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On geometry of Lorentzian immersions with non-null hyperelastic
curves

Tunahan Turhana

aSüleyman Demirel University, Türkiye

Abstract. We characterize Lorentzian submanifolds by using non-null hyperelastic curves along a
Lorentzian immersion defined between suitable two Lorentzian manifolds. We introduce a Lorentzian
hyperelastic immersion as a map that carries a hyperelastic curve in the submanifold to a hyperelastic
curve in the ambient manifold by the isometric immersion theory. Then, we investigate the characteriza-
tion of submanifolds by using hyperelastic curves along Lorentzian immersions. Also, we exemplify the
findings.

1. Introduction

The geometry of submanifolds is a fascinating and complex field that deals with the study of manifolds
embedded in higher dimensions. A particularly important problem within this area of mathematics is
the study of izometric immersions between two Riemannian manifolds. An isometric immersion is the
imbedding of a manifold, defined as a total manifold into another manifold called the ambient, locally
and conserving distance. On the other hand, the geometry of manifolds with certain curves were first
studied on Riemannian manifolds in [7]. They presented the idea of a circle and expressed some important
characterization about submanifold. Then, Ikawa gave the concept of a helix in a Riemannian manifold
and he studied the behavior of helices immersions defined between two Riemannian manifolds, [5].

Lorentzian immersions are particularly important in space-time theory because a function defined in
a differentiable way at any point in space-time can provide information about the motion of space-time.
Lorentzian immersions are mathematical tools used in modeling the dynamics of space-time. In [2], Graves
has studied isometric immersions defined between two Lorentzian space. The main goal of the author
in that study is to make classification, up to a proper motion of ambient Lorentzian manifold, of all such
immersions.Then, special classes of parallel submanifolds in Lorentzian space Rm

1 and Euclidean space
of signature (2, m − 2) Rm

2 have investigated. Magid has classified all umbilical submanifolds as well as
isometric immersions Rn

→ Rn+k
1 , R

n
1 → Rn+2

1 and Rn
1 → Rn+2

2 with paralel second fundamental forms, [3].
Also, in [14], Ikawa surveyed curves in an indefinite-Riemannian manifold. The author studied circle and
helix with respect to causel character of tangent vectors of curves and gave characterization related with
Lorentzian submanifold.
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Besides these studies, the concept of elastic curves and hyperelastic curves has been used recently in
the characterization of submanifolds. In [12], the authors presented the role of hyperelastic curves which
are general type of classical elastic curves on the theory of immersions on Riemannian manifolds. Also,
they gave relations between hyperelastic curves and umbilical submanifolds. Then, in [13], Riemannian
maps were studied with the help of hyperelastic curves. Such maps are very important tools for study and
comparing the geometry of two manifolds. Recently, biharmonic curves and triharmonic curves have also
been studied along Riemannian submersions and Riemannian transformations, [15–17].

In this work, we first give some geometric materials related with Lorentzian immersion and the main
problem of the paper. Then, we establish isometric Lorentzian immersions which transport non-null
hyperelastic curves in section 3. Given that an arbitrary non-null curve taken from the submanifold carry to
a non-null hyperelastic curve in the ambient manifold, we give to the isotropic condition of the Lorentzian
submanifold. Also, we define the notation of Lorentzian hyperelastic immersion. By using Lorentzian
hyperelastic immersions, we give some characterizations of the Lorentzian submanifolds with respect to
mean curvature vector field of the manifold, curvature and torsion of the non-null hyperelastic curve in the
submanifold. At last, we obtain some results for constant sectional curvature Lorentzian manifolds. Then,
we give an example for our findings.

2. Materials and method

In this section, some geometric concepts of Lorentzian submanifolds and some formulas which are
subsequently useful are given.

Let Rn
s indicate the pseudo-Riemannian n−space with the canonical metric of index s defined by

1 = −

s∑
i=1

dx2
i +

n∑
j=s+1

dx2
j ,

where (x1 , ..., xn) is the coordinate system of Rn
s . Let M be an m− dimensional C∞ manifold endowed with

a metric 1. If the signature of the metric 1 is s, then M is known an indefinite-Riemannian manifold of
signature s. If s = 1, then M is known a Lorentzian manifold. Also, if 1 is positive definite, then M is
called a Riemannian manifold. A vector w in Rn

s is called spacelike (timelike or lightlike, respectively) if
⟨w,w⟩ > 0 (⟨w,w⟩ < 0, ⟨w,w⟩ = 0 and u , 0, respectively). A curve α in Rn

s is known spacelike (timelike
or lightlike, respectively) if its velocity vector α′ is spacelike (timelike or lightlike, respectively) at each
point. Let f : M → M̄ be an isometric immersion of an n−dimensional Lorentzian manifold M into an
(n + p)-dimensional Lorentzian manifold M̄. With ∇ (∇̄ respectively), we denote the connection of M (M̄
respectively). So, we can give following the Gauss and Weingarten which are important formulas for
submanifolds theory.

Assume that h and A stand for the second fundamental form and the shape operator of M, respectively.
For X, Y ∈ χ(M) and V ∈ χ(M)⊥, Gauss and Weingarten formulas are

∇̄XY = ∇XY + h (X,Y) , (1)

and

∇̄XV = −AVX +DXV, (2)

where D is the connection in the normal bundle. Also, we have the following relation

< AV (X) ,Y >=< h (X,Y) ,V > . (3)

On the other hand, from the Gauss and Weingarten formulas, we obtain

R̄ (X,Y) Z = R (X,Y) Z − Ah(Y,Z)X + Ah(X,Z)Y +
(
∇̃Xh
)

(Y,Z) −
(
∇̃Yh
)

(X,Z) (4)
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where R̄ and R are the Riemannian curvature tensor fields of M̄ and M, respectively and ∇̃Xh is a symmetric
ℑ(M)−bilinear function χ(M) × χ(M) −→ χ(M)⊥ (see, [9]). Also, for the covariant derivative of h,we have(

∇̃Xh
)

(Y,Z) = DXh (Y,Z) − h (∇XY,Z) − h (Y,∇XZ) (5)

and covariant derivative of shape operator A is

(∇XA)V Y = ∇X (AVY) − ADXVY − AV∇XY. (6)

In addition, we have the following equality for h and A,

<
(
∇̃Xh
)

(Y,Z) ,V >=< ∇X (A)V Y,Z > . (7)

If h (X,Y) satisfies

h (X,Y) =< X,Y > H, (8)

then M is known a totally umbilical submanifold and H is the mean curvature vector field. If the second
fundamental form h zeros identically on M, then M is called totally geodesic, [5, 8].

Definition 2.1. Let Rn+d
ν

be the (n + d)-dimensional pseudo-Euclidean space and Nn
s be the connected pseudo-

Riemannian manifold. An isometric immersion φ : Nn
s → R

n+d
ν

is called pseudo-isotropic at p ∈ Nn
s if

< h(u,u), h(u,u) >= λ(p) ∈ R

does not depen on the choice of the unit tangent vector u ∈ TpNn
s and φ is said to be pseudo-isotropic if φ is pseudo-

isotropic at each point of Nn
s . Also, if λ is a constant function, the immersion is called constant pseudo-isotropic,

[8, 18].

Definition 2.2. Hyperelastic curves are known as crucial points of the functional F r
γ =
∫

(κr + λ)ds for a natural
number r ≥ 2. Also, these curves are called as free hyperelastic curves if λ = 0, [1].

Critical points of the bending energy functional F r
γ are characterized by the Euler-Lagrange equation

∇
2
T

(
κr−2
∇TT
)
+κr−2R(∇TT,T)T + ε0ε1∇T(λT)=0, (9)

for some constant b ∈ R and

λ =
2r − 1

r
κr + b (10)

[10].
Let γ be a unit speed non-null curve in a Lorentzian manifold M. Then, the Frenet apparatus of γ are

established as

∇TNi = −εi−1κiNi−1 + εi+1κi+1Ni+1, 0 ≤ i ≤ n − 1

where κ1 = κ ≥ 0, κ2, κ3, κ4, ..., κn−1 are curvatures of γ and No = T the unit tangent vector field, N1 = N
the unit normal vector field and N2 = B the unit binormal vector field. Also, κ0N−1 = κnNn = 0 and
εi =< Ni,Ni >= ∓1, [6].
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3. Geometry of the Lorentzian Submanifold by Non-null Hyperelastic Curves

In this section, firstly, some important equations and relations will be obtained for use in the rest of the
work.

Consider two Lorentzian manifolds, denoted as M and M. Let i be an isometric immersion where γ
represents a non-null curve on M and γ(s) = i ◦ γ (s) denotes corresponding non-null curve with curvature
κ in M. Additionally, we assume that γ (s) is a non-null hyperelastic curve in M̄. By applying (9), it follows
that

∇
2
T

(
κr−2
∇TT
)
+κr−2R(∇TT,T)T + ε0ε1∇T(λT)=0, (11)

for some constant b ∈ R and

λ =
2r − 1

r
κr + b. (12)

For the first component of (11), from (1) and (2), we find

∇
2
T

(
κr−2
∇TT
)
= ∇

2
T (ξ∇TT) + h (T,∇T (ξ∇TT)) − Aξh(T.∇TT)T
+DTξh (T,∇TT) − ∇T

(
Aξh(T,T)T

)
− h
(
Aξh(T,T)T,T

)
−ADTξh(T,T)T +D2

Tξh (T,T) ,

(13)

where ξ = (κ2 + ∥h (T,T)∥2)
r−2

2 and κ is the curvature of γ in M. For the second component of (11), if (4) and
(1) are used and the necessary calculations are made, we obtain

κr−2R̄
(
∇̄TT,T

)
T = ξR (∇TT,T) T − ξAh(T,T)∇TT + ξAh(∇TT,T)T

+ξ
(
∇̃∇TTh

)
(T,T) − ξ

(
∇̃Th
)

(∇TT,T) .
(14)

If we use (13) and (14) in (11), we get

∇
2
T (ξ∇TT) + h (T,∇T (ξ∇TT)) +DTξh (T,∇TT) − ∇T

(
Aξh(T,T)T

)
−ξh
(
Ah(T,T)T,T

)
− ADTξh(T,T)T +D2

Tξh (T,T) + ξR (∇TT,T) T
−ξAh(T,T)∇TT + ξ

(
∇̃∇TTh

)
(T,T) − ξ

(
∇̃Th
)

(∇TT,T)
+ε0ε1∇T (λT) + ε0ε1λh (T,T) = 0,

(15)

where

λ =
2r − 1

r
(κ2 + ∥h(T,T∥2)

r
2 + b.

On the other hand, the tangent part of (15) is

∇
2
T (ξ∇TT) − ∇T

(
Aξh(T,T)T

)
− ADTξh(T,T)T + ξR (∇TT,T) T

−ξAh(T,T)∇TT + ε0ε1∇T (λT) = 0.
(16)

Making use of (6) and (5), we have

∇T (Aξh(T,T) T) = ∇T (A)ξh(T,T) T + ADTξh(T,T)T + Aξh(T,T)∇TT (17)

and

ξ
(
∇̃Th
)

(T,T) = ξDTh (T,T) − 2ξh (∇TT,T) , (18)
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respectively. Using (17) and (18) into (16), we obtain

∇
2
T (ξ∇TT) − ∇TAξh(T,T)T − 2A(DTξ)h(T,T)T − 2ξA(∇̃Th)(T,T)T

−4ξAh(∇TT,T)T − 2ξAh(T,T)∇TT + ξR (∇TT,T) T + ε0ε1∇T (λT) = 0.
(19)

Substituting Frenet equations of γ in (19), we get

ε0ε1

(
λs − 3ξκκs − 2κ2ξs

)
T + (ε1ξκss − ε0κ3ξ + 2ε1κsξs + ε1ξssκ − ε2κτ2ξ + ε0λκ)N

+ (2ε1κsτξ + ε1ε2κτsξ + 2ε1ε2κτξs) B − 4ξκAh(N,T)T − 2ξκAh(T,T)N
= 2A(DTξ)h(T,T)T + 2ξA(∇̃Th)(T,T)T + ∇TAξh(T,T)T − ξκR (N,T) T.

(20)

Then, the inner product of (20) with T and using (18), we have

ε1(λs − 3ξκκs − 2κ2ξs) − 6ξκ < h (T,N) , h (T,T) >= 2 < A(DTξh)(T,T)T,T >
−4κξ < Ah(T,N)T,T > + < ∇TAξh(T,T)T,T > .

With aid of (3), (18) and (7), we can write

ε1(λs − 3ξκκs − 2κ2ξs) = 2 < h (T,T) ,DTξh (T,T) > + < ξh (T,T) ,DTh (T,T) >

= 2(DTξ)∥h (T,T) ∥2 +
3
2
ξDT∥h (T,T) ∥2 (21)

= ξ((r − 2)(κ2 + ∥h (T,T) ∥2)−1
∥h (T,T) ∥2 +

3
2

)DT∥h (T,T) ∥2.

Also, take into consideration the normal part of (15), we have

h (T,∇T (ξ∇TT)) +DTξh (T,∇TT) − ξh
(
Ah(T,T)T,T

)
+D2

Tξh (T,T)

+ξ
(
∇̄∇TTh

)
(T,T) − ξ

(
∇̃Th
)

(∇TT,T) + ε0ε1λh (T,T) = 0.
(22)

From (5), we obtain

ξD2
Th (T,T) = ξ

(
∇̃

2
Th
)

(T,T) + 4ξDTh (T,∇TT) − 2ξh (∇TT,∇TT)

− 2ξh
(
T,∇2

TT
)
. (23)

Combining (23) with (22) and using (5), we find

h (T, ξs∇TT) + 4ξh
(
T,∇2

TT
)
+ 5(DTξ)h(T,∇TT) + 4ξ

(
∇̃Th
)

(T,∇TT)

+3ξh (∇TT,∇TT) − ξh
(
Ah(T,T)T,T

)
+ (D2

Tξ)h(T,T) + 2(DTξ)(∇̄Th)(T,T)
+ξ
(
∇̃

2
Th
)

(T,T) + ξ
(
∇̃∇TTh

)
(T,T) − ε0ε1λh (T,T) = 0.

If we use the Frenet equations, we get

ε1(κξs + 4ξκs + 5(DTξ)κ)h(T,N) + 4ε1ε2ξκτh (T,B) + 4ε1ξκ
(
∇̃Th
)

(T,N)

+3ξκ2h (N,N) + 2(DTξ)(∇̃Th)(T,T) + ε1ξκ
(
∇̃Nh
)

(T,T) = ε0ε1(4ξκ2
−D2

Tξ)h (T,T)

+ξh
(
Ah(T,T)T,T

)
− ε0ε1λh (T,T) −

(
∇̃

2
Tξh
)

(T,T) . (24)

If we change B with −B in (24) and from (24),we find

h (T,B) = 0. (25)

Thus we have proved the following proposition.
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Proposition 3.1. Assuming i is an isometric Lorentzian immersion from one Lorentzian manifold M to Lorentzian
manifold M̄ and γ represents a non-null curve with curvature κ on M such that γ̄(s) = i ◦ γ (s) is a non-null
hyperelastic curve with κ̄ in M̄. If any of the given statements hold true, then it can be concluded that M is actually
an isotropic Lorentzian submanifold.

(i) r = 2, namely γ(s) is an non-null elastic curve,
(ii) κ is a constant when κ , 0.

Proof. Letγ = γ(s) be a non-null hyperelastic curve andγ(s) be a non-null curve with curvaturesκ andκ, respectively.
(i) If r = 2, so, we have from (21)

DT∥h (T,T) ∥2 = 0. (26)

This means that ∥h (T,T)∥ is constant. So, M is an isotropic Lorentzian submanifold.
(ii) Now, let the curvature κ be a constant. We have following equation from (21),

ξ((r − 2)(κ2 + ∥h (T,T) ∥2)−1
∥h (T,T) ∥2 + 3

2 )DT∥h (T,T) ∥2 = 0.

Also, because of κ , 0 and r > 2, then we obtain (26).

By the Proposition 3.1, we can give following corollary without proof.

Corollary 3.2. Assume that γ(s) = i ◦ γ (s) with curvature κ is a non-null hyperelastic curve in M̄. M is totally
umbilic Lorentzian submanifold, if M is isotropic.

Besides, we present the notion of Lorentzian hyperelastic immersion.

Definition 3.3. A Lorentzian hyperelastic immersion is a type of isometric immersion from one Lorentzian manifold
to another, such that every non-null hyperelastic curve on the submanifold is mapped to a non-null hyperelastic curve
on Lorentzian manifold.

Now, we give following theorem for Lorentzian hyperelastic immersions.

Theorem 3.4. If i is a Lorentzian hyperelastic immersion between Lorentzian manifolds M and M̄ and γ is a non-null
hyperelastic curve with constant curvature κ in M, then M is a totally umbilical and the following condition is satisfied

D2
TH = CH, (27)

where H is the mean curvature vector field, C = ε0(ε1κ2 + ∥H∥2 − ε1
λ
ξ ) = const. and T is the tangent vector field

of γ. Conversely if the isometric immersion between two Lorentzian manifolds is totally geodesic, then it is also a
Lorentzian hyperelastic immersion.

Proof. Assuming i is a non-null hyperelastic immersion between two Lorentzian manifolds M and M̄, and
γ (s) is a non-null hyperelastic curve in M with a constant curvature κ and the tangent vector field T,the
curve γ satisfies (9) and (10). Therefore, by Proposition 3.1, we can see that M is an isotropic Lorentzian
submanifold. Additionally, as γ is a non-null hyperelastic curve in M̄, we have (11) and (12). Using
Corollary 3.2, we can conclude that M is a totally umbilical. As a result, equation from (24) can be written
as:

4ε1ξκ
(
∇̃Th
)

(T,N) + 3ξκ2h (N,N) + ε1ξκ
(
∇̃Nh
)

(T,T) = 4ε0ε1ξκ2h (T,T)

− ε0ε1ξh
(
Ah(T,T)T,T

)
+ λh (T,T) − ξ

(
∇̃

2
Th
)

(T,T) .
(28)

Changing N into −N in (28), we get

4ξκ
(
∇̃Th
)

(T,N) + ξκ
(
∇̃Nh
)

(T,T) = 0. (29)
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If we use (29) into (28), we have

−ε1ξκ2H = ξ < Ah(T,T)T,T > H − ε1λH − ξ
(
∇̃

2
Th
)

(T,T) .

Hence, by means of (3) and (23), we obtain

−ε1ξκ2H = ξ ∥H∥2 H − ε1λH − ε0ξD2
TH.

So, we have

D2
TH = ε0(ε1κ

2 + ∥H∥2 − ε1
λ
ξ

)H.

On the contrary, if we assume that an isotropic immersion between two Lorentzian manifolds is totally
geodesic and γ is a non-null hypereastic curve with κ, then i ◦ γ satisfies the equation (11) and (12).

Furthermore, the subsequent result can be presented.

Corollary 3.5. Assuming i denotes a hyperelastic immersion and γ represents a non-null hyperelastic curve with
constant curvature in M, it follows that the torsion of γ remains constant.

Proof. If i is a non-null hyperelastic immersion and γ is a non-null hyperelastic curve with the constant
curvature κ in M, then from (20), we can write

(−ε0κ2
− ε2τ2 + ε0

λ
ξ )N + ε1ε2τsB = 4Ah(N,T)T + 2Ah(T,T)N. (30)

Also, the inner product of equation (30) with the unit normal vector field N yields

∥H∥2 =
1
2

(
−κ2
− ε0ε2τ

2 +
λ
ξ

)
. (31)

From by assumption ∥h(T,T)∥ = const. = ∥H∥ and (31), the torsion τ of non-null hyperelastic curve γ is a
constant, too.

A non-null curve γ in a Lorentzian manifold M is called a non-null elastic curve (or elastica) if it satisfies
(9) with ( 10) for r = 2 [10]. A characterization of Lorentzian submanifolds that are totally umbilical can be
obtained by analyzing the behavior of non-null elastic curves in relation to a Lorentzian immersion, as per
the theorem presented.

Theorem 3.6. Consider an immersion i : M→ M̄ between two Lorentzian manifolds M and M̄ , such that it maps
every non-null elastic curve with its tangent vector T, curvature κ and torsion τ to another non-null elastic curve on
M̄. Under these conditions, it follows that M is totally umbilical and the mean curvature vector field H satisfies

D2
TH =

1
2

(
ε0(2ε1 − 1))κ2

− ε2τ
2
− ε0(2ε1 − 1)λ + ε1

κss

κ

)
H, ∥H∥ = const.. (32)

Conversely, if the Lorentzian submanifold M is totally umbilical, and its mean curvature vector field H satisfies the
equation given in (32) and D∇TTH = 0, then any non-null elastic curve on M is mapped to another non-null elastic
curve on M̄ by the immersion i : M→ M̄.

Proof. Assuming that γ (s) is a non-null elastic curve in the Lorentzian submanifold M, with unit tangent
vector field T, we can derive the following equation

(∇T)3 T + R (∇TT,T) T + ε0ε1∇T (λT) = 0
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with aid of (10) for r = 2. Because of γ is a non-null elastic curve with curvature κ̄ in M̄,we obtain (11) with
(12) for r = 2. From Proposition 3.1 and Corollary 3.2, M is totally umbilical Lorentzian submanifold. For
r = 2, if we use (30) and taking inner product with N, we obtain

∥H∥2 =
1
2

(
ε0ε1
κss

κ
− ε0ε2τ

2 + λ − κ2
)
. (33)

Also, in case of r = 2, by straightforward calculation, the normal part is

D2
TH = ε0

(
−ε1λ + ε1κ

2 + ∥H∥2
)

H. (34)

Using (33) in (34), we get (32).
Now, we suppose that M is totally umbilical and H satisfies (32). Also, we have

∇
3
TT = ∇3

TT − ε0∇T(∥H∥2 T) − ε1(κ2 + ∥H∥2)H + ε0D2
TH. (35)

To continue calculations, if we add R(∇TT,T)T+ ε0ε1∇T(λT) both sides of (35) and using (1), (4), (27), we get

∇
3
T (T)+R(∇TT,T)T+∇T(λT) = ∇3

T(T) + ε0ε1∇T((λ − 2ε1∥H∥2)T)
+R (∇TT,T) T − ε0

(
D∇TT

)
H.

(36)

Because of γ is a non-null elastic curve in M, the tangent part of (36) is given as

(∇T)3 T + R (∇TT,T) T + ε0ε1∇T (λT) = 0,

where

λ =
3
2
κ2 + b, (37)

for b = b + 2ε1∥H∥2. Also normal part of (36) is found zero if D
∇TT H = 0.

4. On Constant Sectional Curvature Lorentzian Manifolds

In this section, some characterizations will be given for Lorentzian manifolds with constant sectional
curvature by utilizing the theorems and results obtained in the previous section. Since the proofs were
given in detail earlier, the results obtained here are presented without proof. Assume that M is a Lorentzian
manifold with constant sectional curvature C. So, we have

R(X,Y)Z = C(< Z,X > Y− < Z,Y > X).

So, from (9), a unit speed non-null curve γ = γ(s) parametrized by arc length s is a non-null hyperelastic
curve if it satisfies

∇
2
T

(
κr−2
∇TT
)
+Cκr−2

∇TT + ε0ε1∇T(λT)=0 (38)

with (10), ([10]).
On the other hand, let M be a Lorentzian submanifold of Lorentzian manifold M̄ with sign ε and dim M > 2.
If M is totally umbilic and M̄ has constant sectional curvature C, then the norm of mean curtavure ∥H∥ is
constant and M has constant sectional curvature C + ε∥H∥2, [9]. Then, we have the following corollary as a
result of Theorem 3.4 and Corollary 3.2 .

Corollary 4.1. If an immersion i satisfies the conditions of being a Lorentzian hyperelastic immersion between a
submanifold M (dim M > 2) and a Lorentzian manifold M̄ with constant sectional curvature C, then M can be
characterized as an isotropic Lorentzian submanifold of M̄. Additionally, M has a constant sectional curvature
C = C + ε∥H∥2, where H represents the mean curvature vector field.
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In additionally, we give some well know results for non-null elastic curves on the Lorentzian plane
and a pseudo-hyperbolic space H2

0. A non-null elastic curve on Lorentzian plane satisfies the following
differential equation

κ
′′

−
1
2
κ3
−

1
2
λκ = 0, (39)

[4]. The equilibrium equation of the spacelike elastic curve on the pseudo-hyperbolic space is given as
follows

2κ′′1 + κ
3
1 −

( 1
2r2 + σ

)
κ1 = 0, (40)

where σ is the tension parameter, κ1 is the geodesic curvature and r is the radius of the pseudo-hyperbolic
space, [11].
Now, we present an example of Lorentzian elastic immersion.

Example 4.2. Assume that x and y be coordinate functions of R2
1. Then, the immersion i is given as

i : R2
1 → H2

0 ⊂ R
3
1

(u, v) → (x2 + y2, 2xy, 0)

where (x2
− y2)2 = 1. On the other hand, suppose that α is a curve defined as follows

α : I ⊂ R → R2
1

t → (cosh t, sinh t)

Since the curvatureκ ofα is equal to 1, from (39), we can say thatα is an spacelike elastic curve and (i ◦ α)(t) = (cosh 2t, sinh 2t, 0) .
By straightforward calculation and using (40), we can see that this curve is an elastica on H2

0. So, the immersion i is
a Lorentzian elastic immersion.

Lastly, we get the following result from Theorem 3.6.

Corollary 4.3. Suppose we have a Lorentzian manifold M and a Lorentzian manifold M̄(C̄) with constant curvature,
and let i : M → M̄(C̄) be a Lorentzian hyperelastic immersion between these two manifolds. Let γ be a non-null
elastic curve with curvature κ, torsion τ, and unit vector field T. Under these conditions, M is totally umbilical, and
the mean curvature vector field H satisfies the following condition

D2
TH =

(
κss

κ
− ε1ε2τ

2
)

H, ∥H∥ = const.. (41)

On the other hand, if M is a Lorentzian submanifold of a Lorentzian manifold M̄ with constant sectional curvature
C, and it is totally umbilical such that the mean curvature vector field satisfies the condition given in (41), then the
corresponding image of a non-null elastic curve γ in M is also a non-null elastic curve in M̄.

Declarations

Conflict of interest: The author declares no conflict of interest.

References

[1] Arroyo, J., Garay, O.J., and Mencia, M., Closed free hyperelastic curves in real space forms. Proceeding of the XII Fall Workshop on
Geometry and Physics, Coimbra, (2003) , 1 − 13.

[2] Graves, L. K., Codimension one isometric immersions between Lorentz spaces. Transactions of the American Mathematical Society,
(1979), 252, 367-392.



T. Turhan / Filomat 38:21 (2024), 7469–7478 7478

[3] Magid, M. A., Isometric immersions of Lorentz space with parallel second fundamental forms. Tsukuba Journal of Mathematics, (1984),
8(1), 31-54.

[4] Brunnett, G. A new characterization of plane elastic, Mathematical Methods in Computer Aided Design II, ed. T. Lyche and L.
Schumake, Academic Press, 1992, 43-56.

[5] Ikawa T., On Some Curves in Riemannian Geometry, Soochow Journal of Mathematics. Scientiae Mathematicae Japonicae, 7, (1981),
37-44.

[6] Huang, R. P., and Shang, D. H., Generalized elastic curves in the Lorentz flat space L4. Applied Mathematics and Mechanics, (2009),
30(9), 1193-1200.

[7] Nomizu K., and Yano, K., On Circles and Spheres in Riemannian Geometry. Mathematische Annalen, (1974), 210 (2) , 163 − 170.
[8] O’Neill, B., Isotropic and Kahler immersions, Canadian Journal of Mathematics, 17(6), (1965), 907 − 915.
[9] O’Neill, B., Semi-Riemannian geometry with applications to relativity. Academic press. New York, 1983.
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