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Abstract. In this paper we investigate a class of boundary value problems for weighted p(t)-Laplacian
impulsive systems. We prove existence of at least one solution and existence of at least one nonnegative
solution. The arguments are based upon of recent theoretical results on the fixed point theory for the sum
of operators.

1. Introduction

In this paper, we investigate the weighted p(t)-Laplacian system

−

(
w(t)|x′(t)|p(t)−2x′(t)

)′
+ f
(
t, x(t), (w(t))

1
p(t)−1 x′(t)

)
= 0, t ∈ (0,T), t , t j, (1)

where x : [0,T]→ RN, N ≥ 1, with the following impulsive boundary conditions

x(t+j ) − x(t j) = A j

(
t j, x(t j), (w(t j))

1
p(t j )−1 x′(t j)

)
, j ∈ {1, . . . , k}, (2)

w(t j)|x′(t+j )|p(t j)−2x′(t+j ) = w(t j)|x′(t j)|p(t j)−2x′(t j)

+B j

(
t j, x(t j), (w(t j))

1
p(t j )−1 x′(t j)

)
, j ∈ {1, . . . , k},

(3)

ax(0) − b(w(0))
1

p(0)−1 x′(0) = 0, (4)

cx(T) + dw(T)|x′(T)|p(T)−2x′(T) = 0, (5)

where
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(H1) f ∈ C([0,T] ×RN
×RN),

| f (t, x, y)| ≤ a1(t) + a2(t)|x|p1 + a3(t)|y|p2 , t ∈ [0,T], x, y ∈ RN,

a1, a2, a3 ∈ C([0,T]), 0 ≤ a1, a2, a3 ≤ B on [0,T] for some constant B > 1, p1, p2 ≥ 0.

(H2) p ∈ C([0,T]), w ∈ C1([0,T]), p > 1, w > 0 on [0,T],

w(t) ≤ B, p(t) ≤ B, (w(t))
1

p(t)−1 ≤ B, t ∈ [0,T],

a, b, c, d ∈ R, 0 = t0 < t1 < . . . , tk < tk+1 = T, k ∈N.

(H3) A j ∈ C([0,T] ×RN
×RN),

|A j(t, x, y)| ≤ a1 j(t) + a2 j(t)|x|p1 j + a3 j(t)|y|p2 j , j ∈ {1, . . . , k},

0 ≤ a1 j, a2 j, a3 j ≤ B on [0,T], p1 j, p2 j ≥ 0, j ∈ {1, . . . , k}.

(H4) B j ∈ C([0,T] ×RN
×RN),

|B j(t, x, y)| ≤ b1 j(t) + b2 j(t)|x|q1 j + b3 j(t)|y|q2 j , j ∈ {1, . . . , k},

0 ≤ b1 j, b2 j, b3 j ≤ B on [0,T], q1 j ≥ 0, q2 j ≥ 0, j ∈ {1, . . . , k}.

Here, for a function x : [0,T]→ RN, denote

|x(t)| = max
i∈{1,...,N}

|xi(t)|, t ∈ [0,T],

x(t+j ) = lim
t→t+j

x(t), x(t−j ) = lim
t→t−j

x(t), j ∈ {1, . . . , k}. For l ∈N, define

PCl([0,T]) =
{
1 : [0,T]→ RN, 1 ∈ Cl([0,T]\{t j}

k
j=1) ,

1(i)(t−j ), 1(i)(t+j ) exist and 1(i)(t−j ) = 1(i)(t j) ,

j ∈ {1, . . . , k}, i ∈ {0, . . . , l}
}
.

In X1 = PC2([0,T]), define a norm

∥x∥1 = max

 max
j∈{0,1,...,k}

sup
t∈(t j,t j+1)

|x(t)|, max
j∈{0,1,...,k}

sup
t∈(t j,t j+1)

|x′(t)|, max
j∈{0,1,...,k}

sup
t∈(t j,t j+1)

|x′′(t)|

 ,
provided it exists. Note that the space (X1, ∥ · ∥1) is a Banach space. We will investigate the problem (1)-(5)
for existence of solutions.

In recent years, many researchers in mathematics have been interested in the study of differential equa-
tions with nonstandard p(t)-growth conditions. This is due to issues originating from nonlinear elasticity
theory, electro-rheological fluids, image processing, and so forth (see [1, 6, 8, 13, 15]).
It arises some difficulties with such equations is when p(t) is a general function, the Laplacian problem
represents nonhomogeneity and possesses more nonlinearity, leading to additional complication. In fact,
the majority of results in the well-known p-Laplacian problem (when p is a constant) cannot be generalized.

Many evolution processes are characterized by the fact that at certain moments of time sudden discon-
tinuous jumps occur. These processes are subject to short-term perturbations whose duration is negligible
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compared to the process total duration. Thus, it is natural to assume that these perturbations act instanta-
neously, that is, in the form of impulses. Recently, there has been a surge in interest in the study of impulsive
differential equations, as these equations provide a natural framework for mathematical modeling of a wide
range of real-world problems, in medical fields, optimal control models in economics, impact mechanics
and inspection process in operations research and so forth (see [3, 10, 16] and the references therein). It is
worth to note that p(t)-Laplacian impulsive boundary problems have relatively new applications such as
ecological competition, respiratory dynamics, and vaccination strategies.

Over the last years, there are many works devoted to the existence of solutions to the Laplacian impul-
sive differential equation subject to boundary conditions, see for example [14, 17, 18]. The methods include
sub-super-solution method, fixed point theorem, monotone iterative method, variational method, critical
point theory, coincidence degree, the Leray-Shauder degree and so forth. However, results on the existence
of solutions of boundary value problems for p-Laplacian or p(t)-Laplacian impulsive differential equations
remain rare due to the nonlinearity of −∆p and −∆p(t) (see [5, 9, 20, 21]).

In [19] the problem (1)-(5) is investigated under the following conditions

(G1) w ∈ PC([0,T]), 0 < w(t), t ∈ [0,T]\{t j}
k
j=1, (w(·))−

1
p(·)−1 ∈ L1((0,T)).

(G2) f : [0,T] ×RN
×RN

→ RN is assumed to be Carathéodory,

lim
|u|+|v|→∞

f (r,u, v)
(|u| + |v|)β(r)−1

= 0, r ∈ [0,T],

uniformly, β ∈ C([0,T]), 1 < β− ≤ β+ < p−.

(G3) a > 0, ad + bc > 0, b, c, d ≥ 0.

(G4)
k∑

i=1
|Ai(u, v)| ≤ C1(|u| + |v|)θ when |u| + |v| is large enough, 0 < θ < p−−1

p+−1 .

(G5)
k∑

i=1
|Bi(u, v)| ≤ C2(|u| + |v|)ε when |u| + |v| is large enough, 0 ≤ ε < β+ − 1,

and it is proved existence of at least one solution of the problem (1)-(5). Here

z− = min
t∈[0,T]

z(t), z+ = max
t∈[0,T]

z(t).

Note that our p1, p2, p1 j, p2 j, q1 j and q2 j do not depend on the function p, while θ and β in [19] depend on
the function p. Moreover, in our paper a, b, c and d admit negative values, while a > 0 and b, c, d ≥ 0 in [19].
Thus, we can consider the results in this paper as complimentary results of the results in [19].
The method used in [19] is the Gaines and Mawhin coincidence degree theory.

In this paper, we investigate, under fairly simple assumptions, two existence criteria of solutions for
the nonlinear BVP for weighted p(t)-Laplacian impulsive system (1)-(5). A general polynomial growth is
assumed for the right-hand side term. Still, it is worth mentioning that the case when the nonlinearity
exhibits both a sublinear and superlinear terms seems to be more complex. To prove our main results
we propose a new approach based upon recent theoretical results on the fixed point theorem for sum of
two operators presented in Section 2. These theoretical results can be used to study other classes of BVPs
for impulsive ordinary differential equations as well as for impulsive partial differential equations. The
example corroborates the results given by each existence criteria.

This paper is organized as follows. In the next section, we give some auxiliary and preliminary results.
In Section 3, we prove existence of solutions and nonnegative solutions for the problem (1)-(5) (Theorems
3.6 and 3.7). In Section 4, we give an example that illustrates our main results.



K. Khemmar et al. / Filomat 38:21 (2024), 7563–7577 7566

2. Auxiliary Results

In this section, some definitions and results related to fixed points for sum of two operators will be
given. We will start withe following useful definition.

Definition 2.1. Let (X, d) be a metric space and D be a subset of X. The mapping T : D→ X is said to be expansive
if there exists a constant h > 1 such that

d(Tx,Ty) ≥ h d(x, y), ∀ x, y ∈ D.

Let E be a real Banach space.

Definition 2.2. Let K : M ⊂ E→ E be a mapping.

1. K is said to be compact if K(M) is contained in a compact subset of E.
2. K is called a completely continuous map if it is continuous and it maps any bounded set into a relatively compact

set.

Definition 2.3. A closed, convex set P in E is said to be cone if

1. βx ∈ P for any β ≥ 0 and for any x ∈ P,
2. x,−x ∈ P implies x = 0.

To prove our first existence result we will use the following fixed point theorem which is a consequence
of Leray-Schauder nonlinear alternative [2].

Theorem 2.4. Let E be a Banach space, Y a closed convex subset of E containing 0 and

U = {x ∈ Y : ∥x∥ < R},

with R > 0. Consider two operators T and S : U→ E, where

Tx = ε x, x ∈ U,

for ε > 0, such that

(i) I − S : U→ Y continuous, compact and

(ii) {x ∈ Y : x = λ(I − S)x, ∥x∥ = R} = ∅, for any λ ∈
(
0, 1
ε

)
.

Then there exists x∗ ∈ U such that

Tx∗ + Sx∗ = x∗.

Proof. From the hypothesis (i), the operator 1
ε (I − S) : U→ Y is continuous and compact.

Suppose that there exist x0 ∈ ∂U and µ0 ∈ (0, 1) such that

x0 = µ0
1
ε

(I − S)x0,

that is
x0 = λ0 (I − S)x0,

where λ0 =
µ0

ε ∈

(
0, 1
ε

)
. This contradicts the condition (ii). From the Leray-Schauder nonlinear alternative,

it follows that there exists x∗ ∈ U such that

x∗ =
1
ε

(I − S)x∗,
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or

ε x∗ + Sx∗ = x∗,

or

Tx∗ + Sx∗ = x∗.

This completes the proof.

In the sequel, P will refer to a cone in a Banach space (E, ∥.∥), Ω is a subset of P, and U is a bounded
open subset of P. Denote P∗ = P\{0}.

Assume that S : U → E is a completely continuous mapping and T : Ω → E is an expansive one with
constant h > 1. Thus, the operator (I − T)−1 is (h − 1)−1-Lipschtzian on (I − T)(Ω). Suppose that

S(U) ⊂ (I − T)(Ω), (6)

and

x , Tx + Sx, for all x ∈ ∂U ∩Ω. (7)

Then x , (I−T)−1Sx, for all x ∈ ∂U and the mapping (I−T)−1S : U→ P is a completely continuous mapping.
From [12, Theorem 2.3.1], the fixed point index i ((I − T)−1S,U,P) is well defined. Thus, we put

i∗ (T + S,U ∩Ω,P) =
{

i ((I − T)−1S,U,P), if U ∩Ω , ∅
0, if U ∩Ω = ∅. (8)

The basic properties of the index i∗ are collected in [7, Theorem 2.3]. For more details of this index see [7]
and [11].

The Theorem 2.6 will be used to prove Theorem 3.7. Its proof is based on properties of the index i∗ given
in the following lemma.

Lemma 2.5. Assume that T : Ω → E is an expansive mapping with constant h > 1, S : U → E is a completely
continuous mapping and S(U) ⊂ (I − T)(Ω). Suppose that T + S has no fixed point on ∂U ∩Ω. Then we have the
following results:

(1) If 0 ∈ U and there exists ε > 0 small enough such that

Sx , (I − T)(λx) for all λ ≥ 1 + ε, x ∈ ∂U and λx ∈ Ω,

then the fixed point index i∗ (T + S,U ∩Ω,P) = 1.

(2) If there exists u0 ∈ P
∗ such that

Sx , (I − T)(x − λu0), for all λ > 0 and x ∈ ∂U ∩ (Ω+ λu0),

then the fixed point index i∗ (T + S,U ∩Ω,P) = 0.

Proof. (1) The mapping (I − T)−1S : U → P is completely continuous without fixed point on ∂U and it is
readily seen that the following condition is satisfied

(I − T)−1Sx , λx for all x ∈ ∂U and λ ≥ 1 + ε.

Then, our claim follows from the definition of i∗ and [4, Lemma 2.3]
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(2) See [7, Proposition 2.16].

Theorem 2.6. Let E be a Banach space, P ⊂ E a cone, U1 and U2 two open bounded subsets of P such that U1 ⊂ U2

and 0 ∈ U2. Assume that T : Ω → E is an expansive mapping with constant h > 1, S : U2 → E is a completely
continuous mapping and S(U2) ⊂ (I − T)(Ω). Suppose that (U2 \ U1) ∩Ω , ∅, and there exist ε > 0 small enough
and u0 ∈ P

∗ such that the following conditions hold:

(i) Sx , (I − T)(x − λu0), for all λ ≥ 0 and x ∈ ∂U1 ∩ (Ω+ λu0),

(ii) Sx , (I − T)(λx), for all λ ≥ 1 + ε, x ∈ ∂U2 and λx ∈ Ω,

Then T + S has at least one non-zero fixed point x∗ ∈ P such that

x∗ ∈ (U2 \U1) ∩Ω.

Proof. If Sx = (I−T)x for x ∈ ∂U2 ∩Ω, then we get a fixed point x∗ ∈ ∂U2 ∩Ω of the operator T+ S. Suppose
that Sx , (I − T)x for any x ∈ ∂U2 ∩Ω. By Lemma 2.5 (2), we have

i∗ (T + S),U1 ∩Ω,P) = 0,

and by Lemma 2.5 (1), we have
i∗ (T + S,U2 ∩Ω,P) = 1.

The additivity property of the index i∗ yields

i∗ (T + S, (U2 \U1) ∩Ω,P) = 1.

Consequently, by the existence property of the index, T + S has at least one non-zero fixed point x∗ ∈
(U2 \U1) ∩Ω. This completes the proof.

3. Main Results

3.1. Integral representation and some a priori estimates
Let X = X1 × . . . × X1︸          ︷︷          ︸

k+3

be endowed with the norm

∥u∥ = max
l∈{0,...,k+2}

∥ul∥1, u = (u0, . . . ,uk+2).

For u = (u0, . . . ,uk+2) ∈ X, we will write u ≥ 0 whenever u j ≥ 0, j ∈ {0, . . . , k + 2}.

For u ∈ X, u = (u0,u1, . . . ,uk+2), define the operators S10, S1 j, j ∈ {1, . . . , k}, S1k+1, S1k+2 and S1 as follows

S10u(t) = −w(t)|u′0(t)|p(t)−2u′0(t) +
∑

0<t j<t

B j

(
t j,u0(t j), (w(t j))

1
p(t j )−1 u′0(t j)

)

+

∫ t

0
f
(
s,u0(s), (w(s))

1
p(s)−1 u′0(s)

)
ds,

S1 ju(t) = u0(t+j ) − u0(t j) − A j

(
t,u0(t j), (w(t j))

1
p(t j )−1 u′0(t j)

)
,

j ∈ {1, . . . , k},
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S1k+1u(t) = au0(0) − b(w(0))
1

p(0)−1 u′0(0),

S1k+2u(t) = cu0(T) + dw(T)|u′0(T)|p(T)−2u′0(T),

S1u(t) = (S10u(t),S11u(t), . . . ,S1k+2u(t)), t ∈ [0,T].

Lemma 3.1. Suppose (H1)-(H2). If u ∈ X, u = (u0,u1, . . . ,uk+2), satisfies the equation

S1u(t) = 0, t ∈ [0,T], (9)

then u0 is a solution to the problem (1)-(5).

Proof. For t ∈ [0,T], we have

S10u(t) = 0, (10)
S1 ju(t) = 0, j ∈ {1, . . . , k} (11)

S1k+1u(t) = 0, (12)
S1k+2u(t) = 0. (13)

By (11), (12) and (13), it follows that u0 satisfies (2), (4) and (5).
Consider the equation (10). Then

0 = −w(t)|u′0(t)|p(t)−2u′0(t) +
∑

0<t j<t

B j

(
t j,u0(t j), (w(t j))

1
p(t j )−1 u′0(t j)

)

+

∫ t

0
f
(
s,u0(s), (w(s))

1
p(s)−1 u′0(s)

)
ds, t ∈ [0,T].

Hence,

0 = −w(t+l )|u′0(t+l )|p(t+l )−2u′0(t+l ) +
∑

0<t j<t+l

B j

(
t j,u0(t j), (w(t j))

1
p(t j )−1 u′0(t j)

)

+

∫ tl

0
f
(
s,u0(s), (w(s))

1
p(s)−1 u′0(s)

)
ds

and

0 = −w(tl)|u′0(tl)|p(tl)−2u′0(tl) +
∑

0<t j<tl

B j

(
t j,u0(t j), (w(t j))

1
p(t j )−1 u′0(t j)

)

+

∫ tl

0
f
(
s,u0(s), (w(s))

1
p(s)−1 u′0(s)

)
ds,

we find

−w(t+l )|u′0(t+l )|p(t+l )−2u′0(t+l ) + w(tl)|u′0(tl)|p(tl)−2u′0(tl)

+Bl

(
tl,u0(tl), (w(tl))

1
p(tl )−1 u′0(tl)

)
= 0, l ∈ {1, . . . , k}.

Thus, u0 satisfies (3). Now, we differentiate the equation (10) with respect to t and we find that u0 satisfies
the equation (1). This completes the proof.
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Lemma 3.2. Suppose (H1)-(H4). Let u0 ∈ X1, ∥u0∥1 ≤ B. Then∣∣∣∣ f (t,u0(t), (w(t))
1

p(t)−1 u′0(t)
)∣∣∣∣ ≤ B + Bp1+1 + B2p2+1,∣∣∣∣A j

(
t,u0(t), (w(t))

1
p(t)−1 u′0(t)

)∣∣∣∣ ≤ B + Bp1 j+1 + B2p2 j+1,∣∣∣∣B j

(
t,u0(t), (w(t))

1
p(t)−1 u′0(t)

)∣∣∣∣ ≤ B + Bq1 j+1 + B2q2 j+1,

j ∈ {1, . . . , k}, t ∈ [0,T].

Proof. We have ∣∣∣∣ f (t,u0(t), (w(t))
1

p(t)−1 u′0(t)
)∣∣∣∣

≤ a1(t) + a2(t)|u0(t)|p1 + a3(t)(w(t))
p2

p(t)−1 |u′0(t)|p2

≤ B + B1+p1 + B1+2p2 , t ∈ [0,T],

and ∣∣∣∣A j

(
t,u0(t), (w(t))

1
p(t)−1 u′0(t)

)∣∣∣∣
≤ a1 j(t) + a2 j(t)|u0(t)|p1 j + a3 j(t)(w(t))

p2 j
p(t)−1 |u0(t)|p2 j

≤ B + B1+p1 j + B1+2p2 j , j ∈ {1, . . . , k}, t ∈ [0,T],

and ∣∣∣∣B j

(
t,u0(t), (w(t))

1
p(t)−1 u′0(t)

)∣∣∣∣
≤ b1 j(t) + b2 j(t)|u0(t)|q1 j + b3 j(t)(w(t))

q2 j
p(t)+1 |u0(t)|q2 j

≤ B + B1+q1 j + B1+2q2 j , j ∈ {1, . . . , k}, t ∈ [0,T].

This completes the proof.

Set

B1 = max
j∈{1,...,k}

{
BB +

k∑
j=1

(
B + Bq1 j+1 + B2q2 j+1

)
+ T
(
B + Bp1+1 + B2p2+1

)
,

3B + Bp1 j+1 + B2p2 j+1, B(|a| + |b|B), |c|B + |d|BB
}
.

Lemma 3.3. Suppose (H1)-(H4). If u ∈ X, ∥u∥ ≤ B, then

|S1lu(t)| ≤ B1, t ∈ [0,T], l ∈ {0, 1, . . . , k + 2}.

Proof. We have

|S10u(t)| =
∣∣∣∣∣ − w(t)|u′0(t)|p(t)−2u′0(t) +

∑
0<t j<t

B j

(
t j,u0(t j), (w(t j))

1
p(t j )−1 u′0(t j)

)

+

∫ t

0
f
(
s,u0(s), (w(s))

1
p(s)−1 u′0(s)

)
ds
∣∣∣∣∣
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≤ w(t)|u′0(t)|p(t)−1 +
∑

0<t j<t

∣∣∣∣∣B j

(
t j,u0(t j), (w(t j))

1
p(t j )−1 u′0(t j)

)∣∣∣∣∣
+

∫ t

0

∣∣∣∣ f (s,u0(s), (w(s))
1

p(s)−1 u′0(s)
)∣∣∣∣ ds

≤ BB +

k∑
j=1

(
B + Bq1 j+1 + B2q2 j+1

)
+ T
(
B + Bp1+1 + B2p2+1

)
≤ B1, t ∈ [0,T],

and

|S1 ju(t)| =
∣∣∣∣∣u0(t+j ) − u0(t j) − A j

(
t,u0(t j), (w(t j))

1
p(t j )−1 u′0(t j)

) ∣∣∣∣∣
≤ |u0(t+j )| + |u0(t j)| +

∣∣∣∣∣A j

(
t,u0(t j), (w(t j))

1
p(t j )−1 u′0(t j)

)∣∣∣∣∣
≤ 3B + Bp1 j+1 + B2p2 j+1

≤ B1, j ∈ {1, . . . , k}, t ∈ [0,T],

and

|S1k+1u(t)| =
∣∣∣∣au0(0) − b(w(0))

1
p(0)−1 u′0(0)

∣∣∣∣
≤ |a||u0(0)| + |b|(w(0))

1
p(0)−1 |u′0(0)|

≤ |a|B + |b|B2

= B(|a| + |b|B)

≤ B1, t ∈ [0,T],

and

|S1k+2u(t)| =
∣∣∣cu0(T) + dw(T)|u′0(T)|p(T)−2u′0(T)

∣∣∣
≤ |c||u0(T)| + |d|w(T)|u′0(T)|p(T)−2

|u′0(T)|

≤ |c|B + |d|BB

≤ B1, t ∈ [0,T].

This completes the proof.

Below suppose that A > 0 and C > 0 are constants such that

(H5) C(1 + T + T2) ≤ A.
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For u ∈ X, define the operator

S2u(t) = C
∫ t

0
(t − s)S1u(s)ds, t ∈ [0,T].

Lemma 3.4. Suppose (H1)-(H2). If u ∈ X, u = (u0, . . . ,uk+2), satisfies the equation

S2u(t) = (c0, c1, . . . , ck+2), t ∈ [0,T], (14)

where c j, j ∈ {0, . . . , k + 2}, are constants, then u0 satisfies the problem (1)-(5).

Proof. We differentiate the equation (14) two times with respect to t and we get

S1u(t) = 0, t ∈ [0,T].

This completes the proof.

Lemma 3.5. Suppose (H1)-(H5). If u ∈ X, ∥u∥ ≤ B, then

∥S2u∥ ≤ AB1.

Proof. Using Lemma 3.3 and (H5), we get

|S2u(t)| = C

∣∣∣∣∣∣
∫ t

0
(t − s)S1u(s)ds

∣∣∣∣∣∣
≤ C

∫ t

0
(t − s)|S1u(s)|ds

≤ CT2B1

≤ AB1, t ∈ [0,T],

and ∣∣∣∣∣ ddt
S2u(t)

∣∣∣∣∣ = C

∣∣∣∣∣∣
∫ t

0
S1u(s)ds

∣∣∣∣∣∣
≤ C

∫ t

0
|S1u(s)|ds

≤ CTB1

≤ AB1, t ∈ [0,T],

and ∣∣∣∣∣∣ d2

dt2 S2u(t)

∣∣∣∣∣∣ = C |S1u(t)|

≤ CB1

≤ AB1, t ∈ [0,T].

This completes the proof.
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3.2. Existence of at least one solution
Our first main result for existence of classical solutions of the problem (1)-(5) is as follows.

Theorem 3.6. Suppose (H1)-(H5) hold. Then the problem (1)-(5) has at least one solution in PC2([0,T]).

Proof. Let Ỹ denote the set of all equi-continuous families in X with respect to the norm ∥ · ∥, i.e., if { fα}α∈I

is a family of Ỹ, then the families { fα}α∈I, { f ′α}α∈I, { f ′′α }α∈I are equi-continuous families in the classical sense.

Here I is an index set. Let also, Y = Ỹ be the closure of Ỹ. For u ∈ Y and ε > 0, define the operators

Tu(t) = εu(t),

Su(t) = u(t) − εu(t) − εS2u(t), t ∈ [0,T].

For u ∈ Y with ∥u∥ ≤ B, we obtain

∥(I − S)u∥ = ∥εu + εS2u∥

≤ ε∥u∥ + ε∥S2u∥

≤ εB + εAB1.

Let { fα}α∈I be an arbitrary family in Y bounded by the constant B. Then { fα}α∈I, { f ′α}α∈I, { f ′′α }α∈I are equi-
continuous families in Y. Since S, d

dt S,
d2

dt2 S : Y → Y are continuous operators, we have that {S fα}α∈I,{
d
dt S fα

}
α∈I

,
{

d2

dt2 S fα
}
α∈I

are equi-continuous families in Y and bounded by AB1. Now, applying the Arzelà-
Ascoli theorem, we conclude that S : Y→ Y is a completely continuous mapping. Now, suppose that there
is a u ∈ Y so that ∥u∥ = B and

u = λ0(I − S)u

or

u = λ0ε (I + S2)u, (15)

for some λ0 ∈
(
0, 1
ε

)
. Then, using that S2u(0) = 0, we get

u(0) = λ0ε(u(0) + S2u(0)) = λ0εu(0),

whereupon λ0ε = 1. This is a contradiction. Consequently

{u ∈ Y : u = λ(I − S)u, ∥u∥ = B} = ∅,

for any λ ∈
(
0, 1
ε

)
. Then, from Theorem 2.4, it follows that the operator T + S has a fixed point u∗ =

(u0,u1, . . . ,uk+2) ∈ Y such that ∥u∗∥ ≤ B. Therefore

u∗(t) = Tu∗(t) + Su∗(t)

= εu∗(t) + u∗(t)

−εu∗(t) − εS2u∗(t), t ∈ [0,T],

whereupon
S2u∗(t) = 0, t ∈ [0,T].

From here, u∗0 is a solution to the problem (1)-(5). This completes the proof.
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3.3. Existence of at least one nonnegative solution
In the sequel, suppose that the constants B and A which appear in the conditions (H1) and (H5),

respectively, satisfy the following inequality

(H6) AB1 < L
5 ,

where L ∈ R is such that r < L ≤ B with r a positive constant.
Our second main result for existence of nonnegative solutions of the problem (1)-(5) is as follows.

Theorem 3.7. Suppose (H1)-(H6). Then the problem (1)-(5) has at least one nonnegative solution in PC2([0,T]).

Proof. Let X be the space used in the previous section. Let also,

P̃ = {u ∈ X : u ≥ 0 on [0,T]}.

With Pwe will denote the set of all equi-continuous families in P̃.
Let ε > 0. For v ∈ X, define the operators

T1v(t) = (1 +mε)v(t) − ε
L
10
,

S3v(t) = −εS2v(t) −mεv(t) − ε
L
10
, t ∈ [0,T],

where m is a large enough positive constant and εm ≥ 2
5 .

Note that for any fixed point v ∈ X of the operator T1 + S3, v0 is a solution to the problem (1)-(5). Define

U1 = Pr = {v ∈ P : ∥v∥ < r},

U2 = PL = {v ∈ P : ∥v∥ < L},

Ω = PR1 = {v ∈ P : ∥v∥ ≤ R1}, where R1 = L +
A
m

B1 +
L

5m
·

1. For v1, v2 ∈ Ω, we have

∥T1v1 − T1v2∥ = (1 +mε)∥v1 − v2∥,

whereupon T1 : Ω→ X is an expansive operator with a constant
h = 1 +mε > 1.

2. For v ∈ PL, we get

∥S3v∥ ≤ ε∥S2v∥ +mε∥v∥ + ε
L
10

≤ ε
(
AB1 +mL +

L
10

)
.

Therefore S3(PL) is uniformly bounded. Since S3 : PL → X is continuous, we have that S3(PL) is
equi-continuous. Consequently S3 : PL → X is a completely continuous operator.

3. Let v1 ∈ PL. Set

v2 = v1 +
1
m

S2v1 +
L

5m
.

Note that S2v1 +
L
5 ≥ 0 on [0,T]. We have v2 ≥ 0 on [0,T] and

∥v2∥ ≤ ∥v1∥ +
1
m
∥S2v1∥ +

L
5m
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≤ L +
A
m

B1 +
L

5m

= R1.

Therefore v2 ∈ Ω and

−εmv2 = −εmv1 − εS2v1 − ε
L
10
− ε

L
10

or

(I − T1)v2 = −εmv2 + ε
L
10

= S3v1.

Consequently S3(PL) ⊂ (I − T1)(Ω).
4. Assume that for any u0 ∈ P

∗ there exist λ ≥ 0 and x ∈ ∂Pr ∩ (Ω+ λu0) such that

S3x = (I − T1)(x − λu0).

Then

−εS2x −mεx − ε
L
10
= −mε(x − λu0) + ε

L
10

or

−S2x = λmu0 +
L
5
.

Hence,

L
5
> ∥S2x∥ =

∥∥∥∥∥λmu0 +
L
5

∥∥∥∥∥ ≥ L
5
.

This is a contradiction.
5. Assume that there exist R1

L ≥ λ1 ≥ ε + 1 and x1 ∈ ∂PL such that

S3x1 = (I − T1)(λ1x1). (16)

Thus,

−εS2x1 −mεx1 − ε
L
10
= −λ1mεx1 + ε

L
10
,

or

S2x1 +
L
5
= (λ1 − 1)mx1.

From here,

∥S2x1∥ = ∥(λ1 − 1)mx1 −
L
5 ∥

≥ (λ1 − 1)m∥x1∥ −
L
5

≥ εmL − L
5

≥
L
5 ,

which is a contradiction.

Therefore all conditions of Theorem 2.6 hold. Then T1+S3 has at least one fixed point u = (u0,u1, . . . ,uk+2) ∈ P
such that r < ∥u∥ ≤ R1, where u0 is solution of BVP (1)-(5). Consequently, the BVP (1)-(5) has at least one
nonnegative solution. This completes the proof.



K. Khemmar et al. / Filomat 38:21 (2024), 7563–7577 7576

4. An Example

Below, we will illustrate our main results.
We consider BVP (1.1)-(1.5) with

k = 2, N = 1, T = 1, t1 =
1
4 , t2 =

1
2

and

B = 10, L = 5, r = 4, A = 1
10B1
, C = A

9 .

Let
w(t) = t2 + 3, p(t) = t2 + 2,

a1(t) = a3(t) = a1 j(t) = a3 j(t) = b1 j(t) = b3 j(t) = 0,

t ∈ [0, 1], j ∈ {1, 2},

a2(t) = a2 j(t) = b2 j(t) =
1

1 + t2 , t ∈ [0, 1], j ∈ {1, 2},

p1 = p1 j = q1 j = 2, p2 = p2 j = q2 j = 0, j ∈ {1, 2},

and

f
(
t, x(t), (w(t))

1
p(t)−1 x′(t)

)
=

(x(t))2

1 + t2 ,

A j

(
t j, x(t j), (w(t j))

1
p(t j )−1 x′(t j)

)
=

(x(t j))2

1 + t2
j

,

B j

(
t j, x(t j), (w(t j))

1
p(t j )−1 x′(t j)

)
=

(x(t j))2

1 + t2
j

,

t ∈ [0, 1], j ∈ {1, 2}.

Then, the problem can be transformed into the following weighted p(t)-Laplacian system subject to impul-
sive boundary conditions

−

(
(t2 + 3)|x′(t)|t2 x′(t)

)′
+

(x(t))2

1+t2 = 0, t ∈ (0, 1), t , t j,

x(t+j ) − x(t j) =
(x(t j))2

1+t2
j
,

((t+j )2 + 3)|x′(t+j )|(t
+
j )2

x′(t+j ) = ((t j)2 + 3)|x′(t j)|(t j)2 x′(t j) +
(x(t j))2

1+t2
j
, j ∈ {1, 2},

ax(0) − 3bx′(0) = 0,
cx(1) + 4d |x′(1)| x′(1) = 0,

where x : [0, 1]→ R, and a, b, c, d ∈ R. We can easily figure out that (H1)-(H4) hold, and we have

C(1 + T + T2) = 3C =
A
3
≤ A,

i.e., (H5) holds. Next,

r < L < B, AB1 <
L
5
.

i.e., (H6) holds. Consequently all conditions of Theorem 3.6 and Theorem 3.7 are fulfilled. Hence, the
considered BVP has at least one solution and has at least one nonnegative solution.
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