Filomat 38:21 (2024), 7319–7328 https://doi.org/10.2298/FIL2421319J

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Property (*R*) and hypercyclicity for bounded linear operators

Yu Jing^a, Xiaohong Cao^a, Jiong Dong^b

^a School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710119, China ^bDepartment of Mathematics, Changzhi University, Changzhi, 046011, China

Abstract. Let \mathcal{H} be a complex infinite dimensional separable Hilbert space and let $\mathcal{B}(\mathcal{H})$ denote the algebra of bounded linear operators acting on \mathcal{H} . In this paper, we mainly characterize these bounded linear operators T on \mathcal{H} and their function calculus that satisfy property (R) by the new spectrum originated from the single-valued extension property. Meanwhile, the relationship between property (R) and hypercyclic property is also explored.

1. Introduction and preliminaries

Throughout this paper, \mathbb{C} and \mathbb{N} denote the set of all complex numbers and the set of all non-negative integers, respectively. Let \mathcal{H} be a complex infinite dimensional separable Hilbert space and $\mathcal{B}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . The unit closed disk on the complex plane \mathbb{C} is denoted by D. For $T \in \mathcal{B}(\mathcal{H})$, T^* , N(T) and R(T) stand for the adjoint, the kernel and the range of T, respectively. If R(T) is closed and $n(T) < \infty$, then we call T is an upper semi-Fredholm operator, while T is said to be lower semi-Fredholm if $d(T) < \infty$, where n(T) and d(T) denote the dimension of N(T) and the codimension of R(T), respectively. $T \in \mathcal{B}(\mathcal{H})$ is a semi-Fredholm operator if T is either an upper semi-Fredholm operator or a lower semi-Fredholm operator, while $T \in \mathcal{B}(\mathcal{H})$ is a Fredholm operator if T is both an upper semi-Fredholm operator and a lower semi-Fredholm operator. If T is semi-Fredholm, the index of T is defined as ind(T) = n(T) - d(T). In particular, we call $T \in \mathcal{B}(\mathcal{H})$ is a bounded below operator if T is upper semi-Fredholm with n(T) = 0. If T is semi-Fredholm with ind(T) = 0, then T is said to be a Weyl operator. The ascent and descent of T are defined respectively by $\operatorname{asc}(T) = \inf\{n \in \mathbb{N} : N(T^n) = N(T^{n+1})\}$ and des(*T*) = inf{ $n \in \mathbb{N}$: $R(T^n) = R(T^{n+1})$ }. If the infimum does not exist, then we write asc(*T*) = ∞ (resp. $des(T) = \infty$). T is called a Browder operator if it is Fredholm of finite ascent and descent, equivalently, T is semi-Fredholm and $T - \lambda I$ is invertible for sufficiently small $\lambda \neq 0$ in \mathbb{C} . T is called an upper semi-Weyl operator if it is upper semi-Fredholm with $ind(T) \leq 0$, while T is called an upper semi-Browder operator if it is upper semi-Fredholm of finite ascent. The spectrum $\sigma(T)$, the approximate point spectrum $\sigma_a(T)$, the upper semi-Fredholm spectrum $\sigma_{SF_{\star}}(T)$, the semi-Fredholm spectrum $\sigma_{SF}(T)$, the essential approximate

²⁰²⁰ Mathematics Subject Classification. Primary 47A53; Secondary 47A10, 47A16.

Keywords. property (*R*); single-valued extension property; hypercyclic property.

Received: 21 November 2023; Accepted: 25 December 2023

Communicated by Dragan S. Djordjević

Research supported by National Natural Science Foundation of China (Grant No. 12101081) and Fundamental Research Program of Shanxi Province (Grant No. 20210302124079).

^{*} Corresponding author: Yu Jing

Email addresses: jingyu2520@163.com (Yu Jing), xiaohongcao@snnu.edu.cn (Xiaohong Cao), dongjiong1314@163.com (Jiong Dong)

point spectrum $\sigma_{ea}(T)$, the Browder essential approximate point spectrum $\sigma_{ab}(T)$, the Weyl spectrum $\sigma_w(T)$ and the Browder spectrum $\sigma_b(T)$ of T are defined respectively by

 $\sigma(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not an invertible operator}\},\$

 $\sigma_a(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not a bounded below operator}\},\$

 $\sigma_{SF_{+}}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not an upper semi-Fredholm operator}\},\$

 $\sigma_{ea}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not an upper semi-Weyl operator}\},\$

 $\sigma_{ab}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not an upper semi-Browder operator}\},\$

 $\sigma_w(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not a Weyl operator}\},\$

 $\sigma_b(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not a Browder operator}\},\$

 $\sigma_{SF}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not a semi-Fredholm operator}\}.$

Let $\rho(T) = \mathbb{C} \setminus \sigma(T)$, $\rho_a(T) = \mathbb{C} \setminus \sigma_a(T)$, $\rho_w(T) = \mathbb{C} \setminus \sigma_w(T)$, $\rho_{SF_+}(T) = \mathbb{C} \setminus \sigma_{SF_+}(T)$, $\rho_{F_+}(T) = \mathbb{C} \setminus \sigma_{SF_+}(T)$, $\rho_{Ab}(T) = \mathbb{C} \setminus \sigma_{ab}(T)$ and $\rho_b(T) = \mathbb{C} \setminus \sigma_b(T)$. $\sigma_0(T)$ is denoted by the set of all normal eigenvalues of *T*, that is $\sigma_0(T) = \sigma(T) \setminus \sigma_b(T)$. For a set $E \subseteq \mathbb{C}$, we write ∂E , int*E*, iso*E* and acc*E* as the set of boundary points, interior point, isolated points and accumulation points of *E*.

For a Cauchy domain ([1]) Ω , if all the curves of $\partial \Omega$ are regular analytic Jordan curves, we say that Ω is an analytic Cauchy domain. For $T \in \mathcal{B}(\mathcal{H})$, if σ is a clopen subset of $\sigma(T)$, then there exists an analytic Cauchy domain Ω such that $\sigma \subseteq \Omega$ and $[\sigma(T) \setminus \sigma] \cap \overline{\Omega} = \emptyset$, where $\overline{\Omega}$ is the closure of Ω . We denote by $E(\sigma; T)$ the Riesz idempotent of corresponding to σ , i.e.,

$$E(\sigma;T) = \frac{1}{2\pi i} \int_{\Gamma} (\lambda I - T)^{-1} d\lambda,$$

where $\Gamma = \partial \Omega$ is positively oriented with respect to Ω in the sense of complex variable theory. In this case, we have $\mathcal{H}(\sigma; T) = \mathcal{R}(E(\sigma; T))$. Clearly, if $\lambda \in iso\sigma(T)$, then $\{\lambda\}$ is a clopen subset of $\sigma(T)$. We write $\mathcal{H}(\sigma; T) = \mathcal{R}(E(\sigma; T))$. We write $\mathcal{H}(\lambda; T)$ instead of $\mathcal{H}(\{\lambda\}; T)$; if in addition, dim $\mathcal{H}(\lambda; T) < \infty$, then $\lambda \in \sigma_0(T)$.

The single-valued property (SVEP) plays an important role for bounded operators on complex Hilbert spaces. $T \in \mathcal{B}(\mathcal{H})$ is said to have the single-valued extension property at $\lambda_0 \in \mathbb{C}$ (SVEP at λ_0 for short) if for any open disc \mathbb{D}_{λ_0} centered at λ_0 , the only analytic function $f : \mathbb{D}_{\lambda_0} \to X$ satisfying the equation $(T - \lambda I)f(\lambda) = 0$ for all $\lambda \in \mathbb{D}_{\lambda_0}$ is the function $f \equiv 0$ ([2]). Moreover, $T \in \mathcal{B}(\mathcal{H})$ is said to have SVEP if *T* has SVEP at every point $\lambda \in \mathbb{C}$.

It is evident that $T \in \mathcal{B}(\mathcal{H})$ has SVEP at every point of the resolvent $\rho(T)$ and T has SVEP at every point of the bounded $\partial \sigma(T)$ of the spectrum $\sigma(T)$ according to the identity theorem for analytic functions. Especially, T has SVEP at every isolated point of the spectrum $\sigma(T)$. Besides, if $\operatorname{asc}(T) < \infty$, then T has SVEP at 0 and $n(T) \leq d(T)$ ([3]).

The variants of Weyl's theorem have been explored in lots of papers [5-6] since Weyl's theorem was discovered by Weyl ([4]) in 1909. Property (*R*) is one of these variants that has been introduced by Aiena,*P*. in 2011, and was discussed by many authors ([8, 9]). $T \in \mathcal{B}(\mathcal{H})$ is said to satisfy property (*R*) ([7, Definition 2.3]), if

$$\sigma_a(T) \setminus \sigma_{ab}(T) = \pi_{00}(T),$$

where $\pi_{00}(T) = \{\lambda \in iso\sigma(T) : 0 < n(T - \lambda I) < \infty\}$. In the following, we will define a new spectrum stemmed from the single-valued extension property to continue to study the property *R*.

The new spectrum set is defined as follows. Let

 $\rho_1(T) = \{\lambda \in \mathbb{C} : n(T - \lambda I) < \infty, \text{ there exists } \epsilon > 0 \text{ such that } T \text{ and } T^*$

both have SVEP at
$$\mu$$
 if $0 < |\mu - \lambda| < \epsilon$ },

and let $\sigma_1(T) = \mathbb{C} \setminus \rho_1(T)$. Obviously, $\sigma_1(T) \subseteq \sigma_b(T) \subseteq \sigma(T)$.

Remark 1.1. (*i*) $\sigma_1(T)$ may be an emptyset.

For instance, let $T \in \mathcal{B}(\ell^2)$ be defined by

$$T(x_1, x_2, x_3, \cdots) = (0, 0, \frac{x_2}{2}, \frac{x_3}{3}, \cdots).$$

Then T is a quasinilpotent operator with n(T) = 0 and $\sigma(T) = \sigma(T^*) = \{0\}$. Thus T and T^{*} both have SVEP at every $\lambda \in B^0(0)$, where $B^0(0)$ is a deleted neighbourhood of 0. Hence $\sigma_1(T) = \emptyset$ by the definition of $\rho_1(T)$.

(*ii*) $\sigma_1(T)$ *is a clopen set.*

(a) If $int\sigma(T) = \emptyset$ and $n(T - \lambda_0 I) < \infty$ for some $\lambda_0 \in \sigma(T) \cap acc\{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\}$, then $\sigma_1(T)$ is not a closed set.

For example, let $A, B \in \mathcal{B}(\ell^2)$ *be defined by*

$$A(x_1, x_2, x_3, \dots) = (0, x_1, \frac{x_2}{2}, \frac{x_3}{3}, \dots), B(x_1, x_2, x_3, \dots) = (0, x_1, 0, \frac{x_3}{3}, 0, \frac{x_5}{5}, \dots)$$

and $T \in \mathcal{B}(\ell^2 \oplus \ell^2)$ be defined by $T = \begin{pmatrix} A & 0 & 0 & \dots \\ 0 & B+I & 0 & \dots \\ 0 & 0 & B+\frac{I}{2} & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$, then $0 \in \sigma(T)$, $n(T) = 0 < \infty$ and $0 \in acc \{\lambda \in \mathbb{C} :$

 $n(T - \lambda I) = \infty$ } $\subseteq acc\sigma_1(T)$, but $0 \notin \sigma_1(T)$. Therefore $\sigma_1(T)$ is not a closed set.

(b) $\sigma_1(T)$ is a closed set when $n(T - \lambda I) < \infty$ or $d(T - \lambda I) < \infty$ for any $\lambda \in int\sigma(T)$.

Suppose that $n(T - \lambda I) < \infty$ for any $\lambda \in int\sigma(T)$, then we claim that $\sigma_1(T)$ is a closed set. In fact, if not, then there exists a point $\lambda_0 \in \partial \sigma_1(T) \cap \rho_1(T)$. We can get there exists a deleted neighbourhood $B^0(\lambda_0)$ of λ_0 such that T and T^{*} have SVEP at every $\lambda \in B^0(\lambda_0)$ by the definition of $\rho_1(T)$. Take $\lambda_1 \in B^0(\lambda_0) \cap \sigma_1(T)$, then there exists a neighbourhood $B(\lambda_1) \subseteq B^0(\lambda_0)$ of λ_1 such that $B(\lambda_1) \subseteq \sigma_1(T)$. That is to say that $\lambda_1 \in int\sigma_1(T) \subseteq int\sigma(T)$. Then $n(T - \lambda_1 I) < \infty$ and T and T^{*} both have SVEP at every $\lambda \in B^0(\lambda_1) \subseteq B^0(\lambda_0)$, hence $\lambda_1 \in \rho_1(T)$, which is a contradiction.

Assume that $d(T - \lambda I) < \infty$ for any $\lambda \in int\sigma(T)$. Similar to the proof of the above, we can take $\lambda_1 \in B^0(\lambda_0) \cap \sigma_1(T)$, then we know $\lambda_1 \in int\sigma_1(T) \subseteq int\sigma(T)$. Thus $d(T - \lambda_1 I) < \infty$. So then, $T - \lambda_1 I$ is Browder ([10, Lemma 3.4]) according to T and T^{*} both have SVEP at λ_1 , which is a contradiction to $\lambda_1 \in int\sigma(T)$.

2. Property (R) for bounded linear operators and their operator functions

In this section, we will give some characterizations for bounded linear operators and their function calculus that satisfy property (*R*) by way of the new spectrum set $\sigma_1(T)$. Let $\sigma_d(T) = \{\lambda \in \mathbb{C} : R(T - \lambda I) \text{ is not closed }\}$. Then we have the following inclusions.

Theorem 2.1. Let $T \in \mathcal{B}(\mathcal{H})$, then the following statements are equivalent: (1) *T* satisfies the property (*R*); (2) $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [acc\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}.$

Proof. (1) \Rightarrow (2). The inclusion " \supseteq " is obvious. For the opposite inclusion, take arbitrarily $\lambda_0 \notin [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$, without loss of generality, suppose that $\lambda_0 \in \sigma(T)$, then $n(T - \lambda_0 I) > 0$.

Case1 Suppose that $\lambda_0 \notin \sigma_1(T)$, then $0 < n(T - \lambda_0 I) < \infty$ and there exists $\epsilon_1 > 0$ such that T and T^* both have SVEP at every $\lambda \in B^0(\lambda_0, \epsilon_1)$, where $B^0(\lambda_0, \epsilon_1)$ is a deleted neighbourhood of λ_0 . If $\lambda_0 \notin \operatorname{acc}(T)$, then $\lambda_0 \in \pi_{00}(T)$. Since T satisfies property (R), we can get $\lambda_0 \notin \sigma_b(T)$. If $\lambda_0 \notin \sigma_d(T)$, then $T - \lambda_0 I$ is an upper semi-Fredholm operator. By the punctured neighborhood theorem of semi-Fredholm operators, there exists $\epsilon < \epsilon_1$ such that $T - \lambda I$ is upper semi-Fredholm and $N(T - \lambda I) \subseteq \bigcap_{n=1}^{\infty} R[(T - \lambda I)^n)]$ if $0 < |\lambda - \lambda_0| < \epsilon$. Noting that T and T^* both have SVEP at λ , we know $T - \lambda I$ is a Browder operator ([10, Lemma 3.4]). From $N(T - \lambda I) \subseteq \bigcap_{n=1}^{\infty} R[(T - \lambda I)^n)]$, we see $T - \lambda I$ is invertible. Namely, $\lambda_0 \in \operatorname{iso}(T)$. Therefore $\lambda_0 \notin \sigma_b(T)$ combining with the fact that $T - \lambda_0 I$ is an upper semi-Fredholm operator.

Case2 Suppose that $\lambda_0 \notin \sigma_{ab}(T)$, then $\lambda_0 \in \sigma_a(T) \setminus \sigma_{ab}(T)$. Since *T* satisfies property (*R*), we can get $\lambda_0 \notin \sigma_b(T)$.

(2) \Rightarrow (1). It is obvious that {[$\sigma_a(T) \setminus \sigma_{ab}(T)$] $\cup \pi_{00}(T)$ } $\cap [\sigma_1(T) \cap \sigma_{ab}(T)] = \emptyset$, {[$\sigma_a(T) \setminus \sigma_{ab}(T)$] $\cup \pi_{00}(T)$ } $\cap [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] = \emptyset$, and {[$\sigma_a(T) \setminus \sigma_{ab}(T)$] $\cup \pi_{00}(T)$ } $\cap \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} = \emptyset$. Accordingly, [$\sigma_a(T) \setminus \sigma_{ab}(T)$] $\cup \pi_{00}(T) = \sigma_0(T)$. It follows that $T \in (R)$. \Box

Remark 2.2. In Theorem 2.1, suppose $T \in \mathcal{B}(\mathcal{H})$ satisfies property (R), then each part of the decomposition of $\sigma_b(T)$ can not be deleted.

(a) Let $T \in \mathcal{B}(\ell^2)$ be defined by

$$T(x_1, x_2, x_3, \cdots) = (0, x_2, x_3, \cdots),$$

then we have $\sigma_a(T) = \{0, 1\}, \sigma_{ab}(T) = \{1\}$ and $\pi_{00}(T) = \{0\}$. So $T \in (R)$. But $\sigma_b(T) \neq [acc\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$. That is $\sigma_1(T) \cap \sigma_{ab}(T)$ can not deleted.

(b) Let $A, B \in \mathcal{B}(\ell^2)$ be defined by

$$A = (a_{ij}), a_{ij} = \begin{cases} 1, |i-j| = 1\\ 0, |i-j| \neq 1 \end{cases}, B(x_1, x_2, x_3, \cdots) = (0, 0, \frac{x_2}{2}, \frac{x_3}{3}, \cdots),$$

and put $T \in \mathcal{B}(\ell^2 \oplus \ell^2)$ be $T = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, then we have $\sigma_a(T) = \sigma_{ab}(T) = [-2, 2]$ and $\pi_{00}(T) = \emptyset$. Clearly, $T \in (R)$. However, $\sigma_b(T) \neq [\sigma_1(T) \cap \sigma_{ab}(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$. So $acc\sigma(T) \cap \sigma_d(T)$ can not deleted.

(c) Let $T \in \mathcal{B}(\ell^2)$ be defined by

$$T(x_1, x_2, x_3, \cdots) = (0, x_1, x_2, x_3, \cdots),$$

then $\sigma_a(T) = \sigma_{ab}(T) = \partial \mathbb{D}$ and $\pi_{00}(T) = \emptyset$. It follows that $T \in (R)$. But $\sigma_b(T) \neq [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [acc\sigma(T) \cap \sigma_d(T)]$, we know $\{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$ can not deleted.

Corollary 2.3. Let $T \in \mathcal{B}(\mathcal{H})$, then the following statements are equivalent: (1) $T \in (R)$;

 $(2) \sigma_b(T) = [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup acc\sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\};$ $(3) \sigma_b(T) = \partial \sigma_1(T) \cup [int\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup acc\sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\};$ $(4) \sigma_b(T) = \partial \sigma_1(T) \cup [acc\sigma(T) \cap \sigma_{ab}(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}.$

Proof. (1) \Rightarrow (2) By Theorem 2.1 we know that $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$. Since $[\sigma_1(T) \cap \sigma_{ab}(T)] = [\sigma_1(T) \cap \sigma_{ab}(T) \cap \sigma_{SF_+}(T)] \cup [\sigma_1(T) \cap \sigma_{ab}(T) \cap \rho_{SF_+}(T)] \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \operatorname{acc}\sigma_a(T)$, and $\operatorname{acc}\sigma(T) \cap \sigma_d(T) = [\operatorname{acc}\sigma(T) \cap \sigma_d(T) \cap \operatorname{acc}\sigma_a(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T) \cap \operatorname{iso}\sigma_a(T)] \subseteq \operatorname{acc}\sigma_a(T) \cup [\sigma_1(T) \cap \sigma_{SF_+}(T)]$, we can get $\sigma_b(T) \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \operatorname{acc}\sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$. The opposite inclusion is clear, then we have $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \operatorname{acc}\sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$.

(2) \Rightarrow (1) We only need to prove that $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$ by Theorem 2.1. The " \supseteq " is clear. Next we prove the opposite inclusion. $\operatorname{acc}\sigma_a(T) = [\operatorname{acc}\sigma_a(T) \cap \sigma_d(T)] \cup [\operatorname{acc}\sigma_a(T) \cap \sigma_d(T)] \cup [\operatorname{acc}\sigma_a(T) \cap \sigma_d(T)] \cup [\sigma_1(T) \cap \sigma_{ab}(T)]$, thus $\sigma_b(T) \subseteq [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$. It follows that $T \in (R)$ by Theorem 2.1.

(2) \Rightarrow (3) Noting that $\sigma_1(T) \cap \sigma_{SF_+}(T) = [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup [int\sigma_1(T) \cap \sigma_{SF_+}(T)] \subseteq \partial \sigma_1(T) \cup [int\sigma_1(T) \cap \sigma_{SF_+}(T)]$, then $\sigma_b(T) \subseteq \partial \sigma_1(T) \cup [int\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \operatorname{acc}\sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$. Also, the opposite inclusion is obvious. Hence $\sigma_b(T) = \partial \sigma_1(T) \cup [int\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \operatorname{acc}\sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$.

 $(3) \Rightarrow (2) \text{ Since } \partial \sigma_1(T) = [\partial \sigma_1(T) \cap \sigma_1(T)] \cup [\partial \sigma_1(T) \cap \rho_1(T)] \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \operatorname{acc}\sigma_a(T) \text{ and } \operatorname{int}\sigma_1(T) \cap \sigma_{SF_+}(T)] \subseteq \sigma_1(T) \cap \sigma_{SF_+}(T), \ \sigma_b(T) \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \operatorname{acc}\sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}, \text{ we have } \sigma_b(T) = [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \operatorname{acc}\sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}.$

 $(1) \Rightarrow (4) \text{ By Theorem 2.1 we have } \sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}. \text{ It is evident that } \operatorname{acc}\sigma(T) \cap \sigma_d(T) \subseteq \operatorname{acc}\sigma(T) \cap \sigma_{ab}(T). \text{ Moreover, } [\sigma_1(T) \cap \sigma_{ab}(T)] = [\sigma_1(T) \cap \sigma_{ab}(T) \cap \partial \sigma_1(T)] \cup [\operatorname{int}\sigma_1(T) \cap \sigma_{ab}(T)] \subseteq \partial \sigma_1(T) \cup [\operatorname{acc}\sigma(T) \cap \sigma_{ab}(T)], \text{ thus } \sigma_b(T) = \partial \sigma_1(T) \cup [\operatorname{acc}\sigma(T) \cap \sigma_{ab}(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}.$

 $(4) \Rightarrow (1) \text{ Observing that } \partial \sigma_1(T) = [\partial \sigma_1(T) \cap \sigma_1(T)] \cup [\partial \sigma_1(T) \cap \rho_1(T)], [\partial \sigma_1(T) \cap \sigma_1(T)] = [\partial \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T)] \cup [\partial \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T)] \cup [\partial \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T)] \cup [\partial \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T)] \cup [\partial \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T)] \cup [\partial \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T)] \cup [\partial \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T)] \cup [\partial \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T)] \cup [\partial \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T)] \cup [\partial \sigma_1(T) \cap \sigma_1(T)] \cup [\partial \sigma_1(T) \cap \sigma$

 $\rho_1(T) \cap \rho_d(T)] \subseteq [\operatorname{acc}\sigma(T) \cap \sigma_d(T)]$, we can acquire $\partial \sigma_1(T) \subseteq [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)]$. Besides, $\operatorname{acc}\sigma(T) \cap \sigma_{ab}(T) = [\operatorname{acc}\sigma(T) \cap \sigma_{ab}(T) \cap \sigma_d(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_{ab}(T) \cap \rho_d(T)] \subseteq [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup [\sigma_1(T) \cap \sigma_{ab}(T)]$, then $\partial \sigma_1(T) \cup [\operatorname{acc}\sigma(T) \cap \sigma_{ab}(T)] \subseteq [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)]$. Combining with the fact that the opposite inclusion is clear, we know that $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$. Therefore $T \in (R)$ according to Theorem 2.1. \Box

It is easy to see that if $\sigma_a(T) \setminus \sigma_{ab}(T) \subseteq \rho_w(T) = \sigma(T) \setminus \sigma_w(T)$ and $\pi_{00}(T) \subseteq \rho_w(T)$, then *T* satisfies property (*R*). Therefore the property (*R*) is closely related to $\sigma_w(T)$, then we get the following inclusions.

Corollary 2.4. Let $T \in \mathcal{B}(\mathcal{H})$, then the following statements are equivalent: (1) $T \in (\mathbb{R})$; (2) $\sigma_w(T) = [\sigma_1(T) \cap \sigma_{SF_*}(T)] \cup \{\lambda \in acc\sigma_a(T) : n(T - \lambda I) \neq d(T - \lambda I)\} \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}.$

Proof. (1) \Rightarrow (2) The " \supseteq " is evident. By Corollary 2.3 we know that $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \operatorname{acc} \sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$. According to $\sigma_w(T) \subseteq \sigma_b(T)$, we have $\sigma_w(T) \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \operatorname{acc} \sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} = [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \{\lambda \in \operatorname{acc} \sigma_a(T) : n(T - \lambda I) \neq d(T - \lambda I)\} \cup \{\lambda \in \operatorname{acc} \sigma_a(T) : n(T - \lambda I) = 0\} \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \{\lambda \in \operatorname{acc} \sigma_a(T) : n(T - \lambda I)\} \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \{\lambda \in \operatorname{acc} \sigma_a(T) : n(T - \lambda I)\} \cup \{\lambda \in \sigma(T) : n(T - \lambda I)\} = 0\} \cup \{\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I) < \infty\} \cup \{\lambda \in \sigma(T) : n(T - \lambda I)\} = 0\}$, and $\{\lambda \in \operatorname{acc} \sigma_a(T) : n(T - \lambda I)\} = d(T - \lambda I) = \infty\} \subseteq \sigma_1(T) \cap \sigma_{SF_+}(T)$. Hence $\sigma_w(T) \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \{\lambda \in \operatorname{acc} \sigma_a(T) : n(T - \lambda I)\} = d(T - \lambda I)\} \cup \{\lambda \in \sigma(T) : n(T - \lambda I)\} = 0\}$. It follows that $\sigma_w(T) = [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \{\lambda \in \operatorname{acc} \sigma_a(T) : n(T - \lambda I)\} \cup \{\lambda \in \sigma(T) : n(T - \lambda I)\} = 0\}$.

(2) \Rightarrow (1) Noting that $\sigma_b(T) = \sigma_w(T) \cup [\sigma_b(T) \cap \rho_w(T)] \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \operatorname{acc}\sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} \cup [\sigma_b(T) \cap \rho_w(T)]$, and $\sigma_b(T) \cap \rho_w(T) \subseteq \operatorname{acc}\sigma_a(T)$, we see that $\sigma_b(T) \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \operatorname{acc}\sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$. Also, $\sigma_b(T) \supseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \operatorname{acc}\sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$ is evident. Thus $T \in (R)$ by Corollary 2.3. \Box

Similarly, in Corollary 2.4, we can also get each part of the decomposition of $\sigma_w(T)$ can not be deleted when $T \in \mathcal{B}(\mathcal{H})$ satisfies property (*R*) and we can get the following fact from Corollary 2.3.

Corollary 2.5. Let $T \in \mathcal{B}(\mathcal{H})$, then the following statements are equivalent:

(1) $T \in (R);$

 $(2) \sigma_w(T) = \partial \sigma_1(T) \cup [int\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \{\lambda \in acc\sigma_a(T) : n(T - \lambda I) \neq d(T - \lambda I)\} \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\};$ $(3) \sigma_w(T) = \partial \sigma_1(T) \cup [acc\sigma(T) \cap \sigma_{SF_+}(T)] \cup \{\lambda \in acc\sigma_a(T) : n(T - \lambda I) \neq d(T - \lambda I)\} \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}.$

For $T \in \mathcal{B}(\mathcal{H})$, $Hol(\sigma(T))$ denotes the set of all functions which are analytic on a neighborhood of $\sigma(T)$ and are not constant on any component of $\sigma(T)$. Given $f \in Hol(\sigma(T))$, we let f(T) denote the Riesz-Dounford functional calculus of T with respect to f ([12]). Before giving the results that $f(T) \in (R)$ for all $f \in Hol(\sigma(T))$, we pay attention to the following fact firstly.

Remark 2.6. (*i*) $T \in \mathcal{B}(\mathcal{H})$ satisfies property (R) does not imply f(T) satisfies property (R) for all $f \in Hol(\sigma(T))$. Let $A, B \in \mathcal{B}(\ell^2)$ be defined by

$$A(x_1, x_2, x_3, \cdots) = (0, x_1, x_2, x_3, \cdots), B(x_1, x_2, x_3, \cdots) = (0, x_2, x_3, \cdots),$$

and put $T = \begin{pmatrix} A + I & 0 \\ 0 & B - I \end{pmatrix}$, then $\sigma_a(T) = \{\lambda \in \mathbb{C} : |\lambda - 1| = 1\} \cup \{-1\}, \sigma_{ab}(T) = \{\lambda \in \mathbb{C} : |\lambda - 1| = 1\}$ and $\pi_{00}(T) = \{-1\}$. So $T \in (R)$. Set $f_1(z) = (z + 1)(z - 1)$, then $0 \in \sigma_a(f_1(T)) \setminus \sigma_{ab}(f_1(T))$, but $0 \notin \pi_{00}(f_1(T))$. That is $f_1(T) \notin (R)$.

(ii) We can not get $T \in (R)$ if there exists some $f \in Hol(\sigma(T))$ such that f(T) satisfies property (R).

Let $A \in \mathcal{B}(\ell^2)$ be defined by (1) and let $B \in B(\ell^2)$ be defined by $B(x_1, x_2, x_3, \dots) = (0, 0, \frac{x_2}{2}, \frac{x_3}{3}, \dots)$, and put $T = \begin{pmatrix} A + I & 0 \\ 0 & B - I \end{pmatrix}$, then $\sigma_a(T^2) = \sigma_{ab}(T^2) = \{re^{i\theta} : r = 2(1 + \cos\theta), -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}\} \cup \{1\}$ and $\pi_{00}(T^2) = \emptyset$. Hence $T^2 \in (R)$. However, $\sigma_a(T) = \sigma_{ab}(T) = \{\lambda \in \mathbb{C} : |\lambda - 1| = 1\} \cup \{-1\}$ and $\pi_{00}(T) = \{-1\}$. It follows that $T \notin (R)$.

From the above Remark, T and f(T) satisfy property (R) are not directly connected. In the following, we will give the sufficient and necessary conditions such that $f(T) \in (R)$ for all $f \in Hol(\sigma(T))$ by means of $\sigma_1(T)$.

Theorem 2.7. Let $T \in \mathcal{B}(\mathcal{H})$, then $f(T) \in (\mathbb{R})$ for all $f \in Hol(\sigma(T))$ if and only if the following conditions hold: (1) $T \in (R);$

(2) if $\sigma_0(T) \neq \emptyset$, then $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [acc\sigma(T) \cap \sigma_d(T)]$.

Proof. " \Rightarrow " (1) holds evidently.

For (2), " \supseteq " is clear. For the converse, we take $\lambda_1 \in \sigma_0(T)$ when $\sigma_0(T) \neq \emptyset$. Then we firstly claim that $\sigma(T) = \sigma_a(T)$ and iso $\sigma(T) \subseteq \sigma_v(T)$, where $\sigma_v(T) = \{\lambda \in \mathbb{C} : n(T - \lambda I) > 0\}$. In fact, take $\lambda_2 \in \rho_a(T)$ and put $f(z) = (z - \lambda_1)(z - \lambda_2)$, then $0 \in \sigma_a(f(T)) \setminus \sigma_{ab}(f(T))$. Since $f(T) \in (R)$, we have f(T) is Browder and so is $T - \lambda_2 I$. Accordingly, $T - \lambda_2 I$ is invertible. So $\sigma(T) = \sigma_a(T)$.

Next, we prove $iso\sigma(T) \subseteq \sigma_p(T)$. Take $\lambda_3 \in iso\sigma(T)$ with $n(T - \lambda I) = 0$ and set $\sigma_1 = \{\lambda_1\}, \sigma_2 = \{\lambda_3\}$ and

 $\sigma_3 = \sigma(T) \setminus \{\lambda_1, \lambda_3\}$. Then *T* can be represented as $T = \begin{pmatrix} T_1 & 0 & 0 \\ 0 & T_2 & 0 \\ 0 & 0 & T_3 \end{pmatrix} \begin{pmatrix} H(\sigma_1; T) \\ H(\sigma_2; T) \\ H(\sigma_3; T), \end{pmatrix}$ by [11, Theorem 2.10],

where $\sigma(T_i) = \sigma_i$, i = 1, 2, 3. Let $f(z) = (z - \lambda_1)(z - \lambda_3)$, then $f(T) = \begin{pmatrix} f(T_1) & 0 & 0 \\ 0 & f(T_2) & 0 \\ 0 & 0 & f(T_3) \end{pmatrix} \begin{pmatrix} H(\sigma_1; T) \\ H(\sigma_2; T) \\ H(\sigma_3; T) \\ H(\sigma_3; T) \end{pmatrix}$ $H(\sigma_2;T)$. We

see that $0 \in iso\sigma(f(T))$ and $0 < n(f(T)) < \infty$. So, $0 \in \pi_{00}(f(T))$. It follows that f(T) is Browder and so is $T - \lambda_3 I$ according to $f(T) \in (R)$. Then we get $T - \lambda_3 I$ is invertible which is a contradiction. Hence iso $\sigma(T) \subseteq \sigma_p(T)$. We can obtain $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$ by Theorem 2.1. What's more, $\{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} \subseteq \operatorname{acc}\sigma(T) \cap \sigma_d(T)$ according to $\sigma(T) = \sigma_a(T)$ and $\operatorname{iso}\sigma(T) \subseteq \sigma_p(T)$. Consequently, $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)].$

" \Leftarrow " Take $\mu_0 \in \sigma_a(f(T)) \setminus \sigma_{ab}(f(T))$ and assume that

$$f(T) - \mu_0 I = (T - \lambda_1 I)^{n_1} (T - \lambda_2 I)^{n_2} \cdots (T - \lambda_t I)^{n_t} g(T), \quad (*)$$

where $\lambda_i \neq \lambda_j$ if $i \neq j$ and g(T) is invertible. Since $\sigma_{ab}(T)$ satisfies the spectral mapping theorem, then we have $\lambda_i \in \rho_a(T) \cup [\sigma_a(T) \setminus \sigma_{ab}(T)]$ and there must exist some $j(1 \le j \le t)$ such that $\lambda_j \in \sigma_a(T) \setminus \sigma_{ab}(T)$. Combining (1) we have $\lambda_i \in \sigma_0(T)$, hence $\sigma_0(T) \neq \emptyset$. From (2), noting that $\{\lambda \in iso_{\sigma}(T) : n(T - \lambda I) = 0\}$ $0\} \cap \{[\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)]\} = \emptyset \text{ and } \rho_a(T) \cap \{[\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)]\} = \emptyset, \text{ thus } v_a(T) \cap v_a(T) \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)]\} = \emptyset$ $iso\sigma(T) \subseteq \sigma_p(T)$ and $\sigma_a(T) = \sigma(T)$. Then $T - \lambda_i I$ is Browder and so is f(T). Hence $\mu_0 \in \pi_{00}(f(T))$. For the converse, take arbitrarily $\mu_0 \in \pi_{00}(f(T))$ and supposed that $f(T) - \mu_0 I$ has the same decomposition as above (*). Then $\lambda_i \in iso\sigma(T) \cup \rho(T)$ and $n(T - \lambda_i I) < \infty$ for $1 \le i \le t$ and there must exist some $j(1 \le j \le t)$ such that $\lambda_i \in iso\sigma(T)$ with $n(T - \lambda_i I) > 0$. Combining (1) we have $\lambda_i \in \sigma_0(T)$, hence $\sigma(T) \neq \emptyset$. Then we can get $\lambda_i \in \pi_{00}(T)$ according to iso $\sigma(T) \subseteq \sigma_v(T)$. Due to $T \in (R)$, then $\lambda_i \in \sigma_0(T)$. Accordingly, $\lambda_i \notin \sigma_b(T)$ for $1 \le i \le t$. It follows that $f(T) - \mu_0 I$ is Browder. It suggests that $\pi_{00}(f(T)) \in \sigma_a(f(T)) \setminus \sigma_{ab}(f(T))$. Therefore, $f(T) \in (R)$.

Corollary 2.8. Let $T \in \mathcal{B}(\mathcal{H})$. Then $f(T) \in (\mathbb{R})$ for all $f \in Hol(\sigma(T))$ if and only if one of the following conditions hold:

(1) $\sigma(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [acc\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\};$ (2) $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [acc\sigma(T) \cap \sigma_d(T)].$

Proof. We firstly prove the sufficiency. If (1) holds, then $\sigma_0(T) = \emptyset$ from $\sigma_0(T) \cap \{[\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_{ab}(T)] \}$ $\sigma_d(T)$] \cup { $\lambda \in \sigma(T) : n(T - \lambda I) = 0$ } = \emptyset . Hence we have $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$ $\sigma(T)$: $n(T - \lambda I) = 0$. Then $T \in (R)$ by Theorem 2.1. Also, $\sigma_a(T) = \sigma_{ab}(T)$ and $\pi_{00}(T) = \emptyset$ due to the fact that $\sigma_0(T) = \emptyset$. In this case, $\sigma_a(f(T)) = f(\sigma_a(T)) = f(\sigma_{ab}(T)) = \sigma_{ab}(f(T))$ due to both $\sigma_a(T)$ and $\sigma_{ab}(T)$ satisfy the spectral mapping theorem. It is easy see that $\pi_{00}(f(T)) \subseteq f(\pi_{00}(T))$. Ultimately, $f(T) \in (R)$ for all $f \in Hol(\sigma(T)).$

If (2) holds, then $T \in (R)$ is clear by Theorem 2.1. Suppose that $\sigma_0(T) = \emptyset$, we have $f(T) \in (R)$ combining with the fact that $T \in (R)$. Furthermore, we can get $f(T) \in (R)$ for all $f \in Hol(\sigma(T))$ by Theorem 2.7 when $\sigma_0(T) \neq \emptyset.$

Next, we will prove the necessity. We know $T \in (R)$ is evident, so $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [acc\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$ by Theorem 2.1;

Case 1 We can conclude $\sigma(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$ under the condition $\sigma_0(T) = \emptyset$. Namely, (1) holds.

Case 2 Under the condition $\sigma_0(T) \neq \emptyset$, we can get (2) holds by Theorem 2.7. \Box

From Corollary 2.3 and Corollary 2.4 we can describe the property (*R*) for operator functions through $\sigma_w(T)$.

Corollary 2.9. Let $T \in \mathcal{B}(\mathcal{H})$, then $f(T) \in (\mathbb{R})$ for all $f \in Hol(\sigma(T))$ if and only if one of the following conditions hold:

(1) $\sigma(T) = [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup acc\sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\};$ (2) $\sigma_w(T) = [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \{\lambda \in acc\sigma_a(T) : n(T - \lambda I) \neq d(T - \lambda I)\}.$

3. Property (R) and Hypercyclic Operators

For an operator $T \in \mathcal{B}(\mathcal{H})$ and a vector $x \in \mathcal{H}$, the orbit of x under T is the set of images of x under successive iterates of T:

$$Orb(T, x) = \{x, Tx, T^2x, T^3x, \cdots\}.$$

A vector $x \in \mathcal{H}$ is said to be hypercyclic if the set Orb(T, x) is norm dense in the whole space \mathcal{H} . An operator $T \in \mathcal{B}(\mathcal{H})$ is called hypercyclic if it has a hypercyclic vector. $\overline{HC(\mathcal{H})}$ denotes the norm-closure of all hypercyclic operators in $\mathcal{B}(\mathcal{H})$ and $T \in \mathcal{B}(\mathcal{H})$ is said to have hypercyclic property if $T \in \overline{HC(\mathcal{H})}$. Hypercyclic property was proposed by Hilden and Wallen ([14]) in 1974. Kitai has studied many fundamental results regarding the theory of hypercyclic property in her thesis [15]. Also, the relationship between hypercyclic property and Weyl type theorem was explored by Cao ([16]). Then we will continue the work. The following lemma gives the simple description of hypercyclic property due to Herrero ([17]).

Lemma 3.1. Let $T \in \mathcal{B}(\mathcal{H})$, then $T \in \overline{HC(\mathcal{H})}$ if and only if the following statements hold:

(1) $\sigma_w(T) \cup \partial \mathbb{D}$ is connected; (2) $\sigma_0(T) = \sigma(T) \setminus \sigma_b(T) = \emptyset$; (3) $\forall \lambda \in \rho_{SF}(T)$, $ind(T - \lambda I) \ge 0$.

To begin with, we give examples which indicate that there is no direct relationship between property (*R*) and hypercyclic property for $T \in \mathcal{B}(\mathcal{H})$ firstly.

Example 3.2. For instance: (i) Let $A \in \mathcal{B}(\ell^2)$ be defined by

$$A(x_1, x_2, x_3, \cdots) = (0, 0, \frac{x_2}{2}, \frac{x_3}{3}, \cdots),$$

and put T = A + I, then $T \in \overline{HC(\mathcal{H})}$ by Lemma 3.1. But since $\sigma_a(T) = \sigma_{ab}(T) = \pi_{00}(T) = \{1\}$, we know $T \notin (R)$. Therefore $T \in \overline{HC(\mathcal{H})} \Rightarrow T \in (R)$.

(ii) Let $T \in \mathcal{B}(\ell^2)$ be defined by

$$T(x_1, x_2, x_3, \cdots) = (0, x_1, x_2, x_3, \cdots),$$

then $T \in (R)$. However, since $\forall \lambda \in \rho_{SF}(T)$, $ind(T - \lambda I) \leq 0$, we have $T \notin \overline{HC(H)}$. Therefore $T \in (R) \Rightarrow T \in \overline{HC(H)}$. (iii) Let $T \in \mathcal{B}(\ell^2)$ be defined by $A, B \in \mathcal{B}(\ell^2)$:

$$A(x_1, x_2, x_3, \cdots) = (0, x_1, x_2, x_3, \cdots), B(x_1, x_2, x_3, \cdots) = (0, x_2, x_3, x_4, \cdots)$$

and let $T \in \mathcal{B}(\ell^2 \oplus \ell^2)$ be defined by $T = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, then we have $\sigma_a(T) = \partial \mathbb{D} \cup \{0\}$, $\sigma_a(T) = \partial \mathbb{D}$ and $\pi_{00}(T) = \emptyset$. Also, $\forall \lambda \in \rho_{SF}(T)$, $ind(T - \lambda I) \leq 0$. So $T \notin (R)$ and $T \notin \overline{HC(H)}$. Thus there exists $T \in \mathcal{B}(\mathcal{H})$ such that $T \notin (R)$ and $T \notin \overline{HC(\mathcal{H})}$. (*iv*) Let $T \in \mathcal{B}(\ell^2)$ be defined by

$$T(x_1, x_2, x_3, \cdots) = (x_2, x_3, \cdots),$$

then it is easy to see that $T \in \overline{HC(H)}$ by Lemma 3.1 and $T \in (R)$. It follows that there exists $T \in \mathcal{B}(\mathcal{H})$ such that $T \in (R)$ and $T \in \overline{HC(\mathcal{H})}$.

In the following, we will give the conditions such that $T \in (R)$ and $T \in \overline{HC(H)}$.

Theorem 3.3. Let $T \in \mathcal{B}(\mathcal{H})$. Suppose that $\sigma(T) = [\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)\}] \cup [acc\sigma(T) \cap \sigma_d(T)]$ and $\sigma_w(T) \cup \partial \mathbb{D}$ is connected, then $T \in \overline{HC(\mathcal{H})}$ and $T \in (R)$.

Proof. We can acquire $\sigma_0(T) = \emptyset$ from $\sigma_0(T) \cap \{[\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)\}] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] = \emptyset$. Also, $\{\lambda \in \rho_{SF}(T) : \operatorname{ind}(T - \lambda I) > 0\} \cap \{[\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)\}] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] = \emptyset$, so $\forall \lambda \in \rho_{SF}(T)$, $\operatorname{ind}(T - \lambda I) \ge 0$. Therefore $T \in \overline{HC(H)}$ combining the fact that $\sigma_w(T) \cup \partial \mathbb{D}$ is connected by Lemma 3.1.

Next, we will prove $T \in (R)$. It follows from (2) and (3) of Lemma 3.1 that $\sigma(T) = \sigma_a(T) = \sigma_{ab}(T) = \sigma_b(T)$. Observing that $\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)\} \subseteq \sigma_1(T) = \sigma_1(T) \cap \sigma(T) = \sigma_1(T) \cap \sigma_{ab}(T)$, thus $\sigma_b(T) \subseteq [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \subseteq [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$. Moreover, $[\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} \subseteq \sigma_b(T)$ is evident. Hence $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$. It follows that $T \in (R)$ by Theorem 2.1. \Box

Remark 3.4. If $T \in (R)$ and $T \in \overline{HC(\mathcal{H})}$, we can not get $\sigma(T) = [\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)\}] \cup [acc\sigma(T) \cap \sigma_d(T)].$

For example: Let $A \in \mathcal{B}(\ell^2)$ be defined by

$$A(x_1, x_2, x_3, \cdots) = (0, x_1, \frac{x_2}{2}, \frac{x_3}{3}, \cdots),$$

and put T = A + I, it is easy to see that $T \in \overline{HC(\mathcal{H})}$ and $T \in (R)$. But since $\sigma(T) = \{1\}, \sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \geq d(T - \lambda I)\} = acc\sigma(T) \cap \sigma_d(T) = \emptyset, \sigma(T) \neq [\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \geq d(T - \lambda I)\}] \cup [acc\sigma(T) \cap \sigma_d(T)]$. Then we will give the necessary and sufficient conditions for which $T \in \overline{HC(\mathcal{H})}$ and $T \in (R)$.

Corollary 3.5. Let $T \in \mathcal{B}(\mathcal{H})$, then $T \in \overline{HC(\mathcal{H})}$ and $T \in (\mathbb{R})$ if and only if $\sigma(T) = [\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \geq d(T - \lambda I)\}] \cup [acc\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\}$ and $\sigma_w(T) \cup \partial \mathbb{D}$ is connected.

Proof. " \Rightarrow " We only need to prove $\sigma(T) = [\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)\}] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\}$ by Lemma 3.1. The inclusion " \supseteq " is clear. For the opposite inclusion, we know that $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$ by Theorem 2.1. It follows from $T \in \overline{HC}(\mathcal{H})$ that $\sigma(T) = \sigma_1(T) \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\} = [\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)\}] \cup [\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) < d(T - \lambda I)\}] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\}$. Meanwhile, noting that $\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) < d(T - \lambda I)\} \subseteq \operatorname{acc}\sigma(T) \cap \sigma_d(T),$ thus $\sigma(T) = [\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) < d(T - \lambda I)\}] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\}$.

" ← " Using the same way from the proof of Theorem 3.1, we can conclude that $T \in HC(\mathcal{H})$ and $T \in (R)$. \Box

Remark 3.6. In Corollary 3.5, each part of the decomposition of $\sigma_b(T)$ can not be deleted when $T \in (R)$ and $T \in \overline{HC(\mathcal{H})}$.

(*i*) " $\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)\}$ " can not deleted. Let $T \in \mathcal{B}(\ell^2)$ be defined by

$$\Gamma(x_1, x_2, x_3, \cdots) = (x_2, x_3, \cdots),$$

then $T \in \overline{HC(\mathcal{H})}$ and $T \in (\mathbb{R})$ by Lemma 3.1. But since $\sigma(T) = \mathbb{D}$ and $acc\sigma(T) \cap \sigma_d(T) = \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\} = \partial \mathbb{D}$, we have $\sigma(T) \neq [acc\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\}$.

(*ii*) " $acc\sigma(T) \cap \sigma_d(T)$ " cannot deleted. Let $A, B \in \mathcal{B}(\ell^2)$ be defined by

$$A = (a_{ij}), a_{ij} = \begin{cases} 1, |i - j| = 1\\ 0, |i - j| \neq 1 \end{cases}, B(x_1, x_2, x_3, \cdots) = (0, 0, \frac{x_2}{2}, \frac{x_3}{3}, \cdots),$$

and set $T = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$. Then $T \in \overline{HC(\mathcal{H})}$ by 3.1 and $T \in (R)$. But since $\sigma(T) = [-2, 2], \sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \geq d(T - \lambda I)\} = \emptyset$, and $\{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\} = [-2, 0) \cup (0, 2]$, we have $\sigma(T) \neq [\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \geq d(T - \lambda I)\}] \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\}$.

(*iii*) "{ $\lambda \in \sigma_a(T) : n(T - \lambda I) = 0$ }" can not deleted.

Let $A \in \mathcal{B}(\ell^2)$ be defined by

$$A(x_1, x_2, x_3, \cdots) = (0, x_1, \frac{x_2}{2}, \frac{x_3}{3}, \cdots),$$

and let T = A + I. Then $T \in HC(\mathcal{H})$ by Lemma 3.1 and $T \in (R)$. But since $\sigma(T) = \{1\}$ and $\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)\} = acc\sigma(T) \cap \sigma_d(T) = \emptyset$, we have $\sigma(T) \neq [\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)\}] \cup [acc\sigma(T) \cap \sigma_d(T)]$.

From Corollary 2.3, we can acquire the following results.

Corollary 3.7. Let $T \in \mathcal{B}(\mathcal{H})$, then the following statements are equivalent:

(1) $T \in (R)$ and $T \in HC(\mathcal{H})$;

 $(2) \ \sigma(T) = \partial \sigma_1(T) \cup [acc\sigma(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)\}] \cup [acc\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\}$ and $\sigma_w(T) \cup \partial \mathbb{D}$ is connected;

 $(3) \ \sigma(T) = \partial \sigma_1(T) \cup [acc\sigma(T) \cap \sigma_{SF_+}(T)] \cup \{\lambda \in acc\sigma_a(T) : n(T - \lambda I) \neq d(T - \lambda I)\} \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\}$ and $\sigma_w(T) \cup \partial \mathbb{D}$ is connected.

In the following, suppose that $T \in HC(\mathcal{H})$, then the condition of equivalence that $T \in (R)$ will change. We get the following results.

Theorem 3.8. Let $T \in \mathcal{B}(\mathcal{H})$. Suppose that $T \in HC(\mathcal{H})$, then $T \in (\mathbb{R})$ if and only if $\sigma(T) = \sigma_1(T) \cup [acc\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}.$

Proof. " \Rightarrow " We have $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$ according to $T \in (R)$ by Theorem 2.1. So, from $T \in \overline{HC(\mathcal{H})}$, we conclude that $\sigma_1(T) \cap \sigma_{ab}(T) = \sigma_1(T) \cap \sigma(T) = \sigma_1(T)$. Therefore $\sigma(T) = \sigma_1(T) \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$.

" \leftarrow " we only need prove that $\pi_{00}(T) = \emptyset$ based on $\sigma_a(T) = \sigma_{ab}(T)$. Observing that $\pi_{00}(T) \cap \{\sigma_1(T) \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}\} = \emptyset$ and $\pi_{00}(T) \subseteq \sigma(T)$. Thus $\pi_{00}(T) = \emptyset$. \Box

Corollary 3.9. Let $T \in \mathcal{B}(\mathcal{H})$. Suppose that $T \in \overline{HC(\mathcal{H})}$, then the following statements are equivalent: (1) $T \in (R)$; (2) $\sigma(T) = \partial \sigma_1(T) \cup acc\sigma(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$; (3) $\sigma_w(T) = [\sigma_1(T) \cap \sigma_{ea}(T)] \cup [acc\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$;

(4) $f(T) \in (R)$.

According to Corollary 2.3 and Corollary 3.7, we can get the following corollary.

Corollary 3.10. Let $T \in \mathcal{B}(\mathcal{H})$. Suppose that $T \in (\mathbb{R})$, then the following statements are equivalent:

(1) $T \in \overline{HC(\mathcal{H})};$

(2) $\sigma(T) = [\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)\}] \cup [acc\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\}$ and $\sigma_w(T) \cup \partial \mathbb{D}$ is connected;

 $(3) \sigma(T) = \partial \sigma_1(T) \cup [acc\sigma(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)\}] \cup [acc\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\}$ and $\sigma_w(T) \cup \partial \mathbb{D}$ is connected;

 $(4) \ \sigma(T) = \partial \sigma_1(T) \cup [acc\sigma(T) \cap \sigma_{SF_+}(T)] \cup \{\lambda \in acc\sigma_a(T) : n(T - \lambda I) \neq d(T - \lambda I)\} \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\}$ and $\sigma_w(T) \cup \partial \mathbb{D}$ is connected. Let $T \in \mathcal{B}(\mathcal{H})$ be defined by

$$A(x_1, x_2, x_3, \cdots) = (0, x_1, x_2, x_3, \cdots), B(x_1, x_2, x_3, \cdots) = (x_2, x_3, \cdots)$$

and let $T = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$. Then $\sigma_1(T) = \mathbb{D}$, $\sigma(T) = [\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)\}] \cup [\operatorname{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\}$ and $\sigma_w(T) \cup \partial \mathbb{D}$ is connected. The results are true in above conclusions.

References

- [1] D. Herrero, *Approximation of Hilbert space operators*, Vol. 1, 2nd Ed., Pitman Research Notes in Mathematics Series, Vol. 224. Longman Scientific and Technical, Hasrlow, 1989
- [2] J. Finch, The single valued extension property on a Banach space, Pacific. J. Math. 58 (1975), 61-69.
- [3] P. Aiena, Fredholm and local spectral theory II, with application to Weyl-type theorems, Springer Lecture Notes of Math 2235, 2018.
- [4] H. Weyl, Über beschränkte quadratische formen, deren differenz vollstetig ist, Rend. Circ. Mat. Palermo, 27 (1909), 373-392.
- [5] P. Aiena, P. Peňa, Variations on Weyl's theorem, J. Math. Anal. Appl. 324 (2006), 566-579.
- [6] V. Rakočević, On a class of operators, Mat.Vesnik. 37 (1985), 423-426.
- [7] P. Aiena, J. Guilln, P. Peňa, Property (R) for bounded linear operators, Mediterr. J. Math. 8 (2011), 491-508.
- [8] P. Aiena, E. Aponte, J. Guilln, et al, Property (R) under perturbations, Mediterr. J. Math. 10 (2013), 367-382.
- [9] B. Jia, Y. Feng, Property (R) under compact perturbations, Mediterr. J. Math. 17 (2020), 73.
- [10] A. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann. 163 (1966), 18-49.
- [11] H. Radjavi, P. Rosenthal, Invariant subspaces II, Dover Publications, Mineola, 2003.
- [12] L. Dai, X. Cao, Q. Guo, Property (ω) and the Single-valued Extension Property, Acta. Mathematica. Sinica. English Series, 37 (2021), 1254-1266.
- [13] X. Cao, J. Dong, L. Liu, Weyl?s theorem and its perturbations for the functions of operators, Oper. Matrices. 12 (2018), 1145-1157.
- [14] H. Hilden, L. Wallen, Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J. 23 (1974), 557-565.
- [15] C. Kitai, Invariant closed sets for linear operators, Ph.D. Thesis, Univ. of Toronot, Toronot, 1982.
- [16] X. Cao, Weyl type theorem and hypercyclic operators, J. Math. Anal. Appl. 323 (2006), 267-274.
- [17] D. Herrero, Limits of hypercyclic and supercyclic operators, J. Funct. Anal. 99 (1991), 179-190.
- [18] S. Zhu, C. Li, T. Zhou, Weyl type theorems for functions of operators, Glasgow. Math. J. 54 (2012), 493-505.