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Impact of quasi-constant curvature in f (R,G) and f (R,T )-gravity
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Abstract. In this article it is illustrated that a spacetime of quasi-constant curvature is a static spacetime as
well as generalized Robertson-Walker spacetime under certain restrictions on the associated scalars. As a
consequence, we prove that such a spacetime becomes a Robertson-Walker spacetime and belongs to Petrov
classification I, D or O. We investigate this spacetime as a solution of f (R,G)-gravity and f (R,T )-gravity
theories and describe the physical explanation of the Friedmann-Robertson-Walker metric. With the models
f (R,G) = 2R + λG (λ is constant) and f (R,T ) = R + 2T , several energy conditions in terms of associated
scalars are explored.

1. Introduction

A spacetime is nothing but a Lorentzian manifold M4 with the signature (−,+,+,+) for the Lorentzian
metric 1, admitting a globally time-oriented vector. Numerous scholars, including ([4], [17], [18]), have
explored spacetimes in different ways.

According to [2], [9], [10], a generalised Robertson-Walker (GRW) spacetime is a Lorentzian manifold
Mn (n ≥ 4), whose metric can be written as

ds2 = −
(
dx1
)2
+ eq1∗v1v2

dxv1 dxv2 (1)

in which non-constant q = q
(
x1
)

being a function dependent on x1 and 1∗v1v2
= 1∗v1v2

(xv3 ) are only functions
of xv3 (v1, v2, v3 = 2, 3, . . . ,n) . The equation (1) also be constructed as the warped product −I ×eq M

∗
, the

interval I in R is open and M
∗

indicates (n − 1)-dimensional Riemannian manifold. The GRW spacetime
becomes a Robertson-Walker (RW) spacetime if dim. of the Riemannian manifold M

∗
is 3 with constant

curvature.
M4 is described as a perfect fluid spacetime (PFS) if the Ricci tensor Rkl satisfies

Rkl = c11kl + d1ukul, (2)
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in which c1, d1 are scalars and the flow vector ul is a unit time-like vector. IN general relativity (GR), the
matter field is described byTkl, called the energy-momentum tensor (EMT) and since, heat conduction term
is absent, the fluid is named perfect [20]. In a PFS, the EMT [25] is of the form

Tkl =
(
ρ + µ

)
ukul + ρ1kl, (3)

where µ and ρ stand for energy density and isotropic pressure. According to the Einstein’s field equations
(EFE),

Rkl −
1
2
1klR = κTkl, (4)

where κ denotes gravitational constant, R = 1klRkl stands for the Ricci scalar.
The conformal curvature tensor Cl

i jk for M4 is described by

C
l
i jk = R

l
i jk −

1
2

{
1i jR

l
k − 1ikR

l
j + δ

l
kRi j − δ

l
jRik

}
+
R

6

{
δl

k1i j − δ
l
j1ik

}
(5)

in which Rl
i jk denotes the curvature tensor.

Chen and Yano [11] obtain the resulting expression of the curvature tensor in order to examine a conformally
flat hypersurface of Euclidean space

Rli jk = α
{
1lk1i j − 1l j1ik

}
+ β
{
1lkuiu j − 1l juiuk + 1i juluk − 1ikulu j

}
, (6)

where uk is a unit vector, often known as the generator, and α, β are scalars. A manifold with quasi-constant
curvature, abbreviated by (QC)n, is an n-dimensional conformally flat manifold obeying (6).

However, it is easily proved that a manifold of quasi-constant curvature becomes conformally flat.
Therefore, conformally flatness is not necessary according to the definition. Instead of considering a
conformally flat manifold, Vranceanu [30] defined the idea of almost constant curvature using the same
equation as (6). Afterwards Mocanu [24] demonstrates that the manifold proposed by Chen and Yano [11]
are manifolds of the same type as those Vranceanu introduced. Many authors have studied a manifold
with quasi-constant curvature, including ([5], [11], [15], [31]) and many others. If Rli jk obeys (6), then M4

is called a spacetime of quasi-constant curvature. Here, we suppose that uk is a unit time-like vector, that
is, ukuk = −1, uk = 1kju j. If β = 0, then it becomes spacetime of constant curvature. Throughout the
paper we adopt that β ̸= 0 and the term “(QC)4-spacetime” refers to a 4-dimensional spacetime with quasi-
constant curvature. The 4-dimensional Lorentzian manifolds of quasi-constant curvature are conformally
flat solutions of EFE for perfect fluid matter [28], and are referred to as infinitesimally spatially isotropic in
physical literature.

The scientific world as a whole accepts the idea that our Cosmos is currently going through an accelerated
phase. Standard GR cannot describe accelerated expansion without the addition of new concepts or
elements, collectively referred to as dark energy. According to GR theory, it is commonly accepted that
energy conditions (ECs) are essential resources for studying black holes and worm holes in various modified
gravities ([3], [6], [14], [19], [21]). The Raychaudhuri equations [26], which methodically produce the ECs,
express the intriguing nature of gravity through the positivity condition Rlkuluk

≥ 0, ul is a null vector. In
GR theory on matter, through the EFE, this geometric criterion is the same as the null EC (NEC) Tlkuluk

≥ 0.
Certainly, the weak EC (WEC) reflects that Tlkuluk

≥ 0, for every time-like vector ul and preserves a
positive local energy density. Several modifications and in-depth research have been done on EFE in
[7].The “ f (R,G)-gravity theory”[14] was one of these modified theories. It was developed by changing the
previous Ricci scalar R by a function of R and G, the Gauss-Bonnet (GB) invariant. The “ f (R,T )-gravity
theory, ” discovered by Harko et al. [19], was another modified theory. This is an extension of f (R)-gravity
([3], [6]) in which the trace T of the EMT is directly linked to any arbitrary function of R. In this article, we
consider two new models, for instance, f (R,G) = 2R + λG (λ is constant) and f (R,T ) = R + 2T to explain
different ECs.
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In [12], it is illustrated that a (QC)4-spacetime is a RW spacetime and a Ricci symmetric (∇hRlk = 0)
(QC)4-spacetime belongs to Petrov classification I, D or O. Also, they characterize (QC)4-spacetime in
f (R)-gravity.

In this article, we illustrate that a (QC)4-spacetime with some restrictions on the associated scalars
becomes a GRW spacetime as well as static spacetime and finally we prove that such a spacetime reduces
to a RW spacetime. Also, it is shown that a (QC)4-spacetime belongs to Petrov classification I, D or O
without assuming Ricci symmetric (∇hRlk = 0). Then we study (QC)4-spacetime solutions in f (R,G) and
f (R,T )-gravity, respectively.

After introduction in Section 2, the analysis of (QC)4-spacetime is presented. Finally, we provide
(QC)4-spacetime solutions in f (R,G) and f (R,T )-gravity in the last two Sections.

2. Spacetime of quasi-constant curvature

Definition 2.1. [32] A vector vk on M4 is called torse-forming if

∇lvk = φ1lk +Ωlvk,

being Ωl a non-vanishing one-form and φ is a scalar function.

If vk is unit time-like, the aforementioned equation has the form

∇lvk = φ
{
vlvk + 1lk

}
.

Theorem A. [23] A M4 is a GRW spacetime iff it permits a unit time-like torse-forming vector vk: ∇lvk =
φ
{
vlvk + 1lk

}
and vk is an eigen vector of Rlk.

Multiplying (6) with 1i j, we get

Rlk =
(
3α − β

)
1lk + 2βuluk, (7)

which is a form of PFS.
Again, multiplying (7) with 1lk, we have

R = 6
(
2α − β

)
. (8)

If a spacetime is of quasi-constant curvature, then the spacetime becomes conformally flat. Then we have

C
l
i jk = 0 (9)

and

∇iLlk − ∇lLik = 0, (10)

where

Llk = −
Rlk

2
+
R

12
1lk. (11)

Using (7) and (8) in (11), we get

Llk = −
{
α
2
1lk + βuluk

}
. (12)

Substituting (12) in (10), we obtain

1
2
{
αi1lk − αl1ik

}
+
{
βiul − βlui

}
uk + β {ul (∇iuk) − ui (∇luk)}

+ β {(∇iul) − (∇lui)}uk = 0, (13)
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where αl = ∇lα and βl = ∇lβ.
Multiplying (13) with 1lk and uk, respectively, we have

3αi

2
− βi − βluiul

− βui

(
∇lul
)
− βul (∇lui) = 0 (14)

and

1
2
{αiul − αlui} +

{
βlui − βiul

}
+ β {(∇lui) − (∇iul)} = 0. (15)

Again, multiplying (15) with ul, we get

βi −
αi

2
−

1
2
αlului + βlului + βul (∇lui) = 0. (16)

Adding equations (14) and (16), we have

αi =
{
β
(
∇lul
)
+

1
2
αlul
}

ui. (17)

If α ̸= constant, then (17) becomes

αi = ψui, (18)

where ψ = β
(
∇lul
)
+

1
2
αlul.

From (15) and (18), it follows that{
βlui − βiul

}
+ β {(∇lui) − (∇iul)} = 0. (19)

Using (19) in (13), we obtain

1
2
{
αi1lk − αl1ik

}
+ β {ul (∇iuk) − ui (∇luk)} = 0. (20)

Equations (16) and (18) together imply

βi = −βlului − βul (∇lui) . (21)

If βi = −βlului, then (21) becomes

βul (∇lui) = 0. (22)

Multiplying (20) with ul, we get

1
2

{
αiuk − αlul1ik

}
− β
{
(∇iuk) + uiul (∇luk)

}
= 0. (23)

Using (22) in (23), we have

β (∇iuk) =
1
2

{
αiuk − αlul1ik

}
. (24)

From (18) and (24), it follows that

∇iuk =
ψ

2β
{
1ik + uiuk

}
, (25)
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that is, uk is a unit torse-forming vector.
Multiplying (7) with ul, we have

Rlkul = 3
(
α − β

)
uk, (26)

that is, uk is an eigen vector of Rlk.
If α = constant, then we have from (24),

∇iuk = 0, since by assumption β ̸= 0. (27)

A spacetime is said to be stationary if uk is Killing and static ([27], [29], p. 283) for irrotational vector uk. A
static spacetime is the outcome of R × S if it has the metric

1
[(

t, y
)]
= 1S

[
y
]
− β
(
y
)

dt2,

1S stands for a Riemannian metric on S.
We define the Lie derivative denoted by £, in a smooth vector v as

£v1kl = ∇kvl + ∇lvk.

Since ∇iuk = 0, hence £u1kl = 0, which entails that ul is Killing. Further ∇iuk = 0 infers ul is irrotational.
Therefore, the spacetime is static. Thus, we conclude:

Theorem 2.2. A (QC)4-spacetime with βi = −βlului represents a GRW spacetime for α ̸= constant and static
spacetime for α = constant.

It is commonly circulated that every static spacetime belongs to Petrov classification I, D or O. Consequently,
under consideration a (QC)4-spacetime is of Petrov classification I, D or O ([13], Section 10.7). Consequently,
we state:

Corollary 2.3. A (QC)4-spacetime with βi = −βlului and α = constant belongs to Petrov classification I, D or O.

From equation (7), we infer that the (QC)4-spacetime represents a PFS. If α is constant, then from (17), we
have ∇lul = 0, that is, the velocity vector is divergence-free. Therefore, the acceleration vector and the
expansion scalar both vanish. Hence, we provide:

Corollary 2.4. A (QC)4-spacetime with α = constant is expansion scalar-free and acceleration vector-free.

The local components Γl
i j of the Levi-Civita connection on warped product (1) are [16]

Γl
11 = Γ

1
11 = Γ

1
1l = 0, Γl

i j = Γ
∗ l

i j, Γ
l
1i =

1
2

q̃ δl
i, Γ

1
i j = −

1
2

q̃ eq g∗ i j, q̃ =
dq
dx1 . (28)

The local components of the conformal curvature tensor which in general does not vanish identically, are

Cl11i =
1
2

{R
∗

3
g∗ li − R

∗
li

}
(29)

and

Cli jk = eq
{
R
∗

li jk −
1
2

(
R
∗

i jg
∗

lk − R
∗

ikg∗ l j + R
∗

lkg∗ i j − R
∗

l jg
∗

ik

)
+

R
∗

6

(
g∗ lkg∗ i j − g∗ l jg

∗
ik

)}
. (30)

Since a spacetime of quasi-constant curvature is conformally flat, −I ×eq M
∗

is conformally flat. Then from
(29), we find

R
∗

li =
R
∗

3
g∗ li. (31)

In light of (30), substituting (31) into Cli jk = 0, we get

R
∗

li jk =
R
∗

6

{
g∗ i jg
∗

lk − g∗ ikg∗ l j

}
, (32)

that is, M
∗

is a spacetime of constant curvature. Thus, we write:

Theorem 2.5. A (QC)4-spacetime with βi = −βlului and α ̸= constant becomes a RW spacetime.
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3. f (R,G)-gravity

Here, our attention is directed towards a particular class of modified gravity models, f (R,G) and the
gravitational action term is

S =
1

2κ

∫
√
−1 f (R,G) d4x + Smat, (33)

Smat is the matter action and GB invariant G is represented as

G = R2 + Rli jkR
li jk
− 4RlkR

lk. (34)

The action term equation (33) yields the gravitational field equations of f (R,G)-gravity by

Rlk −
R

2
1lk = κTlk + Σlk, (35)

where

Σlk = ∇l∇k fR + 2R∇l∇k fG − 1lk□ fR − 21lkR□ fG − 4Ri
l∇i∇k fG

+ 4Rlk□ fG − 4Ri
k∇i∇l fG + 41lkR

i j
∇i∇ j fG + 4Rli jk∇

i
∇

j fG

+
(
1 − fR

) (
Rlk −

R

2
1lk

)
−

1
2
(
G fG + R fR − f

)
1lk. (36)

Here, fR ≡
∂ f
∂R

, fG ≡
∂ f
∂G

and □ indicates the d’Alembert operator.

In the framework of f (R,G) modified gravity, the ECs are derived using the modified gravitational field
equations, with the following outcomes

NEC⇐⇒ µ + ρ ≥ 0, (37)
WEC⇐⇒ µ ≥ 0 and µ + ρ ≥ 0, (38)
DEC⇐⇒ µ ≥ 0 and µ ± ρ ≥ 0, (39)
SEC⇐⇒ µ + 3ρ ≥ 0 and µ + ρ ≥ 0, (40)

in which DEC and SEC denote the dominant EC and strong EC, respectively.
Equation (7) infers that

R
lk =
(
3α − β

)
1lk + 2βuluk. (41)

Equations (7) and (41) together imply

RlkR
lk = 36α2

− 36αβ + 12β2. (42)

From (6), it follows that

R
li jk = α

{
1lk1i j

− 1l j1ik
}
+ β
{
1lkuiu j

− 1l juiuk + 1i juluk
− 1ikulu j

}
. (43)

Multiplying (6) and (43), one infers

Rli jkR
li jk = 24α2

− 24αβ + 12β2. (44)

Equations (8), (34), (42) and (43) together give the GB invariant as

G = 24α
(
α − β

)
. (45)
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Consider a flat Friedmann Robertson Walker (FRW) metric

ds2 = a2 (t)
{
dx2 + dy2 + dz2

}
− dt2, (46)

in which a (t) indicates the scale factor of the Universe. Given a perfect fluid equation of state for ordinary
matter in the FRW background, the field equations for f (R,G)-gravity are as follows:

2Ḣ fR + 8HḢ ḟG = H ḟR + 4H3 ḟG − f̈R − 4H2 f̈G, (47)

24H3 ḟG + 6H2 fR = fRR − 6H ḟR − f (R,G) + G fG, (48)

where the overdot represents a derivative with respect to the time coordinate t and H =
ȧ
a

indicates the
Hubble parameter. Moreover, we acquire

R = 6
(
2H2 + Ḣ

)
(49)

and

G = 24H2
(
H

2 + Ḣ
)
. (50)

From (8), (45), (49) and (50), we acquire

Ḣ + 2H2 = 2α − β (51)

and

H
2
(
Ḣ +H2

)
= α
(
α − β

)
. (52)

Solving (51) and (52), we obtain either

H
2 = α − β and Ḣ = β (53)

or,

H
2 = α and Ḣ = −β. (54)

In a cosmological framework, the deceleration, jerk, and snap parameters can be described as:

q = −
1
H2

ä
a
, j =

1
H3

...
a
a

and s =
1
H4

....
a
a
. (55)

SinceH =
ȧ
a

, with the help of (53) we get

ä
a
= α,

...
a
a
= α̇ + αH and

....
a
a
= α̈ + 2α̇H + α2. (56)

From (53), (55) and (56), it follows that

s = q2 + 2
(
j + q
)
+

α̈(
α − β

)2 . (57)

Also, fromH =
ȧ
a

and equation (54) we find

ä
a
= α − β,

...
a
a
= α̇ − β̇ +

(
α − β

)
H and

....
a
a
= α̈ − β̈ + 2

(
α̇ − β̇

)
H +

(
α − β

)2 . (58)
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Equations (54), (55) and (58) reflect that

s = q2 + 2
(
j + q
)
+
α̈ − β̈

α2 . (59)

Thus, in a (QC)4-spacetime obeying f (R,G)-gravity, the deceleration, jerk, and snap parameters are linked
by (57) or, (59).
The following subsection deals with the ECs for a f (R,G)-gravity model.

A. f (R,G) = 2R + λG

For this model, the equation (36) becomes

Σlk =
1
2
1lkR − Rlk. (60)

Using (60) in (35), we infer

2Rlk − R1lk = κTlk. (61)

Here, we consider (QC)4-spacetime solutions in f (R,G)-gravity equation assuming the EMT is of the shape
(3). Then equations (3), (7), (8) and (61) reflect that

{
κρ + 6α − 4β

}
1lk +

{
κρ + κµ − 4β

}
uluk = 0. (62)

Multiplying (62) with uluk, we have

µ =
6α
κ
. (63)

Again, multiplying (62) with 1lk and using (63), we arrive

ρ =
4β − 6α
κ

. (64)

The ECs for this setup can now be discussed using (63) and (64).

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5
10

43

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35
10

43

Fig. 1: Development of µwith respect to α Fig. 2: Development of µ + ρwith respect to β
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Fig. 3: Development of µ − ρwith respect to α
and β

Fig. 4: Development of µ + 3ρwith respect to α
and β

It is seen from Fig. 1 and Fig. 2, the energy density and µ + ρ can not be negative for the parameters
α, β ∈ [1, 1.2] and for higher values of α and β, it is high. NEC and WEC are satisfied because NEC is a part
of WEC. Fig. 3 shows the µ − ρ profile which has a positive range. Utilizing Fig. 1, 2 and 3, we conclude
that DEC is satisfied whereas Fig. 4 indicate that SEC is not verified, and this result infers the late-time
acceleration of the Cosmos[22]. Moreover, every outcomes compatible with the ΛCDM model [1].

4. f (R,T )-gravity

Now, we study the PFS of quasi-constant curvature obeying f (R,T )-gravity. Our hypothesis states that
the action term for the modified theories of gravity has the subsequent shape:

S =

∫
√
−1

{
Lm +

f (R,T )
16π

}
d4x (65)

in which Lm is the matter Lagrangian density. The EMT of the matter is described as

Tlk = −
2
√
−1

δLm
√
−1

δlk
. (66)

The field equations of f (R,T )-gravity are{
Rlk − ∇l∇k + 1lk□

}
fR (R,T ) + {Tlk + Θlk} fT (R,T )

−
1
2

f (R,T ) 1lk − 8πTlk = 0 (67)

in which fR ≡
∂ f
∂R

, fT ≡
∂ f
∂T

and

Θlk = Lm1lk − 2Tlk − 21i j ∂
2Lm

∂1lk∂1i j . (68)

Using equation (3), we acquire the variation of stress energy as

Θlk = ρ1lk − 2Tlk. (69)

In conducting our research, we consider the model outlined below:

f (R,T ) = R + 2T . (70)
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Equations (67) and (70) together produce

Rlk + {2 − 8π} Tlk −
1
2

(R + 2T ) 1lk + 2Θlk = 0. (71)

When Harko et al. [19] derived the field equations, they did not consider the conservation of the EMT.
However, the EMT’s conservation was assumed by the author of [8]. In the (QC)4-spacetime solutions to
the f (R,T )-gravity equation, we assume that the EMT is conserved.

Making use of (7), (8), (69) and (71) provide us

{
8πρ + 3α − 2β + T

}
1lk +

{
(8π + 2)

(
ρ + µ

)
− 2β
}

uluk = 0. (72)

Multiplying (72) with 1lk and uluk, respectively, we have

4
{
8πρ + 3α − 2β + T

}
− (8π + 2)

(
ρ + µ

)
+ 2β = 0 (73)

and

−
{
8πρ + 3α − 2β + T

}
+ (8π + 2)

(
ρ + µ

)
− 2β = 0. (74)

Multiplying (??) with 1lk, we obtain

T = 3ρ − µ. (75)

Using (75), from (73) and (74) it follows that

ρ =
2β (8π + 3) − 3α (8π + 2)

(8π + 2) (8π + 4)
(76)

and

µ =
3α (8π + 2) + 2β
(8π + 2) (8π + 4)

. (77)

Using (76) and (77), the ECs for this configuration can now be discussed.

Fig. 5: Development of µwith respect to α and β Fig. 6: Development of µ − ρwith respect to α and β
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Fig. 7: Development of µ + 3ρwith respect to α and β

Figs. 5 indicates that µ is positive for the parameters α, β ∈ [1, 1.2] and consequently µ + ρ =
2β

(8π + 2)
has a

positive range. From Figs. 6 and 7, we conclude that DEC is verified for the parameters α, β ∈ [1, 1.2] but
the SEC is not valid. Furthermore, both WEC and NEC are met for this construction.

5. Discussion

Exploring (QC)4-spacetime solutions in relation to f (R,G)-gravity and f (R,T )-gravity has been the
primary focus of this paper. The deceleration, jerk, and snap parameters in the quasi-constant curvature
spacetime obeying f (R,G)-gravity have been demonstrated. Our findings have been assessed both analyti-
cally and graphically in this instance. Our formulation was constructed using the analytical technique, and
two cosmological models, such as f (R,G) = 2R + λG and f (R,T ) = R + 2T , were evaluated for stability.
The EC profiles for the first model are displayed in Figs. 1, 2, 3, and 4. The evolution of µ for the parameters
α, β ∈ [1, 1.2] has been found to be non negative. NEC, WEC, and DEC were satisfied, but SEC violated the
terms of the agreement. These results, however, agree with theΛCDM model. Figs. 5, 6, and 7 display each
energy condition for the second model, just like they did for the first. Our findings for the second model
agree with the first model’s results.
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