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Blow up solution of inverse problem for nonlinear hyperbolic equation
with variable-exponents

Zülal Mısıra,∗, Metin Yamana

aSakarya University, Faculty of Sciences, Department of Mathematics, 54000 Sakarya, Turkey

Abstract. In this work, we study the following inverse problem with variable exponents:

utt − div(|∇u|r(.)−2
∇u) + a|ut|

m(.)−2ut − b|u|p(.)−2u = f (t)w(x),

where a, b > 0 are constants and variable exponents p(.), r(.) and m(.) are given functions. We analyzed the
finite-time blow-up of the solution using the alternative method proposed by Georgiev and Todorova with
negative initial energy.

1. Introduction

In this article, we consider the following inverse problem for the wave equation:

utt − div(|∇u|r(.)−2
∇u) + a|ut|

m(.)−2ut − b|u|p(.)−2u = f (t)w(x), (x, t) ∈ Ω × (0,∞) (1)

u(x, t) =
∂u
∂ν
= 0, (x, t) ∈ ∂Ω × (0,∞) (2)

u(x, 0) = u0(x),ut(x, 0) = u1(x), x ∈ Ω (3)∫
Ω

u(x, t)w(x)dx = ϕ(t), t > 0, (4)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with a smooth boundary ∂Ω and a unit outer normal ν. Also,
a and b are positive constants and w(x) and ϕ(t) are real valued functions with specific conditions that will
be determined later. In addition, we suppose that p(.), r(.) and m(.) are given measurable and continuous
functions on Ω̄ such that:

2 ≤ r1 ≤ r(x) ≤ r2 < m1 ≤ m(x) ≤ m2 < p1 ≤ p(x) ≤ p2 ≤ r∗(x) (5)
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with

p1 := essin fx∈Ω̄p(x), p2 := esssupx∈Ω̄p(x),
r1 := essin fx∈Ω̄r(x), r2 := esssupx∈Ω̄r(x),
m1 := essin fx∈Ω̄m(x),m2 := esssupx∈Ω̄m(x),

and

r∗(x) =
{ Nr(x)

esssupx∈Ω(N−r(x)) , r2 < N
+∞, r2 ≥ N

.

In addition, suppose that the p(.), r(.) and m(.) provide the log-Hölder continuity condition:

∣∣∣q(x) − q(y)
∣∣∣ ≤ − A

log
∣∣∣x − y

∣∣∣ , f or a.e. x, y ∈ Ω, with
∣∣∣x − y

∣∣∣ < τ, (6)

A > 0, 0 < τ < 1. ∆r(.)u = div(|∇u|r(.)−2
∇u) is called r(.) − Laplacian term.

Inverse problems are common across various fields, including physics, engineering, geophysics, med-
ical imaging, remote sensing, and more. They often involve solving complex equations, dealing with
uncertainty, and using computational methods to find the most likely solutions. In many cases, inverse
problems are ill-posed, meaning that there may be multiple solutions or the solutions might be sensitive to
small changes in the data [12, 15].

Before proceeding, it is important mentioning some significant prior findings in the field of inverse
problems. Kalantarov and Eden worked the following inverse problem [4]:

ut + b(x, t,u,∇u) − ∆u − |u|p u = F(t)w(x), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,∫
u(x, t)w(x)dx = ϕ(t), t > 0.

They established conditions on the data that ensure the global nonexistence of solutions when ϕ(t) ≡ 1.
Additionally, they proved a stability result with an opposite sign for b(x, t,u,∇u) ≡ 0 and the power type
nonlinearity. They used the v(x, t) = u(x, t)e−λt transformation method to reach their blow up conclusion.
Gür, Yaman and Yılmaz worked the following inverse problem [11]:

ut − ∇.
[(

k1 + k2 |∇u|m−2
)
∇u

]
+ h(u,∇u) − |u|p−2 u = F(t)w(x), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,∫
u(x, t)w(x)dx = 1, t > 0.

They are studying the potential for blow-up phenomena in finite time for solutions to inverse problems
related to nonlinear parabolic equations with k1, k2 positive constants and p > m ≥ 2. They utilized the
Ladyzhenskaya-Kalantarov lemma to reach their results [13].

The methods used in the previous studies have led to blow-up results in inverse problems [16–18]. The
issue of global nonexistence and blow-up results for nonlinear parabolic equations is explored in [2, 7]. Our
goal in this article is to achieve a new contribution to the literature by employing the previously unused
method proposed by Georgiev and Todorova [10] to tackle the blow-up of solutions in inverse problems.
This study will provide a novel perspective and contribute to the existing body of knowledge in the field.
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2. Preliminaries and Main Result

In this chapter, we remind some functionals and notations about the Sobolev and Lebesgue spaces with
variable exponents [9, 13]. ∥.∥q shows the norm of Lq- over the region Ω, and more specifically, L2-norm is
denoted ∥.∥ in Ω. We suppose that the function w(x) satisfies the following conditions:

u0 ∈ H2
0(Ω) ∩ Lr(.)(Ω) ∩ Lp(.)(Ω),u1 ∈ L2(Ω) ∩ Lm(.)(Ω),

∫
Ω

u0(x)w(x)dx = ϕ(0). (7)

w ∈ H2
0(Ω) ∩ Lr(.)(Ω) ∩ Lm(.)(Ω) ∩ Lp(.)(Ω),

∫
Ω

w2(x)dx = 1. (8)

In order to study problems (1)-(4), we need some hypotheses and theories about Lebesgue and Sobolev
spaces with variable exponents (for detailed, see, other works [3],[5]-[6],[8],[9]). Let p(x) ≥ 1 and measurable,
we assume that

C+(Ω̄) =
{
h|h ∈ C(Ω̄), h(x) > 1 f or any x ∈ Ω̄

}
,

h+ = max
Ω̄

h(x), h− = min
Ω̄

h(x) f or any h ∈ C(Ω̄),

Lp(.)(Ω) :=
{
ν : Ω→ R; measurable in Ω : ϱp(.)(λν) < +∞, f or some λ > 0

}
,

where

ϱp(.)(ν) =
∫
Ω

|ν(x)|p(x)dx.

Given by the following Luxembourg-type norm

∥ν∥p(.) := inf

λ > 0 :
∫
Ω

∣∣∣∣∣ν(x)
λ

∣∣∣∣∣dx ≤ 1

 .
Lp(.)(Ω) is a Banach space [3]. The Sobolev space W1,p(.)(Ω) with variable exponent is defined as follows:

W1,p(.)(Ω) =
{
ν ∈ Lp(.)(Ω) such that ∇ν exists and |∇ν| ∈ Lp(.)(Ω)

}
.

The equality written above is a Banach space with respect to the ∥ν∥W1,p(.)(Ω) = ∥ν∥p(.) + ∥∇ν∥p(.) norm. In

addition, let W1,p(.)
0 (Ω) in the space W1,p(.)(Ω) be given as the closure of C∞0 (Ω). Let us also note that space

W1,p(.)(Ω) has a different definition when it comes to variable exponents. But, under the condition (6), both
definitions are the same [13]. The space W−1,p′(.)(Ω) is a dual space of W1,p(.)(Ω) and is defined like the
classical Sobolev spaces, where 1

p(.) +
1

p′(.) = 1 [3].

Lemma 2.1. [3] Let Ω ⊂ Rn be a bounded region, and assuming that p(.) provides the inequality (6), then

∥ν∥p(.) ≤ C∥∇ν∥p(.), f or all ν ∈W1,p(.)
0 (Ω),

where C > 0 is a constant that depends only on p1, p2 and Ω. Particularly, ∥∇ν∥p(.) defines a norm equal to the
W1,p(.)

0 (Ω) norm.
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Lemma 2.2. [3] If r(.) ∈ C(Ω̄) and q(x) : Ω → [1,∞) such that provides the following inequality is a measurable
function,

essin fx∈Ω(r∗(x) − q(x)) > 0 with r∗(x) =
{ Nr(x)

esssupx∈Ω(N−r(x)) , i f r2 < N
∞, i f r2 ≥ N

.

Then the embedding W1,r(.)
0 (Ω) ↪→ Lq(.)(Ω) is continuous and compact.

Lemma 2.3. [3] Let us assume that p, q, s ≥ 1 such that the following equality is satisfied are measurable functions
on Ω,

1
s(y)

=
1

p(y)
+

1
q(y)
, y ∈ Ω.

If u ∈ Lp(.)(Ω) and ν ∈ Lq(.)(Ω), then uν ∈ Ls(.)(Ω), with

∥uν∥s(.) ≤ 2∥u∥p(.)∥ν∥q(.).

Lemma 2.4. [3] Assume that p is a measurable function on Ω. Then the following inequality is provided,∥∥∥1∥∥∥p(.)
≤ 1 i f and only i f ϱp(.)(1) ≤ 1.

Lemma 2.5. [3] If p is a measurable function on Ω that provides (5), then the following inequality is provided for
∀u ∈ Lp(.)(Ω),

min
{
∥u∥p1

p(.) , ∥u∥
p2

p(.)

}
≤ ϱp(.)(u) ≤ max

{
∥u∥p1

p(.) , ∥u∥
p2

p(.)

}
.

Let us multiply equation (1) by w(x) and taking ϕ(t) ≡ 1, integrate over region Ω with (8) and integral
over determination condition (4), then the problem (1)-(4) is equivalent to the following direct problem

utt − div(|∇u|r(.)−2
∇u) + a|ut|

m(.)−2ut − b|u|p(.)−2u = f (t)w(x), (x, t) ∈ Ω × (0,T) (9)

u(x, t) = 0, (x, t) ∈ ∂Ω × (0,T) (10)

u(x, 0) = u0(x),ut(x, 0) = u1(x), x ∈ Ω (11)

in which the unknown function f (t) is replaced by

f (t) =
∫
Ω

|∇u|r(.)−1
∇w(x)dx + a

∫
Ω

|ut|
m(.)−1w(x)dx − b

∫
Ω

|u|p(.)−1w(x)dx. (12)

The local existence of solutions for the equations given in (1)-(3) can be established using the Galerkin
method as in the study of Antontsev [1].

Theorem 2.6. (Local Existence) Let u0 ∈ W1,r(.)
0 (Ω), u1 ∈ L2(Ω) and suppose that (5) and (8)-(9) be supplied, then

problem (1)-(3) have a only weak solution such that
u ∈ L∞

(
(0,T),W1,r(.)

0 (Ω)
)
∩ Lp(.) ((0,T),Ω) , ut ∈ L∞

(
(0,T),L2(Ω)

)
∩ Lm(.) ((0,T),Ω) ,

utt ∈ L∞
(
(0,T),W−1,r′(.)

0

)
(Ω), for any T > 0 and

1
r(.)
+

1
r′(.)

= 1.
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3. Blow Up

Our objective in this part is to establish the occurrence of blow up for specific solutions characterized
by negative initial energy. In this section, our approach relies on the Georgiev and Todorova Method [10].
First, let’s give the energy function of the solution.

E(t) :=
1
2

∫
Ω

|ut|
2dx +

∫
Ω

1
r(x)
|∇u|r(x)dx − b

∫
Ω

1
p(x)
|u|p(x)dx. (13)

Theorem 3.1. If the conditions of Theorem (2.6) be satisfied and suppose that

E(0) < 0 (14)

Then the solution to problem (1)-(3) blow up in finite time.

In order to demonstrate main result, we initially define several lemmas.

Lemma 3.2. Assume that the conditions of the Lemma (2.2) are satisfied, there exists a constant C > 1, which depends
solely on Ω, such that

ϱ
s

p1
p(.)(u) ≤ C(∥∇u∥r1

r(.) + ϱp(.)(u)), (15)

for any r1 ≤ s ≤ p1 and u ∈W1,r(.)
0 (Ω).

Proof. See [14].

For the special case, the following result can be written.

Corollary 3.3. Under the conditions of Lemma (3.2), for every r1 ≤ s ≤ p1 and u ∈W1,r(.)
0 (Ω), the inequality

∥u∥sp1
≤ C(∥∇u∥r1

r(.) + ∥u∥
p1
p1

), (16)

is formulated.

Now, we define

H(t) := −E(t) (17)

and assuming C is a general positive constant dependent solely on Ω, if (13) and (16) are employed
simultaneously, the following result is written.

Corollary 3.4. Under the conditions of Lemma (3.2), we have

ϱ
s

p1
p(.)(u) ≤ C(|H(t)| + ∥ut∥

2
2 + ϱp(.)(u)), (18)

for any r1 ≤ s ≤ p1 and u ∈W1,r(.)
0 (Ω).

For the special case, the following is derived.

Corollary 3.5. Under the conditions of Lemma (3.2), for every r1 ≤ s ≤ p1 and u ∈ W1,r(.)
0 (Ω), the following

inequality is satisfied

∥u∥sp1
≤ C(|H(t)| + ∥ut∥

2
2 + ∥u∥

p1
p1

). (19)
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Lemma 3.6. [14] If it is assumed that the inequalities (5) and (6) are provided and E(0) < 0, the solution of the
problem (1)-(3) satisfies the following for some c > 0,

ϱp(.)(u) ≥ c ∥u∥p1
p1
. (20)

Proof.

ϱp(.)(u) =
∫
Ω

|u|p(x)dx =
∫
Ω+

|u|p(x)dx +
∫
Ω−

|u|p(x)dx,

where

Ω+ = {x ∈ Ω/ |u(x, t)| ≥ 1} and Ω− = {x ∈ Ω/ |u(x, t)| < 1} .

So we comprehend

ϱp(.)(u) ≥
∫
Ω+

|u|p1 dx +
∫
Ω−

|u|p2 dx ≥
∫
Ω+

|u|p1 dx + c1


∫
Ω−

|u|p1 dx


p2
p1

.

This yields

c2

(
ϱp(.)(u)

) p1
p2 ≥

∫
Ω−

|u|p1 dx and ϱp(.)(u) ≥
∫
Ω+

|u|p1 dx,

and, hence,

c2

(
ϱp(.)(u)

) p1
p2 + ϱp(.)(u) ≥ ∥u∥p1

p1
. (21)

Because

0 < H(0) < H(t) ≤
b
p1
ϱp(.)(u),

then (21) gives rise to

ϱp(.)(u)

1 + c2

(p1

b
H(0)

) p1
p2
−1

 ≥ ∥u∥p1
p1
.

From the obtained inequality, it is seen that (20) is provided, and the proof is completed.

Lemma 3.7. Suppose (5) is provided, and let u be the solution of the equation (1)-(3). Then the following inequality
is provided,∫

Ω

|u|m(x)dx ≤ C
((
ϱp(.)(u)

) m1
p1 +

(
ϱp(.)(u)

) m1
p1

)
. (22)

Proof. See [14].

Lemma 3.8. Let u be the solution of the equation (1)-(3), there is a constant c1 > 0 such that the following inequality
is provided,

∥∇u(., t)∥r(.) ≥ c1, ∀t ≥ 0. (23)
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Proof. See [14].

Proof. (Theorem 3.1) We perform the multiplication of (1)-(4) by ut and then integrate it over the domain Ω
to obtain

E′(t) = −a
∫
Ω

|ut(x, t)|m(x)dx ≤ 0, (24)

for almost every t ∈ [0,T) because E is an absolutely continuous function [10]; as a result, H′(t) ≥ 0 and

0 < H(0) ≤ H(t) ≤
b
p1
ϱp(.)(u), (25)

for every t ∈ [0,T), by referring to (14). Next, we define

L(t) := H1−α(t) + ε
∫
Ω

uut(x, t)dx, (26)

for a small ϵwhich will be determined later, and for

0 < α ≤ min
{

p1 − 2
2p1

,
p1 −m2

p1(m2 − 1)
,

1
m2 − 1

,
1

r2 − 1
,

1
p2 − 1

}
. (27)

The derivatives of both sides of (26) are taken using equations (9)-(12), resulting in the following,

L′(t) = (1 − α)H−α(t)H′(t) + ε
∫
Ω

ut
2dx + εbϱp(.)(u) − ε

∫
Ω

|∇u|r(x)dx − εa
∫
Ω

|ut|
m(x)−1udx

+ ε

∫
Ω

|∇u|r(x)−1
∇w(x)dx + εa

∫
Ω

|ut|
m(x)−1w(x)dx − εb

∫
Ω

|u|p(x)−1w(x)dx.
(28)

For 0 < η < 1, using the equation (17), we have

εbϱp(.)(u) ≥ ε(1 − η)p1H(t) +
ε(1 − η)

2
p1 ∥ut∥

2
2 +
ε(1 − η)

r2
p1

∫
Ω

|∇u|r(x)dx+
εbη
p2

p1ϱp(.)(u). (29)

Now, if Young’s inequality is applied to the last four terms on the right side of (28) respectively, the
following estimates are obtained,∫

Ω

|ut|
m(x)−1

|u| dx ≤
1

m1

∫
Ω

δm(x)
|u|m(x)dx +

m2 − 1
m2

∫
Ω

δ−
m(x)

m(x)−1 |ut|
m(x)dx, ∀δ > 0, (30)

∫
Ω

|∇u|r(x)−1
|∇w(x)|dx ≤

1
r1

∫
Ω

δr(x)
|∇w(x)|r(x)dx +

r2 − 1
r2

∫
Ω

δ−
r(x)

r(x)−1 |∇u|r(x)dx, ∀δ > 0, (31)∫
Ω

|ut|
m(x)−1

|w(x)|dx ≤
1

m1

∫
Ω

δm(x)
|w(x)|m(x)dx +

m2 − 1
m2

∫
Ω

δ−
m(x)

m(x)−1 |ut|
m(x)dx, ∀δ > 0, (32)

∫
Ω

|u|p(x)−1
|w(x)|dx ≤

1
p1

∫
Ω

δp(x)
|w(x)|p(x)dx +

p2 − 1
p2

∫
Ω

δ−
p(x)

p(x)−1 |u|p(x)dx, ∀δ > 0. (33)

where δ is a real number depending on the time.
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Let δ be chosen in such a way as to achieve the following equality,

δ−
m(x)

m(x)−1 = kH−α(t). (34)

Here k > 0 is specified later, if this equality is written instead of (30) and (32), the desired estimates are
obtained, if (30) is considered first, the following inequality is obtained,∫

Ω

|ut|
m(x)−1

|u|dx ≤
1

m1

∫
Ω

k1−m(x)
|u|m(x)Hα(m(x)−1)(t)dx +

(m2 − 1)k
am2

H−α(t)H′(t). (35)

Using the (25) inequality and Lemma (3.7), the following is is acquired,

Hα(m2−1)(t)
∫
Ω

|u|m(x)dx ≤ C
[(
ϱp(.)(u)

) m1
p1
+α(m2−1)

+
(
ϱp(.)(u)

) m2
p1
+α(m2−1)

]
. (36)

We subsequently utilize (27) and Lemma (3.2), for

s = m2 + αp1(m2 − 1) ≤ p1 and s = m1 + αp1(m2 − 1) ≤ p1,

to infer, from (36), that

Hα(m2−1)(t)
∫
Ω

|u|m(x)dx ≤ C
(
∥∇u∥r1

r(.) + ϱp(.)(u)
)
. (37)

When (37) is substituted for (35), (30) is written as follows,∫
Ω

|ut|
m(x)−1

|u|dx ≤
k1−m1

m1
C

(
∥∇u∥r1

r(.) + ϱp(.)(u)
)
+

(m2 − 1)k
am2

H−α(t)H′(t). (38)

Similarly, the (32) inequality is written as follows,∫
Ω

|ut|
m(x)−1

|w(x)| dx ≤
1

m1

∫
Ω

k1−m(x)
|w(x)|m(x)Hα(m(x)−1)(t)dx +

(m2 − 1)k
am2

H−α(t)H′(t). (39)

Using the (25) inequality, the following is obtained,

Hα(m2−1)(t) ≤
(

b
p1

)α(m2−1)(
ϱp(.)(u)

)α(m2−1)
. (40)

By using inequality (27) and Lemma (3.2), (40) can be written as following, with

h = p1α(m2 − 1) ≤ p1

being, due to r1 < h,

Hα(m2−1)(t) ≤ C1

(
∥∇u∥r1

r(.) + ϱp(.)(u)
)
. (41)

Also, the following equation can be written,∫
Ω

|w(x)|m(x)dx = C2,
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where C2 is a positive constant. By utilizing the inequality (41) and the last written equation, the final form
of inequality (32) is expressed as follows,∫

Ω

|ut|
m(x)−1

|w(x)|dx ≤
k1−m1

m1
C3

(
∥∇u∥r1

r(.) + ϱp(.)(u)
)
+

(m2 − 1)k
am2

H−α(t)H′(t). (42)

Now let’s consider inequality (31), where n > 0 is specified later, if δ is chosen to satisfy the following
equation,

δ−
r(x)

r(x)−1 = nH−α(t),

then, the equation (31) is written as follows,∫
Ω

|∇u|r(x)−1
|∇w(x)| dx ≤

1
r1

∫
Ω

n1−r(x)
|∇w(x)|r(x)Hα(r(x)−1)(t)dx +

(r2 − 1)n
r2

H−α(t)
∫
Ω

|∇u|r(x)dx. (43)

Using the (25) inequality, the following is obtained,

Hα(r2−1)(t) ≤
(

b
p1

)α(r2−1)(
ϱp(.)(u)

)α(r2−1)
. (44)

By using inequality (27) and Lemma (3.2), (44) can be written as following, with

v = αp1(r2 − 1) ≤ p1,

being, due to r1 < v,

Hα(r2−1)(t) ≤ C4

(
∥∇u∥r1

r(.) + ϱp(.)(u)
)
. (45)

Also, the following equation can be written,∫
Ω

|∇w(x)|r(x)dx = C5,

where C5 is a positive constant. By utilizing the inequality (45) and the last written equation, the final form
of inequality (31) is expressed as follows,∫

Ω

|∇u|r(x)−1
|∇w(x)| dx ≤

n1−r1

r1
C6

(
∥∇u∥r1

r(.) + ϱp(.)(u)
)
+

(r2 − 1)n
r2

H−α(t)
∫
Ω

|∇u|r(x)dx. (46)

Now let’s consider inequality (33), where l > 0 is specified later, if δ is chosen to satisfy the following
equation,

δ−
p(x)

p(x)−1 = lH−α(t),

then, the equation (33) is written as follows,∫
Ω

|u|p(x)−1
|w(x)| dx ≤

1
p1

∫
Ω

l1−p(x)
|w(x)|p(x)Hα(p(x)−1)(t)dx +

(p2 − 1)l
p2

H−α(t)ϱp(.)(u). (47)

Using the (25) inequality, the following is obtained,

Hα(p2−1)(t) ≤
(

b
p1

)α(p2−1)(
ϱp(.)(u)

)α(p2−1)
. (48)
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By using inequality (27) and Lemma (3.2), (48) can be written as following, with

z = p1α(p2 − 1) ≤ p1,

being, due to r1 < z,

Hα(r2−1)(t) ≤ C4

(
∥∇u∥r1

r(.) + ϱp(.)(u)
)
. (49)

Also, the following equation can be written,∫
Ω

|w(x)|p(x)dx = C8,

where C8 is a positive constant. By utilizing the inequality (49) and the last written equation, the final form
of inequality (33) is expressed as follows,∫

Ω

|u|p(x)−1
|w(x)| dx ≤

l1−p1

p1
C9

(
∥∇u∥r1

r(.) + ϱp(.)(u)
)
+

(p2 − 1)l
p2

H−α(t)ϱp(.)(u). (50)

By utilizing Lemma (2.5) and (3.8), we obtain

ϱr(.)(∇u) ≥ c2 ∥∇u∥r1
r(.) . (51)

If the inequalities (29), (38), (42), (46), (50) are substituted into (28), the following inequality is obtained,

L′(t) ≥ (1 − α)H−α(t)H′(t) + ε
∫
Ω

ut
2dx + ε(1 − η)p1H(t) +

ε(1 − η)
2

p1 ∥ut∥
2
2

+
ε(1 − η)

r2
p1

∫
Ω

|∇u|r(x)dx +
εbη
p2

p1ϱp(.)(u) − ε
∫
Ω

|∇u|r(x)dx

−
k1−m1εa

m1
C

(
∥∇u∥r1

r(.) + ϱp(.)(u)
)
−
ε(m2 − 1)k

m2
H−α(t)H′(t)

−
n1−r1ε

r1
C6

(
∥∇u∥r1

r(.) + ϱp(.)(u)
)
−
ε(r2 − 1)n

r2
H−α(t)

∫
Ω

|∇u|r(x)dx

−
k1−m1εa

m1
C3

(
∥∇u∥r1

r(.) + ϱp(.)(u)
)
−
ε(m2 − 1)k

m2
H−α(t)H′(t)

−
l1−p1εb

p1
C9

(
∥∇u∥r1

r(.) + ϱp(.)(u)
)
−

(p2 − 1)lεb
p2

H−α(t)ϱp(.)(u)

(52)

If it is rearranged, the following is written,

L′(t) ≥
[
(1 − α) −

2ε(m2 − 1)k
m2

]
H−α(t)H′(t) + ε(1 − η)p1H(t)

+ ε

[
1 +

(1 − η)p1

2

] ∫
Ω

ut
2dx

+ ε

 (1 − η)p1

r2
−

(r2 − 1)δ−
r2

r2−1

r2
− 1

 ∫
Ω

|∇u|r(x)dx

+ ε

bηp1

p2
−

(p2 − 1)bδ−
p2

p2−1

p2

 ϱp(.)(u)

− ε

[
k1−m1 a

m1
C +

k1−m1 a
m1

C3 +
n1−r1

r1
C6 +

l1−p1 b
p1

C9

] (
∥∇u∥r1

r(.) + ϱp(.)(u)
)

(53)
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When β is written as shown below

β = min

(1 − η)p1,
bηp1

p2
−

(p2 − 1)bδ−
p2

p2−1

p2
,

(1 − η)p1

r2
−

(r2 − 1)δ−
r2

r2−1

r2
− 1, 1 +

(1 − η)p1

2

 > 0,

and η is chosen appropriately and such that β > 0, (53) is written as follows,

L′(t) ≥
[
(1 − α) −

2ε(m2 − 1)k
m2

]
H−α(t)H′(t) + εβ

H(t) + ∥ut∥
2
2 +

∫
Ω

|∇u|r(x)dx + ϱp(.)(u)


− ε

[
k1−m1 a

m1
C +

k1−m1 a
m1

C3 +
n1−r1

r1
C6 +

l1−p1 b
p1

C9

] (
∥∇u∥r1

r(.) + ϱp(.)(u)
)
.

(54)

σ be,

σ =

[
k1−m1 a

m1
C +

k1−m1 a
m1

C3 +
n1−r1

r1
C6 +

l1−p1 b
p1

C9

]
> 0.

Based on this and using (51), the following inequality is written,

L′(t) ≥
[
(1 − α) −

2ε(m2 − 1)k
m2

]
H−α(t)H′(t) + ε(β − σ)

[
H(t) + ∥ut∥

2
2 + ∥∇u∥r1

r(.) + ϱp(.)(u)
]
. (55)

The values of k, l, and n are chosen appropriately and sufficiently large to ensure that the condition
β − σ > 0 is satisfied. The chosen value of k, along with a sufficiently small ϵ value, is written as follows,

(1 − α) −
2ε(m2 − 1)k

m2
≥ 0 and L(0) = H1−α(0) + ε

∫
Ω

u0(x)u1(x)dx > 0.

By utilizing the aforementioned information and inequality (20) and (51), (55) is expressed as follows,

L′(t) ≥ ε(β − σ)
[
H(t) + ∥ut∥

2
2 + ∥u∥

p1
p1

]
. (56)

and

L(t) ≥ L(0) > 0, t > 0.

Hence, employing Holder’s and Young’s inequalities, we obtain the following

∥u∥2 ≤

(
∫
Ω

(|u|2)
p1/2 dx)

2
p1
.(
∫
Ω

1dx)
1− 2

p1


1
2

≤ c∥u∥p1
, (57)

and ∣∣∣∣∣∣∣∣
∫
Ω

uutdx

∣∣∣∣∣∣∣∣ ≤ ∥ut∥2.∥u∥2 ≤ c∥ut∥2.∥u∥p1
,

then ∣∣∣∣∣∣∣∣
∫
Ω

uutdx

∣∣∣∣∣∣∣∣
1

1−α

≤ c ∥ut∥
1/1−α
2 . ∥u∥

1/1−α
p1
≤ c

[
∥ut∥

θ/1−α
2 + ∥u∥

µ/1−α
p1

]
, (58)
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where 1
µ +

1
θ = 1. Let us consider θ = 2(1 − α), thus

µ

1 − α
=

2
1 − 2α

≤ p1.

Setting s = 2
1−2α ≤ p1, we obtain

∣∣∣∣∣∣∣∣
∫
Ω

uutdx

∣∣∣∣∣∣∣∣
1

1−α

≤ c
[
∥u∥sp1

+ ∥ut∥
2
2

]
.

Thus, Corollary (3.5) yields the following

∣∣∣∣∣∣∣∣
∫
Ω

uutdx

∣∣∣∣∣∣∣∣
1

1−α

≤ C
[
H(t) + ∥u∥p1

p1
+ ∥ut∥

2
2

]
,∀t ≥ 0. (59)

Subsequently,

L
1

1−α (t) =

H1−α(t) + ε
∫
Ω

uutdx


1

1−α

≤ c

H(t) +

∣∣∣∣∣∣∣∣
∫
Ω

uutdx

∣∣∣∣∣∣∣∣
1

1−α

 ≤ c
{
H(t) + ∥u∥p1

p1
+ ∥ut∥

2
2

}
. (60)

Based on (56) and (60), considering the case where λ(ε(β−σ), c) > 0 is true, the following can be written,

L′(t) ≥ λL
1

1−α (t). (61)

By integration of (61), we find

L
α

1−α (t) ≥
1

L
−α

1−α (0) − λ α
1−α t
.

Hence, the solution blows up in finite time T∗, such that

T∗ =
1 − α

λαLα/(1−α) (0)
.

Then the proof is completed.

Conclusion

In this study, we have made a novel contribution to the literature through our conducted procedures.
Upon reviewing the previous works related to the inverse problem, it is evident that the methods employed
in our study differ from those used in the past. Recently, we have applied the Georgiev and Todorova
method, commonly used in various blow-up articles, to induce the blow-up of the solution in the inverse
problem. This study will assist other researchers in the field of inverse problems who wish to utilize this
method in their work.
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