ [accσ(T) ∩
σd(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0}.

Proof. “ ⇒ ” We have σb(T) = [σ1(T) ∩ σab(T)] ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0} according
to T ∈ (R) by Theorem 2.1. So, from T ∈ HC(H), we conclude that σ1(T) ∩ σab(T) = σ1(T) ∩ σ(T) = σ1(T).
Therefore σ(T) = σ1(T) ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0}.

“ ⇐ ” we only need prove that π00(T) = ∅ based on σa(T) = σab(T). Observing that π00(T) ∩ {σ1(T) ∪
[accσ(T) ∩ σd(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0}} = ∅ and π00(T) ⊆ σ(T). Thus π00(T) = ∅.

Corollary 3.9. Let T ∈ B(H). Suppose that T ∈ HC(H), then the following statements are equivalent:
(1) T ∈ (R);
(2) σ(T) = ∂σ1(T) ∪ accσ(T) ∪ {λ ∈ σ(T) : n(T − λI) = 0};
(3) σw(T) = [σ1(T) ∩ σea(T)] ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0};
(4) f (T) ∈ (R).

According to Corollary 2.3 and Corollary 3.7, we can get the following corollary.

Corollary 3.10. Let T ∈ B(H). Suppose that T ∈ (R), then the following statements are equivalent:
(1) T ∈ HC(H);
(2) σ(T) = [σ1(T) ∩ {λ ∈ C : n(T − λI) ≥ d(T − λI)}] ∪ [accσ(T) ∩ σd(T)] ∪ {λ ∈ σa(T) : n(T − λI) = 0} and

σw(T) ∪ ∂D is connected;
(3) σ(T) = ∂σ1(T)∪ [accσ(T)∩{λ ∈ C : n(T−λI) ≥ d(T−λI)}]∪ [accσ(T)∩σd(T)]∪{λ ∈ σa(T) : n(T−λI) = 0}

and σw(T) ∪ ∂D is connected;
(4) σ(T) = ∂σ1(T) ∪ [accσ(T) ∩ σSF+ (T)] ∪ {λ ∈ accσa(T) : n(T − λI) , d(T − λI)} ∪ {λ ∈ σa(T) : n(T − λI) = 0}

and σw(T) ∪ ∂D is connected.
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Let T ∈ B(H) be defined by

A(x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ),B(x1, x2, x3, · · · ) = (x2, x3, · · · ),

and let T =
(

A 0
0 B

)
. Then σ1(T) = D, σ(T) = [σ1(T)∩{λ ∈ C : n(T−λI) ≥ d(T−λI)}]∪[accσ(T)∩σd(T)]∪{λ ∈

σa(T) : n(T − λI) = 0} and σw(T) ∪ ∂D is connected. The results are true in above conclusions.
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