Filomat 38:21 (2024), 7319–7328 https://doi.org/10.2298/FIL2421319J

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Property (*R*) **and hypercyclicity for bounded linear operators**

Yu Jing^a , Xiaohong Cao^a , Jiong Dong^b

^aSchool of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710119, China ^bDepartment of Mathematics, Changzhi University, Changzhi, 046011, China

Abstract. Let H be a complex infinite dimensional separable Hilbert space and let $B(H)$ denote the algebra of bounded linear operators acting on H . In this paper, we mainly characterize these bounded linear operators *T* on H and their function calculus that satisfy property (R) by the new spectrum originated from the single-valued extension property. Meanwhile, the relationship between property (*R*) and hypercyclic property is also explored.

1. Introduction and preliminaries

Throughout this paper, $\mathbb C$ and $\mathbb N$ denote the set of all complex numbers and the set of all non-negative integers, respectively. Let H be a complex infinite dimensional separable Hilbert space and $\mathcal{B}(H)$ denote the algebra of all bounded linear operators on H . The unit closed disk on the complex plane $\mathbb C$ is denoted by \mathbb{D} . For $T \in \mathcal{B}(\mathcal{H})$, T^* , $N(T)$ and $R(T)$ stand for the adjoint, the kernel and the range of *T*, respectively. If $R(T)$ is closed and $n(T) < \infty$, then we call *T* is an upper semi-Fredholm operator, while *T* is said to be lower semi-Fredholm if $d(T) < \infty$, where $n(T)$ and $d(T)$ denote the dimension of $N(T)$ and the codimension of $R(T)$, respectively. $T \in \mathcal{B}(\mathcal{H})$ is a semi-Fredholm operator if *T* is either an upper semi-Fredholm operator or a lower semi-Fredholm operator, while $T \in \mathcal{B}(\mathcal{H})$ is a Fredholm operator if *T* is both an upper semi-Fredholm operator and a lower semi-Fredholm operator. If *T* is semi-Fredholm, the index of *T* is defined as ind(*T*) = $n(T) - d(T)$. In particular, we call $T \in \mathcal{B}(\mathcal{H})$ is a bounded below operator if *T* is upper semi-Fredholm with $n(T) = 0$. If *T* is semi-Fredholm with $ind(T) = 0$, then *T* is said to be a Weyl operator. The ascent and descent of *T* are defined respectively by $asc(T) = inf\{n \in \mathbb{N} : N(T^n) = N(T^{n+1})\}$ and des(*T*) = inf{ $n \in \mathbb{N}$: $R(T^n) = R(T^{n+1})$ }. If the infimum does not exist, then we write asc(*T*) = ∞ (resp. $des(T) = \infty$). *T* is called a Browder operator if it is Fredholm of finite ascent and descent, equivalently, *T* is semi-Fredholm and *T* − λ *I* is invertible for sufficiently small $\lambda \neq 0$ in **C**. *T* is called an upper semi-Weyl operator if it is upper semi-Fredholm with $\text{ind}(T) \leq 0$, while *T* is called an upper semi-Browder operator if it is upper semi-Fredholm of finite ascent. The spectrum $\sigma(T)$, the approximate point spectrum $\sigma_a(T)$, the upper semi-Fredholm spectrum $\sigma_{SF_+}(T)$, the semi-Fredholm spectrum $\sigma_{SF}(T)$, the essential approximate

²⁰²⁰ *Mathematics Subject Classification*. Primary 47A53; Secondary 47A10, 47A16.

Keywords. property (*R*); single-valued extension property; hypercyclic property.

Received: 21 November 2023; Accepted: 25 December 2023

Communicated by Dragan S. Djordjevic´

Research supported by National Natural Science Foundation of China (Grant No. 12101081) and Fundamental Research Program of Shanxi Province (Grant No. 20210302124079).

^{*} Corresponding author: Yu Jing

Email addresses: jingyu2520@163.com (Yu Jing), xiaohongcao@snnu.edu.cn (Xiaohong Cao), dongjiong1314@163.com (Jiong Dong)

point spectrum $\sigma_{eq}(T)$, the Browder essential approximate point spectrum $\sigma_{ab}(T)$, the Weyl spectrum $\sigma_w(T)$ and the Browder spectrum $\sigma_b(T)$ of *T* are defined respectively by

 $\sigma(T) = {\lambda \in \mathbb{C} : T - \lambda I \text{ is not an invertible operator}}$,

 $\sigma_a(T) = {\lambda \in \mathbb{C} : T - \lambda I \text{ is not a bounded below operator}}$,

 $\sigma_{SF_+}(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not an upper semi-Fredholm operator} \},$

 $\sigma_{ea}(T) = {\lambda \in \mathbb{C} : T - \lambda I}$ is not an upper semi-Weyl operator},

 $\sigma_{ab}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not an upper semi-Browder operator}\},\$

 $\sigma_w(T) = {\lambda \in \mathbb{C} : T - \lambda I}$ is not a Weyl operator},

 $\sigma_b(T) = {\lambda \in \mathbb{C} : T - \lambda I \text{ is not a Browder operator}}$,

 $\sigma_{SF}(T) = {\lambda \in \mathbb{C} : T - \lambda I \text{ is not a semi-Fredholm operator}}$.

Let $\rho(T) = \mathbb{C} \setminus \sigma(T)$, $\rho_a(T) = \mathbb{C} \setminus \sigma_a(T)$, $\rho_w(T) = \mathbb{C} \setminus \sigma_w(T)$, $\rho_{SF}(T) = \mathbb{C} \setminus \sigma_{SF}(T)$, $\rho_{SF}(T) = \mathbb{C} \setminus \sigma_{SF}(T)$, $\rho_{ab}(T) = \mathbb{C} \setminus \sigma_{ab}(T)$ and $\rho_b(T) = \mathbb{C} \setminus \sigma_b(T)$. $\sigma_0(T)$ is denoted by the set of all normal eigenvalues of *T*, that is $\sigma_0(T) = \sigma(T) \setminus \sigma_b(T)$. For a set *E* ⊆ C, we write ∂E , int*E*, iso*E* and acc*E* as the set of boundary points, interior point, isolated points and accumulation points of *E*.

For a Cauchy domain ([1]) Ω , if all the curves of $\partial\Omega$ are regular analytic Jordan curves, we say that Ω is an analytic Cauchy domain. For $T \in \mathcal{B}(\mathcal{H})$, if σ is a clopen subset of $\sigma(T)$, then there exists an analytic Cauchy domain Ω such that $\sigma \subseteq \Omega$ and $[\sigma(T) \setminus \sigma] \cap \overline{\Omega} = \emptyset$, where $\overline{\Omega}$ is the closure of Ω . We denote by $E(\sigma; T)$ the Riesz idempotent of corresponding to σ , i.e.,

$$
E(\sigma;T) = \frac{1}{2\pi i} \int_{\Gamma} (\lambda I - T)^{-1} d\lambda,
$$

where $\Gamma = \partial \Omega$ is positively oriented with respect to Ω in the sense of complex variable theory. In this case, we have $\mathcal{H}(\sigma;T) = \mathcal{R}(E(\sigma;T))$. Clearly, if $\lambda \in iso\sigma(T)$, then $\{\lambda\}$ is a clopen subset of $\sigma(T)$. We write $\mathcal{H}(\sigma; T) = \mathcal{R}(E(\sigma; T))$. We write $\mathcal{H}(\lambda; T)$ instead of $\mathcal{H}(\{\lambda\}; T)$; if in addition, dim $\mathcal{H}(\lambda; T) < \infty$, then $\lambda \in \sigma_0(T)$.

The single-valued property (SVEP) plays an important role for bounded operators on complex Hilbert spaces. *T* $\in \mathcal{B}(\mathcal{H})$ is said to have the single-valued extension property at $\lambda_0 \in \mathbb{C}$ (SVEP at λ_0 for short) if for any open disc D_{λ_0} centered at λ_0 , the only analytic function $f: D_{\lambda_0} \to X$ satisfying the equation $(T - \lambda I)\hat{f}(\lambda) = 0$ for all $\lambda \in D_{\lambda_0}$ is the function $f \equiv 0$ ([2]). Moreover, $\hat{T} \in \mathcal{B}(\hat{\mathcal{H}})$ is said to have SVEP if *T* has SVEP at every point $\lambda \in \mathbb{C}$.

It is evident that $T \in \mathcal{B}(\mathcal{H})$ has SVEP at every point of the resolvent $\rho(T)$ and *T* has SVEP at every point of the bounded $\partial \sigma(T)$ of the spectrum $\sigma(T)$ according to the identity theorem for analytic functions. Especially, *T* has SVEP at every isolated point of the spectrum $\sigma(T)$. Besides, if asc(*T*) < ∞ , then *T* has SVEP at 0 and $n(T) \leq d(T)$ ([3]).

The variants of Weyl's theorem have been explored in lots of papers [5-6] since Weyl's theorem was discovered by Weyl ([4]) in 1909. Property (*R*) is one of these variants that has been introduced by Aiena,P. in 2011, and was discussed by many authors ([8, 9]). *T* ∈ $\mathcal{B}(\mathcal{H})$ is said to satisfy property (*R*) ([7, Definition 2.3]), if

$$
\sigma_a(T) \backslash \sigma_{ab}(T) = \pi_{00}(T),
$$

where $\pi_{00}(T) = {\lambda \in iso\sigma(T): 0 < n(T - \lambda I) < \infty}$. In the following, we will define a new spectrum stemmed from the single-valued extension property to continue to study the property *R*.

The new spectrum set is defined as follows. Let

 $\rho_1(T) = {\lambda \in \mathbb{C} : n(T - \lambda I) < \infty}$, there exists $\epsilon > 0$ such that *T* and *T*^{*}

both have SVEP at
$$
\mu
$$
 if $0 < |\mu - \lambda| < \epsilon$,

and let $\sigma_1(T) = \mathbb{C} \setminus \rho_1(T)$. Obviously, $\sigma_1(T) \subseteq \sigma_b(T) \subseteq \sigma(T)$.

Remark 1.1. *(i)* $\sigma_1(T)$ *may be an emptyset.*

For instance, let $T \in \mathcal{B}(\ell^2)$ *be defined by*

$$
T(x_1, x_2, x_3, \cdots) = (0, 0, \frac{x_2}{2}, \frac{x_3}{3}, \cdots).
$$

Then T is a quasinilpotent operator with $n(T) = 0$ *and* $\sigma(T) = \sigma(T^*) = \{0\}$ *. Thus T and T^{*} both have SVEP at every* $\lambda \in B^0(0)$, where $B^0(0)$ is a deleted neighbourhood of 0. Hence $\sigma_1(T) = \emptyset$ by the definition of $\rho_1(T)$.

 $(iii) \sigma_1(T)$ *is a clopen set.*

 an

(a) If $int \sigma(T) = \emptyset$ and $n(T - \lambda_0 I) < \infty$ for some $\lambda_0 \in \sigma(T) \cap acc\{\lambda \in \mathbb{C} : n(T - \lambda I) = \infty\}$, then $\sigma_1(T)$ is not a *closed set.*

For example, let $A, B \in \mathcal{B}(\ell^2)$ *be defined by*

$$
A(x_1, x_2, x_3, \cdots) = (0, x_1, \frac{x_2}{2}, \frac{x_3}{3}, \cdots), B(x_1, x_2, x_3, \cdots) = (0, x_1, 0, \frac{x_3}{3}, 0, \frac{x_5}{5}, \cdots)
$$

$$
d\ T \in \mathcal{B}(\ell^2 \oplus \ell^2) \text{ be defined by } T = \begin{pmatrix} A & 0 & 0 & \cdots \\ 0 & B + I & 0 & \cdots \\ 0 & 0 & B + \frac{I}{2} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \text{ then } 0 \in \sigma(T), n(T) = 0 < \infty \text{ and } 0 \in acc\{\lambda \in \mathbb{C} : \lambda \in \mathbb{C} \}
$$

 $n(T - \lambda I) = \infty$ \subseteq *acc* $\sigma_1(T)$ *, but* $0 \notin \sigma_1(T)$ *. Therefore* $\sigma_1(T)$ *is not a closed set.*

(b) $\sigma_1(T)$ *is a closed set when* $n(T - \lambda I) < \infty$ *or* $d(T - \lambda I) < \infty$ *for any* $\lambda \in \text{int}(\mathcal{T})$ *.*

Suppose that $n(T - \lambda I) < \infty$ *for any* $\lambda \in int(\mathcal{T})$ *, then we claim that* $\sigma_1(T)$ *is a closed set. In fact, if not, then there* e xists a point $\lambda_0\in\partial\sigma_1(T)\cap\rho_1(T)$. We can get there exists a deleted neighbourhood B⁰(λ_0) of λ_0 such that T and T * *have SVEP at every* λ ∈ *B* 0 (λ0) *by the definition of* ρ1(*T*)*. Take* λ¹ ∈ *B* 0 (λ0)∩σ1(*T*)*, then there exists a neighbourhood* $B(\lambda_1) \subseteq B^0(\lambda_0)$ of λ_1 such that $B(\lambda_1) \subseteq \sigma_1(T)$. That is to say that $\lambda_1 \in int \sigma_1(T) \subseteq int \sigma(T)$. Then $n(T - \lambda_1 I) < \infty$ and T and T* both have SVEP at every $\lambda \in B^0(\lambda_1) \subseteq B^0(\lambda_0)$, hence $\lambda_1 \in \rho_1(T)$, which is a contradiction.

 A ssume that d($T-\lambda I$) < ∞ for any $\lambda \in int\sigma(T)$. Similar to the proof of the above, we can take $\lambda_1 \in B^0(\lambda_0) \cap \sigma_1(T)$, *then we know* $\lambda_1 \in int_{\sigma_1}(T) \subseteq int_{\sigma}(T)$ *. Thus* $d(T - \lambda_1 I) < \infty$ *. So then,* $T - \lambda_1 I$ *is Browder* ([10, Lemma 3.4]) α *ccording to T and T* both have SVEP at* λ_1 *, which is a contradiction to* $\lambda_1 \in \textit{int} \sigma(T)$ *.*

2. Property (*R***) for bounded linear operators and their operator functions**

In this section, we will give some characterizations for bounded linear operators and their function calculus that satisfy property (*R*) by way of the new spectrum set $\sigma_1(T)$. Let $\sigma_d(T) = {\lambda \in \mathbb{C} : R(T - \lambda I)$ is not closed }. Then we have the following inclusions.

Theorem 2.1. *Let* $T \in \mathcal{B}(\mathcal{H})$ *, then the following statements are equivalent: (1) T satisfies the property* (*R*)*; (2)* σ*b*(*T*) = [σ1(*T*) ∩ σ*ab*(*T*)] ∪ [*acc*σ(*T*) ∩ σ*d*(*T*)] ∪ {λ ∈ σ(*T*) : *n*(*T* − λ*I*) = 0}*.*

Proof. (1) \Rightarrow (2). The inclusion " \supseteq " is obvious. For the opposite inclusion, take arbitrarily $\lambda_0 \notin [\sigma_1(T) \cap$ $\sigma_{ab}(T)$] ∪ [acc $\sigma(T) \cap \sigma_d(T)$] ∪ { $\lambda \in \sigma(T)$: $n(T - \lambda I) = 0$ }, without loss of generality, suppose that $\lambda_0 \in \sigma(T)$, then $n(T - \lambda_0 I) > 0$.

Case1 Suppose that $\lambda_0 \notin \sigma_1(T)$, then $0 < n(T - \lambda_0 I) < \infty$ and there exists $\epsilon_1 > 0$ such that *T* and *T*^{*} both have SVEP at every $\lambda\in B^0(\lambda_0,\epsilon_1)$, where $B^0(\lambda_0,\epsilon_1)$ is a deleted neighbourhood of $\lambda_0.$ If $\lambda_0\notin{\rm acc}\sigma(T)$, then $\lambda_0 \in \pi_{00}(T)$. Since *T* satisfies property (*R*), we can get $\lambda_0 \notin \sigma_b(T)$. If $\lambda_0 \notin \sigma_d(T)$, then $T - \lambda_0 I$ is an upper semi-Fredholm operator. By the punctured neighborhood theorem of semi-Fredholm operators, there exists $\epsilon < \epsilon_1$ such that $T - \lambda I$ is upper semi-Fredholm and $N(T - \lambda I) \subseteq \bigcap_{i=1}^{\infty}$ $\bigcap_{n=1}^{\infty} R[(T - \lambda I)^n]$ if $0 < |\lambda - \lambda_0| < \epsilon$. Noting that *T* and *T* [∗] both have SVEP at λ, we know *T* − λ*I* is a Browder operator ([10, Lemma 3.4]). From $N(T - \lambda I)$ ⊆ \bigcap^{∞} $\bigcap_{n=1}^{\infty} R[(T - \lambda I)^n]$, we see $T - \lambda I$ is invertible. Namely, $\lambda_0 \in \text{iso}\sigma(T)$. Therefore $\lambda_0 \notin \sigma_b(T)$ combining with the fact that $T - \lambda_0 I$ is an upper semi-Fredholm operator.

Case2 Suppose that $\lambda_0 \notin \sigma_{ab}(T)$, then $\lambda_0 \in \sigma_a(T) \setminus \sigma_{ab}(T)$. Since *T* satisfies property (*R*), we can get $\lambda_0 \notin \sigma_b(T)$.

 $(2) \Rightarrow (1)$. It is obvious that $\{[\sigma_a(T) \setminus \sigma_{ab}(T)] \cup \pi_{00}(T)\} \cap [\sigma_1(T) \cap \sigma_{ab}(T)] = \emptyset$, $\{[\sigma_a(T) \setminus \sigma_{ab}(T)] \cup \pi_{00}(T)\} \cap [\sigma_a(T) \setminus \sigma_{ab}(T)]$ $[\text{acc}(\mathcal{T}) \cap \sigma_d(T)] = \emptyset$, and $\{[\sigma_a(T) \setminus \sigma_{ab}(T)] \cup \pi_{00}(T)\} \cap \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} = \emptyset$. Accordingly, $[\sigma_a(T) \setminus \sigma_{ab}(T)] \cup$ $\pi_{00}(T) = \sigma_0(T)$. It follows that $T \in (R)$. \Box

Remark 2.2. *In Theorem 2.1, suppose* $T \in \mathcal{B}(\mathcal{H})$ *satisfies property* (*R*)*, then each part of the decomposition of* $\sigma_b(T)$ *can not be deleted.*

(a) Let T ∈ $B(l^2)$ *be defined by*

$$
T(x_1, x_2, x_3, \cdots) = (0, x_2, x_3, \cdots),
$$

then we have $\sigma_a(T) = \{0,1\}$, $\sigma_{ab}(T) = \{1\}$ and $\pi_{00}(T) = \{0\}$. So $T \in (R)$. But $\sigma_b(T) \neq [\arccos(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : \exists \lambda \in \sigma(T) \}$ $n(T - \lambda I) = 0$. *That is* $\sigma_1(T) \cap \sigma_{ab}(T)$ *can not deleted.*

(b) Let A , $B \in \mathcal{B}(\ell^2)$ be defined by

$$
A = (a_{ij}), a_{ij} = \begin{cases} 1, |i - j| = 1 \\ 0, |i - j| \neq 1 \end{cases}, B(x_1, x_2, x_3, \dots) = (0, 0, \frac{x_2}{2}, \frac{x_3}{3}, \dots),
$$

and put $T \in \mathcal{B}(\ell^2 \oplus \ell^2)$ *be* $T =$ *A* 0 0 *B f*, then we have $\sigma_a(T) = \sigma_{ab}(T) = [-2, 2]$ and $\pi_{00}(T) = \emptyset$. Clearly, $T \in (R)$. *However,* $\sigma_b(T) \neq [\sigma_1(T) \cap \sigma_{ab}(T)] \cup \{ \lambda \in \sigma(T) : n(T - \lambda I) = 0 \}$ *. So acco* $(T) \cap \sigma_d(T)$ *can not deleted.*

(c) Let T ∈ $B(l^2)$ *be defined by*

$$
T(x_1, x_2, x_3, \cdots) = (0, x_1, x_2, x_3, \cdots),
$$

then $\sigma_a(T) = \sigma_{ab}(T) = \partial \mathbb{D}$ and $\pi_{00}(T) = \emptyset$. It follows that $T \in (R)$. But $\sigma_b(T) \neq [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [acc \sigma(T) \cap \sigma_a(T)]$. *we know* $\{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$ *can not deleted.*

Corollary 2.3. *Let* $T \in \mathcal{B}(\mathcal{H})$ *, then the following statements are equivalent:* (1) *T* ∈ (R) ;

 (2) $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup acc\sigma_a(T) \cup \{λ ∈ \sigma(T) : n(T - λI) = 0\}$ *;* (3) $\sigma_b(T) = \partial \sigma_1(T) \cup [int \sigma_1(T) \cap \sigma_{SF_+}(T)] \cup acc \sigma_a(T) \cup \{ \lambda \in \sigma(T) : n(T - \lambda I) = 0 \}$ (4) $σ_b(T) = ∂σ₁(T) ∪ [accσ(T) ∩ σ_{ab}(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0}.$

Proof. (1) \Rightarrow (2) By Theorem 2.1 we know that $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\text{acc}(\sigma(T) \cap \sigma_d(T)] \cup \{ \lambda \in \sigma(T) : n(T - \lambda) \}$ λI) = 0}. Since $[\sigma_1(T) \cap \sigma_{ab}(T)] = [\sigma_1(T) \cap \sigma_{ab}(T) \cap \sigma_{SF_+}(T)] \cup [\sigma_1(T) \cap \sigma_{ab}(T) \cap \rho_{SF_+}(T)] \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \text{acc}\sigma_a(T)$ and $\text{acc}\sigma(T) \cap \sigma_d(T) = [\text{acc}\sigma(T) \cap \sigma_d(T) \cap \text{acc}\sigma_a(T)] \cup [\text{acc}\sigma(T) \cap \sigma_d(T) \cap \text{iso}\sigma_a(T)] \subseteq \text{acc}\sigma_a(T) \cup [\sigma_1(T) \cap \sigma_{SF_+}(T)]$, α ve can get $\sigma_b(T)$ ⊆ [$\sigma_1(T)$ ∩ $\sigma_{SF_+}(T)$] ∪ acc $\sigma_a(T)$ ∪ { $\lambda \in \sigma(T)$: $n(T - \lambda I) = 0$ }. The opposite inclusion is clear, then we have $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \text{acc}\sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}.$

(2) \Rightarrow (1) We only need to prove that $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\text{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$ by Theorem 2.1. The " \supseteq " is clear. Next we prove the opposite inclusion. $\arccos_a(T) = [\arccos_a(T) \cap \sigma_d(T)]$ ∪ $[\text{acc}\sigma_a(T)\cap \rho_d(T)] \subseteq [\text{acc}\sigma(T)\cap \sigma_d(T)] \cup [\sigma_1(T)\cap \sigma_{ab}(T)]$, thus $\sigma_b(T) \subseteq [\sigma_1(T)\cap \sigma_{ab}(T)] \cup [\text{acc}\sigma(T)\cap \sigma_d(T)] \cup \{\lambda \in \sigma_{ab}(T)\}$ $\sigma(T): n(T - \lambda I) = 0$. It follows that $T \in (R)$ by Theorem 2.1.

 $(2) \Rightarrow (3)$ Noting that $\sigma_1(T) \cap \sigma_{SF_+}(T) = [\sigma_1(T) \cap \sigma_{SF_+}(T) \cap \partial \sigma_1(T)] \cup [int \sigma_1(T) \cap \sigma_{SF_+}(T)] \subseteq \partial \sigma_1(T) \cup [int \sigma_1(T) \cap \sigma_1(T)]$ $\sigma_{SF_+}(T)$], then $\sigma_b(T) \subseteq \partial \sigma_1(T) \cup [\text{int}\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \text{acc}\sigma_a(T) \cup \{ \lambda \in \sigma(T) : n(T - \lambda I) = 0 \}$. Also, the opposite inclusion is obvious. Hence $\sigma_b(T) = \partial \sigma_1(T) \cup [int \sigma_1(T) \cap \sigma_{SF_+}(T)] \cup acc \sigma_a(T) \cup \{ \lambda \in \sigma(T) : n(T - \lambda I) = 0 \}.$

 $(3) \Rightarrow (2)$ Since $\partial \sigma_1(T) = [\partial \sigma_1(T) \cap \sigma_1(T)] \cup [\partial \sigma_1(T) \cap \rho_1(T)] \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \text{acc}\sigma_a(T)$ and $\text{int}\sigma_1(T) \cap \sigma_1(T)$ $\sigma_{SF_+}(T)$] $\subseteq \sigma_1(T) \cap \sigma_{SF_+}(T)$, $\sigma_b(T) \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \text{acc}\sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$, we have $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \text{acc}\sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}.$

 $(1) \Rightarrow (4)$ By Theorem 2.1 we have $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\text{acc}(\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$. It is evident that accσ(*T*)∩σ*d*(*T*) ⊆ *acc*σ(*T*)∩σ*ab*(*T*). Moreover, [σ1(*T*)∩σ*ab*(*T*)] = [σ1(*T*)∩σ*ab*(*T*)∩∂σ1(*T*)]∪[intσ1(*T*)∩ $\sigma_{ab}(T)$] $\subseteq \partial \sigma_1(T) \cup [\text{acc}(\sigma(T) \cap \sigma_{ab}(T))]$, thus $\sigma_b(T) = \partial \sigma_1(T) \cup [\text{acc}(\sigma(T) \cap \sigma_{ab}(T))] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}.$

(4) \Rightarrow (1) Observing that $\partial \sigma_1(T) = [\partial \sigma_1(T) \cap \sigma_1(T)] \cup [\partial \sigma_1(T) \cap \rho_1(T)]$, $[\partial \sigma_1(T) \cap \sigma_1(T)] = [\partial \sigma_1(T) \cap \sigma_1(T) \cap \sigma_1(T)]$ $\sigma_{ab}(T)$] ∪ [∂ $\sigma_1(T)$ ∩ $\sigma_1(T)$ ∩ $\rho_{ab}(T)$] ⊆ $\sigma_1(T)$ ∩ $\sigma_{ab}(T)$, and ∂ $\sigma_1(T)$ ∩ $\rho_1(T)$ = [∂ $\sigma_1(T)$ ∩ $\rho_1(T)$ ∩ $\sigma_d(T)$] ∪ [∂ $\sigma_1(T)$ ∩ $\rho_1(T) \cap \rho_d(T) \subseteq [\text{acc}(\sigma(T) \cap \sigma_d(T)],$ we can acquire $\partial \sigma_1(T) \subseteq [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\text{acc}(\sigma(T) \cap \sigma_d(T)].$ Besides, $\alpha_{\alpha\beta}(T) \cap \sigma_{ab}(T) = [\alpha_{\alpha\beta}(T) \cap \sigma_{ab}(T) \cap \sigma_{d}(T)] \cup [\alpha_{\alpha\beta}(T) \cap \sigma_{ab}(T) \cap \rho_{d}(T)] \subseteq [\alpha_{\alpha\beta}(T) \cap \sigma_{d}(T)] \cup [\sigma_{1}(T) \cap \sigma_{ab}(T)],$ then $\partial \sigma_1(T) \cup [\text{acc}\sigma(T) \cap \sigma_{ab}(T)] \subseteq [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\text{acc}\sigma(T) \cap \sigma_{d}(T)]$. Combining with the fact that the opposite inclusion is clear, we know that σ*b*(*T*) = [σ1(*T*)∩σ*ab*(*T*)]∪ [accσ(*T*)∩σ*d*(*T*)]∪{λ ∈ σ(*T*) : *n*(*T*−λ*I*) = 0}. Therefore $T \in (R)$ according to Theorem 2.1. \Box

It is easy to see that if $\sigma_a(T)\setminus \sigma_{ab}(T) \subseteq \rho_w(T) = \sigma(T)\setminus \sigma_w(T)$ and $\pi_{00}(T) \subseteq \rho_w(T)$, then *T* satisfies property (*R*). Therefore the property (*R*) is closely related to $\sigma_w(T)$, then we get the following inclusions.

Corollary 2.4. *Let* $T \in \mathcal{B}(\mathcal{H})$ *, then the following statements are equivalent:* $(1) T ∈ (R);$ (2) $\sigma_w(T) = [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \{\lambda \in acc\sigma_a(T) : n(T - \lambda I) \neq d(T - \lambda I)\} \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}.$

Proof. (1) \Rightarrow (2) The " \supseteq " is evident. By Corollary 2.3 we know that $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \text{acc}\sigma_a(T) \cup \{\lambda \in F_a(T)\}$ $\sigma(T): n(T - \lambda I) = 0$. According to $\sigma_w(T) \subseteq \sigma_b(T)$, we have $\sigma_w(T) \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \text{acc}\sigma_a(T) \cup \{\lambda \in \sigma(T) : \lambda \in \sigma(T)\}$ $n(T - \lambda I) = 0$ = $[\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup {\lambda \in acc\sigma_a(T) : n(T - \lambda I) \neq d(T - \lambda I)} \cup {\lambda \in acc\sigma_a(T) : n(T - \lambda I)}$ $d(T - \lambda I)) \cup {\lambda \in \sigma(T) : n(T - \lambda I) = 0} \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup {\lambda \in \text{acc}\sigma_a(T) : n(T - \lambda I) \neq d(T - \lambda I)} \cup {\lambda \in \text{acc}\sigma_a(T)}$ $acc\sigma_a(T): n(T - \lambda I) = d(T - \lambda I) = \infty$ $\cup {\lambda \in \mathbb{C} : n(T - \lambda I) = d(T - \lambda I) < \infty} \cup {\lambda \in \sigma(T) : n(T - \lambda I) = 0}$, and $\{\lambda \in \operatorname{acc}\sigma_a(T) : n(T - \lambda I) = d(T - \lambda I) = \infty\} \subseteq \sigma_1(T) \cap \sigma_{SF_+}(T)$. Hence $\sigma_w(T) \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \{\lambda \in \operatorname{acc}\sigma_a(T) : n(T - \lambda I) = \emptyset\}$ $n(T - \lambda I) \neq d(T - \lambda I)$ \cup $\{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$. It follows that $\sigma_w(T) = [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \{\lambda \in \text{acc}\sigma_a(T) : n(T - \lambda I) = 0\}$. $n(T - \lambda I) \neq d(T - \lambda I)$ } \cup { $\lambda \in \sigma(T)$: $n(T - \lambda I) = 0$ }.

 $(2) \Rightarrow (1)$ Noting that $\sigma_b(T) = \sigma_w(T) \cup [\sigma_b(T) \cap \rho_w(T)] \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \text{acc}\sigma_a(T) \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = \sigma_w(T) \cap \sigma_{SF_+}(T)\}$ 0 $0 \cup [\sigma_b(T) \cap \rho_w(T)]$, and $\sigma_b(T) \cap \rho_w(T) \subseteq acc \sigma_a(T)$, we see that $\sigma_b(T) \subseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup acc \sigma_a(T) \cup \{\lambda \in \sigma_a(T)\}$ $\sigma(T): n(T - \lambda I) = 0$. Also, $\sigma_b(T) \supseteq [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \text{acc}\sigma_a(T) \cup \{\lambda \in \sigma(T): n(T - \lambda I) = 0\}$ is evident. Thus *T* ∈ (*R*) by Corollary 2.3. $□$

Similarly, in Corollary 2.4, we can also get each part of the decomposition of $\sigma_w(T)$ can not be deleted when $T \in \mathcal{B}(\mathcal{H})$ satisfies property (*R*) and we can get the following fact from Corollary 2.3.

Corollary 2.5. Let $T \in \mathcal{B}(\mathcal{H})$, then the following statements are equivalent:

 (1) *T* ∈ (R) ;

 $(2) \sigma_w(T) = \partial \sigma_1(T) \cup [int \sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \{\lambda \in acc \sigma_a(T) : n(T - \lambda I) \neq d(T - \lambda I)\} \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$ (3) $\sigma_w(T) = \partial \sigma_1(T) \cup [acc\sigma(T) \cap \sigma_{SF_+}(T)] \cup \{\lambda \in acc\sigma_a(T) : n(T - \lambda I) \neq d(T - \lambda I)\} \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}.$

For $T \in \mathcal{B}(\mathcal{H})$, Hol($\sigma(T)$) denotes the set of all functions which are analytic on a neighborhood of $\sigma(T)$ and are not constant on any component of $\sigma(T)$. Given $f \in Hol(\sigma(T))$, we let $f(T)$ denote the Riesz-Dounford functional calculus of *T* with respect to *f* ([12]). Before giving the results that $f(T) \in (R)$ for all $f \in Hol(\sigma(T))$, we pay attention to the following fact firstly.

Remark 2.6. *(i)* $T \in \mathcal{B}(\mathcal{H})$ *satisfies property* (*R*) *does not imply* $f(T)$ *satisfies property* (*R*) *for all* $f \in Hol(\sigma(T))$ *.* Let $A, B \in \mathcal{B}(\ell^2)$ *be defined by*

$$
A(x_1, x_2, x_3, \cdots) = (0, x_1, x_2, x_3, \cdots), B(x_1, x_2, x_3, \cdots) = (0, x_2, x_3, \cdots),
$$

and put T = $\int A + I = 0$ 0 *B* − *I f*, *then* $\sigma_a(T) = {\lambda \in \mathbb{C} : |\lambda - 1| = 1} ∪ {−1}, \sigma_{ab}(T) = {\lambda \in \mathbb{C} : |\lambda - 1| = 1}$ *and* $\pi_{00}(T) = \{-1\}$. So $T \in (R)$. Set $f_1(z) = (z + 1)(z - 1)$, then $0 \in \sigma_a(f_1(T)) \setminus \sigma_{ab}(f_1(T))$, but $0 \notin \pi_{00}(f_1(T))$. That is $f_1(T) \notin (R)$.

(ii) We can not get $T \in (R)$ *if there exists some* $f \in Hol(\sigma(T))$ *such that* $f(T)$ *satisfies property* (R) *.*

Let $A \in \mathcal{B}(\ell^2)$ *be defined by* (1) and let $B \in B(\ell^2)$ *be defined by* $B(x_1, x_2, x_3, \dots) = (0, 0, \frac{x_2}{2}, \frac{x_3}{3}, \dots)$, and put *T* = $\int A + I = 0$ 0 *B* − *I* ! *, then* $\sigma_a(T^2) = \sigma_{ab}(T^2) = \{re^{i\theta} : r = 2(1 + cos\theta), -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}\}$ ∪ {1} *and* $\pi_{00}(T^2) = ∅$ *. Hence* $T^2 \in (R)$ *. However,* $\sigma_a(T) = \sigma_{ab}(T) = \{ \lambda \in \mathbb{C} : |\lambda - 1| = 1 \} \cup \{-1\}$ and $\pi_{00}(T) = \{-1\}$ *. It follows that* $T \notin (R)$ *.*

From the above Remark, *T* and *f*(*T*) satisfy property (*R*) are not directly connected. In the following, we will give the sufficient and necessary conditions such that $f(T) \in (R)$ for all $f \in Hol(\sigma(T))$ by means of $\sigma_1(T)$.

Theorem 2.7. *Let* $T \in \mathcal{B}(\mathcal{H})$ *, then* $f(T) \in (R)$ *for all* $f \in Hol(\sigma(T))$ *if and only if the following conditions hold:* (1) *T* ∈ (R) *;*

(2) if $\sigma_0(T) \neq \emptyset$, then $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [acc\sigma(T) \cap \sigma_d(T)]$.

Proof. " \Rightarrow " (1) holds evidently.

For (2), " \supseteq " is clear. For the converse, we take $\lambda_1 \in \sigma_0(T)$ when $\sigma_0(T) \neq \emptyset$. Then we firstly claim that $\sigma(T) = \sigma_a(T)$ and iso $\sigma(T) \subseteq \sigma_p(T)$, where $\sigma_p(T) = \{\lambda \in \mathbb{C} : n(T - \lambda I) > 0\}$. In fact, take $\lambda_2 \in \rho_a(T)$ and put *f*(*z*) = (*z* − λ_1)(*z* − λ_2), then 0 ∈ $\sigma_a(f(T)) \setminus \sigma_{ab}(f(T))$. Since $f(T) \in (R)$, we have $f(T)$ is Browder and so is *T* − $\lambda_2 I$. Accordingly, *T* − $\lambda_2 I$ is invertible. So $\sigma(T) = \sigma_a(T)$.

Next, we prove iso $\sigma(T) \subseteq \sigma_p(T)$. Take $\lambda_3 \in iso\sigma(T)$ with $n(T - \lambda I) = 0$ and set $\sigma_1 = {\lambda_1}$, $\sigma_2 = {\lambda_3}$ and *T*¹ 0 0 *H*(σ_1 ; *T*)

 $\sigma_3 = \sigma(T) \setminus {\lambda_1, \lambda_3}$. Then *T* can be represented as *T* = $\overline{\mathcal{C}}$ $0 \tT_2 \t0$ $0 \t 0 \t T_3$ $\begin{array}{c} \end{array}$ $H(\sigma_2;T)$ $H(\sigma_3;T)$, by [11, Theorem 2.10],

where $\sigma(T_i) = \sigma_i$, $i = 1, 2, 3$. Let $f(z) = (z - \lambda_1)(z - \lambda_3)$, then $f(T) =$ $f(T_1) = 0 = 0$ $\overline{\mathcal{C}}$ 0 $f(T_2)$ 0 0 0 $f(T_3)$ $H(\sigma_1; T)$ $\begin{array}{c} \end{array}$ $H(\sigma_2;T)$ $H(\sigma_3;T)$ $\left\{ \begin{array}{l} H(\sigma_1;T) \\ H(\sigma_2;T) \end{array} \right.$ We

see that $0 \in iso(f(T))$ and $0 < n(f(T)) < ∞$. So, $0 \in π_{00}(f(T))$. It follows that $f(T)$ is Browder and so is $T - λ_3I$ according to $f(T) \in (R)$. Then we get $T - \lambda_3 I$ is invertible which is a contradiction. Hence $\text{iso}(T) \subseteq \sigma_p(T)$. We can obtain $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\text{acc}(\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$ by Theorem 2.1. What's more, $\{\lambda \in \sigma(T) : n(T - \lambda I) = 0\} \subseteq \text{acc}(\sigma(T) \cap \sigma_d(T))$ according to $\sigma(T) = \sigma_d(T)$ and iso $\sigma(T) \subseteq \sigma_p(T)$. Consequently, $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\text{acc}\sigma(T) \cap \sigma_{a}(T)].$

" \Leftarrow " Take $\mu_0 \in \sigma_a(f(T))\setminus \sigma_{ab}(f(T))$ and assume that

$$
f(T) - \mu_0 I = (T - \lambda_1 I)^{n_1} (T - \lambda_2 I)^{n_2} \cdots (T - \lambda_t I)^{n_t} g(T),
$$
 (*)

where $\lambda_i \neq \lambda_j$ if $i \neq j$ and $g(T)$ is invertible. Since $\sigma_{ab}(T)$ satisfies the spectral mapping theorem, then we have $\lambda_i \in \rho_a(T) \cup [\sigma_a(T) \setminus \sigma_{ab}(T)]$ and there must exist some $j(1 \leq j \leq t)$ such that $\lambda_j \in \sigma_a(T) \setminus \sigma_{ab}(T)$. Combining (1) we have $\lambda_j \in \sigma_0(T)$, hence $\sigma_0(T) \neq \emptyset$. From (2), noting that { $\lambda \in iso\sigma(T) : n(T - \lambda I) =$ 0} ∩ {[σ1(*T*) ∩ σ*ab*(*T*)] ∪ [accσ(*T*) ∩ σ*d*(*T*)]} = ∅ and ρ*a*(*T*) ∩ {[σ1(*T*) ∩ σ*ab*(*T*)] ∪ [accσ(*T*) ∩ σ*d*(*T*)]} = ∅, thus iso $\sigma(T) \subseteq \sigma_p(T)$ and $\sigma_q(T) = \sigma(T)$. Then $T - \lambda_i I$ is Browder and so is $f(T)$. Hence $\mu_0 \in \pi_{00}(f(T))$. For the converse, take arbitrarily $\mu_0 \in \pi_{00}(f(T))$ and supposed that $f(T) - \mu_0 I$ has the same decomposition as above (∗). Then λ*ⁱ* ∈ isoσ(*T*) ∪ ρ(*T*) and *n*(*T* − λ*iI*) < ∞ for 1 ≤ *i* ≤ *t* and there must exist some *j*(1 ≤ *j* ≤ *t*) such that $\lambda_j \in iso\sigma(T)$ with $n(T - \lambda_j I) > 0$. Combining (1) we have $\lambda_j \in \sigma_0(T)$, hence $\sigma(T) \neq \emptyset$. Then we can get $\lambda_j \in \pi_{00}(T)$ according to iso $\sigma(T) \subseteq \sigma_p(T)$. Due to $T \in (R)$, then $\lambda_j \in \sigma_0(T)$. Accordingly, $\lambda_i \notin \sigma_b(T)$ for $1 ≤ i ≤ t$. It follows that $f(T) - \mu_0 I$ is Browder. It suggests that $\pi_{00}(f(T)) ∈ \sigma_a(f(T)) \setminus \sigma_{ab}(f(T))$. Therefore, *f*(*T*) ∈ (*R*). $□$

Corollary 2.8. Let $T \in \mathcal{B}(\mathcal{H})$. Then $f(T) \in (R)$ for all $f \in Hol(\sigma(T))$ if and only if one of the following conditions *hold:*

 (1) $σ(T) = [σ_1(T) ∩ σ_{ab}(T)] ∪ [accσ(T) ∩ σ_d(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0};$ *(2)* $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [acc \sigma(T) \cap \sigma_{d}(T)].$

Proof. We firstly prove the sufficiency. If (1) holds, then $\sigma_0(T) = \emptyset$ from $\sigma_0(T) \cap \{[\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\text{acc}(\sigma(T) \cap \sigma_{ab}(T)]\}$ $\sigma_d(T)$] ∪ { $\lambda \in \sigma(T)$: $n(T - \lambda I) = 0$ }} = \emptyset . Hence we have $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\text{acc}\sigma(T) \cap \sigma_d(T)] \cup {\lambda \in \mathcal{C}}$ $\sigma(T): n(T - \lambda I) = 0$. Then $T \in (R)$ by Theorem 2.1. Also, $\sigma_a(T) = \sigma_{ab}(T)$ and $\pi_{00}(T) = \emptyset$ due to the fact that $\sigma_0(T) = \emptyset$. In this case, $\sigma_a(f(T)) = f(\sigma_a(T)) = f(\sigma_{ab}(T)) = \sigma_{ab}(f(T))$ due to both $\sigma_a(T)$ and $\sigma_{ab}(T)$ satisfy the spectral mapping theorem. It is easy see that $\pi_{00}(f(T)) \subseteq f(\pi_{00}(T))$. Ultimately, $f(T) \in (R)$ for all $f \in Hol(\sigma(T)).$

If (2) holds, then $T \in (R)$ is clear by Theorem 2.1. Suppose that $\sigma_0(T) = \emptyset$, we have $f(T) \in (R)$ combining with the fact that $T \in (R)$. Furthermore, we can get $f(T) \in (R)$ for all $f \in Hol(\sigma(T))$ by Theorem 2.7 when $\sigma_0(T) \neq \emptyset$.

Next, we will prove the necessity. We know $T \in (R)$ is evident, so $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\text{acc}(\mathcal{T}) \cap \sigma_{ab}(T)]$ $\sigma_d(T)$] \cup { $\lambda \in \sigma(T)$: $n(T - \lambda I) = 0$ } by Theorem 2.1;

Case 1 We can conclude $\sigma(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\text{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$ under the condition $\sigma_0(T) = \emptyset$. Namely, (1) holds.

Case 2 Under the condition $\sigma_0(T) \neq \emptyset$, we can get (2) holds by Theorem 2.7. \Box

From Corollary 2.3 and Corollary 2.4 we can describe the property (*R*) for operator functions through $\sigma_w(T)$.

Corollary 2.9. Let $T \in \mathcal{B}(\mathcal{H})$, then $f(T) \in (R)$ for all $f \in Hol(\sigma(T))$ if and only if one of the following conditions *hold:*

 (1) $\sigma(T) = [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup acc\sigma_a(T) \cup \{λ ∈ \sigma(T) : n(T - λI) = 0\}$ *;* (2) $\sigma_w(T) = [\sigma_1(T) \cap \sigma_{SF_+}(T)] \cup \{ \lambda \in acc\sigma_a(T) : n(T - \lambda I) \neq d(T - \lambda I) \}.$

3. Property (*R***) and Hypercyclic Operators**

For an operator $T \in \mathcal{B}(\mathcal{H})$ and a vector $x \in \mathcal{H}$, the orbit of x under T is the set of images of x under successive iterates of *T*:

$$
Orb(T, x) = \{x, Tx, T^2x, T^3x, \cdots\}.
$$

A vector $x \in H$ is said to be hypercyclic if the set $Orb(T, x)$ is norm dense in the whole space H. An operator $T \in \mathcal{B}(\mathcal{H})$ is called hypercyclic if it has a hypercyclic vector. $HC(\mathcal{H})$ denotes the norm-closure of all hypercyclic operators in B(H) and *T* ∈ B(H) is said to have hypercyclic property if *T* ∈ *HC*(H). Hypercyclic property was proposed by Hilden and Wallen ([14]) in 1974. Kitai has studied many fundamental results regarding the theory of hypercyclic property in her thesis [15]. Also, the relationship between hypercyclic property and Weyl type theorem was explored by Cao ([16]). Then we will continue the work. The following lemma gives the simple description of hypercyclic property due to Herrero ([17]).

Lemma 3.1. *Let* T ∈ $B(H)$ *, then* T ∈ $HC(H)$ *if and only if the following statements hold:*

(1) $\sigma_w(T)$ ∪ ∂**D** *is connected; (2)* $\sigma_0(T) = \sigma(T) \setminus \sigma_b(T) = \emptyset$ *; (3)* $∀λ ∈ ρ_{SF}(T)$ *, ind*($T − λI$) ≥ 0*.*

To begin with, we give examples which indicate that there is no direct relationship between property (*R*) and hypercyclic property for $T \in \mathcal{B}(\mathcal{H})$ firstly.

Example 3.2. For instance: (i) Let $A \in \mathcal{B}(\ell^2)$ be defined by

$$
A(x_1, x_2, x_3, \cdots) = (0, 0, \frac{x_2}{2}, \frac{x_3}{3}, \cdots),
$$

and put $T = A + I$, then $T \in \overline{HC(H)}$ by Lemma 3.1. But since $\sigma_a(T) = \sigma_{ab}(T) = \pi_{00}(T) = \{1\}$, we know $T \notin (R)$. *Therefore* $T \in \overline{HC(H)} \Rightarrow T \in (R)$ *.*

(ii) Let T ∈ $B(t^2)$ be defined by

$$
T(x_1, x_2, x_3, \cdots) = (0, x_1, x_2, x_3, \cdots),
$$

then $T \in (R)$ *. However, since* $\forall \lambda \in \rho_{SF}(T)$ *, ind*($T - \lambda I$) ≤ 0 *, we have* $T \notin \overline{HC(H)}$ *. Therefore* $T \in (R) \Rightarrow T \in \overline{HC(H)}$ *.* (*iii*) Let $T \in \mathcal{B}(\ell^2)$ be defined by $A, B \in \mathcal{B}(\ell^2)$:

$$
A(x_1, x_2, x_3, \cdots) = (0, x_1, x_2, x_3, \cdots), B(x_1, x_2, x_3, \cdots) = (0, x_2, x_3, x_4, \cdots),
$$

and let $T \in \mathcal{B}(\ell^2 \oplus \ell^2)$ *be defined by* $T =$ $\begin{pmatrix} A & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$ 0 *B f*, then we have $\sigma_a(T) = \partial \mathbb{D} \cup \{0\}$, $\sigma_a(T) = \partial \mathbb{D}$ and $\pi_{00}(T) = \emptyset$. *Also,* $\forall \lambda \in \rho_{SF}(T)$, $ind(T - \lambda I) \leq 0$. So $T \notin (R)$ and $T \notin \overline{HC(H)}$. Thus there exists $T \in \mathcal{B}(\mathcal{H})$ such that $T \notin (R)$ and $T \notin \overline{HC(H)}$.

(*iv*) Let $T \in \mathcal{B}(\ell^2)$ be defined by

$$
T(x_1, x_2, x_3, \cdots) = (x_2, x_3, \cdots),
$$

then it is easy to see that $T \in \overline{HC(H)}$ *by Lemma 3.1 and* $T \in (R)$ *. It follows that there exists* $T \in \mathcal{B(H)}$ *such that* $T \in (R)$ and $T \in \overline{HC(H)}$.

In the following, we will give the conditions such that *T* ∈ (*R*) and *T* ∈ *HC*(\overline{H}).

Theorem 3.3. *Let* $T \in \mathcal{B}(\mathcal{H})$ *. Suppose that* $\sigma(T) = [\sigma_1(T) \cap {\lambda \in \mathbb{C}} : n(T - \lambda I) \ge d(T - \lambda I)] \cup [acc \sigma(T) \cap \sigma_d(T)]$ *and* $\sigma_w(T) \cup \partial D$ *is connected, then* $T \in \text{HC}(H)$ *and* $T \in (R)$ *.*

Proof. We can acquire $\sigma_0(T) = \emptyset$ from $\sigma_0(T) \cap \{\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)\} \}$ ∪ [acc $\sigma(T) \cap \sigma_d(T)$] = \emptyset . Also, $\{\lambda \in \rho_{SF}(T) : \text{ind}(T - \lambda I) > 0\} \cap \{[\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)\}] \cup [\text{acc}(\sigma(T) \cap \sigma_d(T)] = \emptyset$, so $∀λ ∈ ρ_{SF}(T)$, ind(*T* − $λI) ≥ 0$. Therefore *T* ∈ $\overline{HC(H)}$ combining the fact that $σ_w(T) ∪ ∂D$ is connected by Lemma 3.1.

Next, we will prove $T \in (R)$. It follows from (2) and (3) of Lemma 3.1 that $\sigma(T) = \sigma_a(T) = \sigma_{ab}(T) = \sigma_b(T)$. Observing that $\sigma_1(T) \cap {\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)} \subseteq \sigma_1(T) = \sigma_1(T) \cap \sigma(T) = \sigma_1(T) \cap \sigma_{ab}(T)$, thus $\sigma_b(T) \subseteq [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\text{acc}(\sigma(T) \cap \sigma_d(T)] \subseteq [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\text{acc}(\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}.$ Moreover, [σ1(*T*) ∩ σ*ab*(*T*)] ∪ [accσ(*T*) ∩ σ*d*(*T*)] ∪ {λ ∈ σ(*T*) : *n*(*T* − λ*I*) = 0} ⊆ σ*b*(*T*) is evident. Hence $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\text{acc}(\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$. It follows that $T \in (R)$ by Theorem 2.1. \Box

Remark 3.4. *If* $T \in (R)$ *and* $T \in \overline{HC(H)}$ *, we can not get* $\sigma(T) = [\sigma_1(T) \cap {\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)}] \cup$ $[acc\sigma(T) \cap \sigma_d(T)].$

For example: Let $A \in \mathcal{B}(\ell^2)$ *be defined by*

$$
A(x_1,x_2,x_3,\cdots)=(0,x_1,\frac{x_2}{2},\frac{x_3}{3},\cdots),
$$

and put $T = A + I$, *it is easy to see that* $T \in \overline{HC(H)}$ *and* $T \in (R)$ *. But since* $\sigma(T) = \{1\}$, $\sigma_1(T) \cap {\lambda \in \mathbb{C}} : n(T - \lambda I) \ge$ $d(T - \lambda I) = acco(T) \cap \sigma_d(T) = \emptyset$, $o(T) \neq [\sigma_1(T) \cap {\lambda \in \mathbb{C}} : n(T - \lambda I) \geq d(T - \lambda I)] \cup [acco(T) \cap \sigma_d(T)]$. Then we *will give the necessary and sufficient conditions for which* $T \in \overline{HC(H)}$ *and* $T \in (R)$ *.*

Corollary 3.5. Let $T \in \mathcal{B}(\mathcal{H})$, then $T \in \overline{HC(\mathcal{H})}$ and $T \in (R)$ if and only if $\sigma(T) = [\sigma_1(T) \cap {\lambda \in \mathbb{C}} : n(T - \lambda I) \ge$ $d(T - \lambda I)$ }] ∪ [$acc \sigma(T) \cap \sigma_d(T)$] ∪ { $\lambda \in \sigma_a(T) : n(T - \lambda I) = 0$ } *and* $\sigma_w(T) \cup \partial D$ *is connected.*

Proof. " \Rightarrow " We only need to prove $\sigma(T) = [\sigma_1(T) \cap {\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)}] \cup [\text{acc}(\sigma(T) \cap \sigma_d(T)] \cup {\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)}]$ $\sigma_a(T)$: $n(T - \lambda I) = 0$ } by Lemma 3.1. The inclusion " \supseteq " is clear. For the opposite inclusion, we know that $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\text{acc}(\sigma(T) \cap \sigma_d(T))] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}$ by Theorem 2.1. It follows from $T \in \overline{HC(H)}$ that $\sigma(T) = \sigma_1(T) \cup [\text{acc}(\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\} = [\sigma_1(T) \cap \{\lambda \in \mathbb{C} : n(T - \lambda I) > 0\}]$ $d(T-\lambda I)|\bigcup [\sigma_1(T)\cap (\lambda \in \mathbb{C}: n(T-\lambda I) < d(T-\lambda I)|\bigcup [\text{acc}(\sigma(T)\cap \sigma_d(T))\cup (\lambda \in \sigma_a(T): n(T-\lambda I) = 0].$ Meanwhile, noting that $\sigma_1(T) \cap {\lambda \in \mathbb{C} : n(T - \lambda I) < d(T - \lambda I)} \subseteq acc \sigma(T) \cap \sigma_d(T)$, thus $\sigma(T) = [\sigma_1(T) \cap {\lambda \in \mathbb{C} : n(T - \lambda I)} \ge$ $d(T - \lambda I)$ }] ∪ [acc $σ(T) ∩ σ_d(T)$] ∪ { $\lambda ∈ σ_a(T) : n(T - \lambda I) = 0$ }.

" \Leftarrow " Using the same way from the proof of Theorem 3.1, we can conclude that $T \in \overline{HC(H)}$ and $T \in (R)$. \Box

Remark 3.6. In Corollary 3.5, each part of the decomposition of $\sigma_b(T)$ can not be deleted when $T \in (R)$ and $T \in HC(H)$.

 (i) " $\sigma_1(T)$ ∩ { λ ∈ **C** : $n(T - \lambda I)$ ≥ $d(T - \lambda I)$ }" *can not deleted.* Let $T \in \mathcal{B}(\ell^2)$ be defined by

$$
T(x_1, x_2, x_3, \cdots) = (x_2, x_3, \cdots),
$$

then $T \in \overline{HC(H)}$ *and* $T \in (R)$ *by Lemma 3.1. But since* $\sigma(T) = D$ *and* $acc \sigma(T) \cap \sigma_d(T) = \{ \lambda \in \sigma_a(T) : n(T - \lambda I) =$ 0 } = $\partial \mathbb{D}$ *, we have* $\sigma(T) \neq [\operatorname{acc}(\sigma(T) \cap \sigma_d(T)] \cup \{ \lambda \in \sigma_a(T) : n(T - \lambda I) = 0 \}.$

(ii) "*acc*σ(*T*) ∩ σ*d*(*T*)" *cannot deleted.* Let $A, B \in \mathcal{B}(\ell^2)$ *be defined by*

$$
A=(a_{ij}), a_{ij}=\left\{\begin{array}{ll}1, |i-j|=1\\0, |i-j|\neq 1\end{array}, B(x_1, x_2, x_3,\cdots)=(0, 0, \frac{x_2}{2}, \frac{x_3}{3},\cdots),\right\}
$$

and set T = *A* 0 0 *B* ! *. Then T* ∈ *HC*(H) *by 3.1 and T* ∈ (*R*) *. But since* σ(*T*) = [−2, 2]*,* σ1(*T*)∩ {λ ∈ C : *n*(*T*−λ*I*) ≥ *d*(*T* − λ *I*)} = \emptyset *, and* { $\lambda \in \sigma_a(T) : n(T - \lambda I) = 0$ } = [−2, 0) ∪ (0, 2]*, we have* $\sigma(T) \neq [\sigma_1(T) \cap {\lambda \in \mathbb{C} : n(T - \lambda I) \ge \sigma_1(T)}$ $d(T - \lambda I)$] \cup { $\lambda \in \sigma_a(T)$: $n(T - \lambda I) = 0$ }*.*

(iii) " $\{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\}$ " *can not deleted.*

Let $A \in \mathcal{B}(\ell^2)$ be defined by

$$
A(x_1,x_2,x_3,\cdots)=(0,x_1,\frac{x_2}{2},\frac{x_3}{3},\cdots),
$$

and let $T = A + I$ *. Then* $T \in HC(H)$ *by Lemma 3.1 and* $T \in (R)$ *. But since* $\sigma(T) = \{1\}$ *and* $\sigma_1(T) \cap {\lambda \in \mathbb{C}} : n(T - \lambda I) \ge$ $d(T - \lambda I) = acc \sigma(T) \cap \sigma_d(T) = \emptyset$, we have $\sigma(T) \neq [\sigma_1(T) \cap {\lambda \in \mathbb{C} : n(T - \lambda I) \geq d(T - \lambda I)}] \cup [acc \sigma(T) \cap \sigma_d(T)].$

From Corollary 2.3, we can acquire the following results.

Corollary 3.7. *Let* $T \in \mathcal{B}(\mathcal{H})$ *, then the following statements are equivalent:*

(1) T ∈ (R) and T ∈ $HC(H)$;

 $(2) \sigma(T) = \partial \sigma_1(T) \cup [acc\sigma(T) \cap {\lambda \in \mathbb{C}} : n(T - \lambda I) \ge d(T - \lambda I)] \cup [acc\sigma(T) \cap \sigma_d(T)] \cup {\lambda \in \sigma_a(T)} : n(T - \lambda I) = 0$ *and* $\sigma_w(T) \cup \partial D$ *is connected;*

(3) $\sigma(T) = \partial \sigma_1(T) \cup [\operatorname{acc}(\sigma(T) \cap \sigma_{SF_+}(T))] \cup \{\lambda \in \operatorname{acc}(\sigma_a(T) : n(T - \lambda I) \neq d(T - \lambda I)\} \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\}$ *and* $\sigma_w(T) \cup \partial D$ *is connected.*

In the following, suppose that *T* ∈ *HC*(H), then the condition of equivalence that *T* ∈ (*R*) will change. We get the following results.

Theorem 3.8. Let $T \in \mathcal{B}(\mathcal{H})$. Suppose that $T \in HC(\mathcal{H})$, then $T \in (R)$ if and only if $\sigma(T) = \sigma_1(T) \cup [\arccos(T) \cap$ $\sigma_d(T)$] \cup { $\lambda \in \sigma(T)$: $n(T - \lambda I) = 0$ }*.*

Proof. " \Rightarrow " We have $\sigma_b(T) = [\sigma_1(T) \cap \sigma_{ab}(T)] \cup [\text{acc}(\sigma(T) \cap \sigma_d(T)] \cup \{ \lambda \in \sigma(T) : n(T - \lambda I) = 0 \}$ according to *T* \in (*R*) by Theorem 2.1. So, from *T* \in *HC*(\mathcal{H}), we conclude that $\sigma_1(T) \cap \sigma_{ab}(T) = \sigma_1(T) \cap \sigma(T) = \sigma_1(T)$. Therefore $\sigma(T) = \sigma_1(T) \cup [\text{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}.$

" \Leftarrow " we only need prove that $\pi_{00}(T) = \emptyset$ based on $\sigma_a(T) = \sigma_{ab}(T)$. Observing that $\pi_{00}(T) \cap {\sigma_1}(T) \cup$ $[\text{acc}\sigma(T) \cap \sigma_d(T)] \cup \{\lambda \in \sigma(T) : n(T - \lambda I) = 0\}\} = \emptyset$ and $\pi_{00}(T) \subseteq \sigma(T)$. Thus $\pi_{00}(T) = \emptyset$.

Corollary 3.9. *Let* $T \in \mathcal{B(H)}$ *. Suppose that* $T \in \overline{HC(H)}$ *, then the following statements are equivalent:* (1) *T* ∈ (R) ; (2) $σ(T) = ∂σ₁(T) ∪ accσ(T) ∪ {λ ∈ σ(T) : n(T − λI) = 0};$ *(3)* σ*w*(*T*) = [σ1(*T*) ∩ σ*ea*(*T*)] ∪ [*acc*σ(*T*) ∩ σ*d*(*T*)] ∪ {λ ∈ σ(*T*) : *n*(*T* − λ*I*) = 0}*; (4)* $f(T)$ ∈ (R) *.*

According to Corollary 2.3 and Corollary 3.7, we can get the following corollary.

Corollary 3.10. *Let* $T \in \mathcal{B}(\mathcal{H})$ *. Suppose that* $T \in (R)$ *, then the following statements are equivalent:*

 $(T) T \in HC(H);$

(2) $\sigma(T) = [\sigma_1(T) \cap {\lambda \in \mathbb{C}} : n(T - \lambda I) \ge d(T - \lambda I)] \cup [acc\sigma(T) \cap \sigma_d(T)] \cup {\lambda \in \sigma_a(T)} : n(T - \lambda I) = 0$ and σ*w*(*T*) ∪ ∂D *is connected;*

(3) $\sigma(T) = \partial \sigma_1(T) \cup [\arccos(T) \cap {\lambda \in \mathbb{C}} : n(T - \lambda I) \ge d(T - \lambda I)] \cup [\arccos(T) \cap \sigma_d(T)] \cup {\lambda \in \sigma_a(T)} : n(T - \lambda I) = 0]$ *and* $\sigma_w(T) \cup \partial D$ *is connected;*

(4) $\sigma(T) = \partial \sigma_1(T) \cup [\operatorname{acc\sigma}(T) \cap \sigma_{SF_+}(T)] \cup \{\lambda \in \operatorname{acc\sigma}_a(T) : n(T - \lambda I) \neq d(T - \lambda I)\} \cup \{\lambda \in \sigma_a(T) : n(T - \lambda I) = 0\}$ *and* $\sigma_w(T) \cup \partial D$ *is connected.*

Let $T \in \mathcal{B}(\mathcal{H})$ be defined by

$$
A(x_1,x_2,x_3,\cdots)=(0,x_1,x_2,x_3,\cdots),B(x_1,x_2,x_3,\cdots)=(x_2,x_3,\cdots),
$$

and let *T* = *A* 0 0 *B* \int . Then $\sigma_1(T) = \mathbb{D}$, $\sigma(T) = [\sigma_1(T) \cap {\lambda \in \mathbb{C} : n(T - \lambda I) \ge d(T - \lambda I)}] \cup [\text{acc}(\sigma(T) \cap \sigma_d(T)] \cup {\lambda \in \mathbb{C} : n(T - \lambda I)}$ $\sigma_a(T): n(T - \lambda I) = 0$ and $\sigma_w(T) \cup \partial D$ is connected. The results are true in above conclusions.

References

- [1] D. Herrero, *Approximation of Hilbert space operators*, Vol. 1, 2nd Ed., Pitman Research Notes in Mathematics Series, Vol. 224. Longman Scientific and Technical, Hasrlow, 1989
- [2] J. Finch, *The single valued extension property on a Banach space*, Pacific. J. Math. **58** (1975), 61-69.
- [3] P. Aiena, *Fredholm and local spectral theory II, with application to Weyl-type theorems*, Springer Lecture Notes of Math 2235, 2018.
- [4] H. Weyl, Über beschränkte quadratische formen, deren differenz vollstetig ist, Rend. Circ. Mat. Palermo, 27 (1909), 373-392.
- [5] P. Aiena, P. Peňa, Variations on Weyl's theorem, J. Math. Anal. Appl. 324 (2006), 566-579.
- [6] V. Rakočević, On a class of operators, Mat.Vesnik. **37** (1985), 423-426.
- [7] P. Aiena, J. Guilln, P. Peňa, *Property (R) for bounded linear operators*, Mediterr. J. Math. **8** (2011), 491-508.
- [8] P. Aiena, E. Aponte, J. Guilln, et al, *Property (R) under perturbations*, Mediterr. J. Math. **10** (2013), 367-382.
- [9] B. Jia, Y. Feng, *Property (R) under compact perturbations*, Mediterr. J. Math. **17** (2020), 73.
- [10] A. Taylor, *Theorems on ascent, descent, nullity and defect of linear operators*, Math. Ann. **163** (1966), 18-49.
- [11] H. Radjavi, P. Rosenthal, *Invariant subspaces II*, Dover Publications, Mineola, 2003.
- [12] L. Dai, X. Cao, Q. Guo, *Property (*ω*) and the Single-valued Extension Property*, Acta. Mathematica. Sinica. English Series, **37** (2021), 1254-1266.
- [13] X. Cao, J. Dong, L. Liu, *Weyl?s theorem and its perturbations for the functions of operators*, Oper. Matrices. **12** (2018), 1145-1157.
- [14] H. Hilden, L. Wallen, *Some cyclic and non-cyclic vectors of certain operators*, Indiana Univ. Math. J. **23** (1974), 557-565.
- [15] C. Kitai, *Invariant closed sets for linear operators*, Ph.D. Thesis, Univ. of Toronot, Toronot, 1982.
- [16] X. Cao, *Weyl type theorem and hypercyclic operators*, J. Math. Anal. Appl. **323** (2006), 267-274.
- [17] D. Herrero, *Limits of hypercyclic and supercyclic operators*, J. Funct. Anal. **99** (1991), 179-190.
- [18] S. Zhu, C. Li, T. Zhou, *Weyl type theorems for functions of operators*, Glasgow. Math. J. **54** (2012), 493-505.