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Abstract. In this manuscript, we deal with a class of fractional non-local problems involving a singular
term and vanishing potential of the form:
L

s1 ,s2
p(x,.),q(x,.)w(x) =

1(x,w(x))
w(x)ξ(x)

+V(x)|w(x)|σ(x)−2w(x) in U,

w > 0 in U,
w = 0 in RN

\U,

where Ls1 ,s2
p(x,.),q(x,.) is a

(
p(x, .), q(x, .)

)
− fractional double-phase operator with s1, s2 ∈ (0, 1), 1, and V are

functions that satisfy some conditions. The strategy of the proof for these results is to approach the problem
proximatively and calculate the critical groups. Moreover, using Morse’s theory to prove our problem has
infinitely many solutions.

1. Introduction

Marston Morse, a mathematician, created Morse’s hypothesis in the 1920s. He was a member of the
university at the Institute for Advanced Study, and Princeton University released Topological Methods in
the Theory of Functions of a Complex Variable in 1947 as part of the Annals of Mathematics Studies series.
A well-known publication by theoretical physicist Edward Witten that connects Morse’s theory to quantum
field theory has garnered a lot of attention for this idea during the past two decades. Morse’s theory and
computation of critical groups are useful tools for studying the multiplicity and existence of solutions to
nonlinear problems. As far as we know, this method is rarely used in the study of problems of differential
equations. For this, we’ll provide a brief overview of the technique.
Let W be a real Banach space, ϕ ∈ C1(W,R) satisfies the Palais-Smale condition, and c ∈ R. We consider the
following sets:

ϕc =
{
u ∈W : ϕ(u) ≤ c

}
,
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and
Kϕ =

{
u ∈W : ϕ

′

(u) = 0
}
.

The critical groups of ϕ at u are defined by

Ck(ϕ,u) = Hk

(
ϕc
∩U, ϕc

∩U\{u}
)
,

where k ∈ N, U is a neighbourhood of u such that Kϕ ∩ U = {u}, and Hk is the singular relative homology
with coefficient in an Abelian group G, see [32] for more details. Moreover, the authors in [8] introduced
the critical groups of ϕ at infinity by

Ck(ϕ,∞) = Hk(W, ϕa),

where a is less than all critical values and k ∈ N. Concerning the connection between critical groups and
critical points of ϕ. Wellem et al. in [34] proved the following statement:

1) If Ck(ϕ,∞) � 0 for some k ∈N, then ϕ has critical point u and satisfies Ck(ϕ,u) � 0.
2) Let θ ∈W be an isolated critical point of ϕ. If Ck(ϕ,∞) � Ck(ϕ, θ) for some k ∈N, then ϕ must have a

non-zero critical point.

Readers may refer to [8, 19, 29, 33, 34] and the references therein for further insights and details on algebraic
topology, Morse’s theory, and critical groups.
In recent years, double-phase differential operators have garnered significant interest among researchers,
owing to their versatile applications across various scientific domains, with a particular focus on their
relevance in physical processes. To illustrate, Zhikov [37] proved in the context of elasticity theory that the
modulation coefficient µ(.) plays a pivotal role in shaping the geometry of composites composed of two
distinct materials characterized by different curing exponents, namely p and q.
To set the stage for our motivation, we first provide a brief overview of prior research. In his work,
Zhikov [36] introduced and examined functionals characterized by integrands that exhibit varying ellipticity
depending on the location, thus offering models for strongly anisotropic materials. As an illustrative
example, he employed the following function as a prototype:

w 7→
∫
U

(
|∇w|p + µ(x)|∇w|q

)
dx. (1)

Following this, multiple research endeavours were undertaken in this particular direction, with notable
mentions including the influential contributions of Baroni et al. in [6, 7]. For further findings, readers are
encouraged to consult the references provided in [3, 15, 24, 31].
The primary focus of our present paper is to investigate the non-local version of double phase function type
(1), for variable exponents p(x, ) and q(x, ) and fractional constant orders 0 < s1, s2 < 1, of the form:

L
s1,s2
p(x,.),q(x,.)w(x) = 2 lim

ε→0+

∫
U\Bε(x)

[
|w(x) −w(y)|p(x,y)−2

|x − y|N+s1p(x,y)
+
|w(x) −w(y)|q(x,y)−2

|x − y|N+s2q(x,y)

]
(w(x) −w(y))dy, (2)

where Bε(x) is the ball of U of radius ε and center x. By studying the following class of variable-order
fractional of double-phase problems driven by (p(x, .), q(x, .))− fractional Laplacian with variable exponents
involving a singular term and vanishing potential:

L
s1,s2
p(x,.),q(x,.)w(x) =

1(x,w(x))
w(x)ξ(x)

+V(x)|w(x)|σ(x)−2w(x) in U,

w > 0 in U,
w = 0 in RN

\U.

(3)

HereU ⊂ RN an open bounded set, we start by fixing s1, s2 ∈ (0, 1), p, q : U ×U → (1,∞), σ : U → (1,∞),
and ξ :U → (0, 1] are continuous functions that satisfy the following conditions:

p(x − z,y − z) = p(x,y), for all (x,y, x) ∈ U ×U ×U, (4)
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p(x,y) = p(y, x), for all (x,y) ∈ U ×U, (5)

1 < σ− < σ+ < q− < q+ < p− < p+ < +∞, (6)

with σ− = minx∈U σ(x), σ+ = maxx∈U σ(x), q− = min(x,y)∈U×U q(x,y), q+ = max(x,y)∈U×U q(x,y),
p− = min(x,y)∈U×U p(x,y), p+ = max(x,y)∈U×U p(x,y), V vanishing potential satisfies the following assump-
tions:

(V) V : RN
→ R is a continuous function, there exist θ1 > 0, and 0 < η1 < 1 such that

V(x) > θ1 > 0 and
∫
RN
V(x)|w(x)|σ(x)dx ≤ η1∥w∥Y1 ,

for all x ∈ RN, and w ∈ Y1 with Y1 is the fractional Sobolev space see section 2.2 for more details.

1 :U ×R→ R is a Carathéodory function that satisfies the following condition:
(H1) There exist β ∈ L∞(U), and a continuous function r :U → (1,+∞) such that

1 < r(x) < p⋆s1
(x) =

Np(x, x)
N − s1p(x, x)

,

and
1(x,y) ≤ β(x)

(
1 + |y|r(x)−1

)
, a.e. x ∈ U,y ∈ R,

L
s1,s2
p(x,.),q(x,.) is the double-phase operator defined by (2). Using Morse’s theory, local linking arguments, and

variational analysis, more precisely, by computing the critical groups of the energy functional associated
with the approximated equations by using some variational method combined with Morse’s theory, we
prove the existence of infinitely many solutions to problem(3).

For the p(x, .) Laplacian operator, the approaches for ensuring the existence of solutions were addressed in
greater depth, we quote, the relevant work of Bahrouni and Radulescu [5] who developed some qualitative
properties on the fractional Sobolev space Ws,q(x),p(x,y)(U) for s ∈ (0, 1) and U being a bounded domain in
Rn with a Lipschitz boundary. Moreover, they studied the existence of solutions to the following problem:{

Lw(x) + |w(x)|q(x)−1w(x) = λ|w(x)|r(x)−1w(x) in U,
w = 0 in ∂U,

(7)

where

Lw(x) = 2 lim
ε→0+

∫
U\Bε(x)

∫
U

|w(x) −w(y)|p(x,y)−2(w(x) −w(y))
|x − y|n+sp(x,y)

dx,

λ > 0, and 1 < r(x) < p− = min(x,y)∈U×U p(x,y).
More recently, authors in [11] studied the double phase version of problem(7) with non-linearity logarithmic

L
s1,s2
p(x,.),q(x,.)w(x) = λ|w(x)|r(x)−1u(x) + µ(x)|w(x)|r(x)−2 ln(|w(x)|) inU.

Readers may refer to [1, 4, 5, 12, 20, 23] and the references therein for more ideas and techniques developed
to guarantee the existence of weak solutions for a class of nonlocal fractional problems with variable
exponents.
The novelty of our work is to study the existence of infinitely many solutions to a class double phase
problems driven by Ls1,s2

p(x,.),q(x,.) double-phase operator involving a singular nonlinearity and vanishing
potential with variable exponent, by computing the critical groups of the energy functional associated to
the approximated equations by using some variational method combining with Morse’s theory.
The structure of this article is as follows. In section 2, we briefly introduce certain homology theory
concepts. We also give definitions and basic properties for Lebesgue spaces and fractional Sobolev spaces
with variable exponent. In section 3.1, we suggest the approximated problem (8), and use the homological
theory to compute critical groups of the energy functional associated with the approximated problem (8).
In paragraph 3.2, we will use Morse’s relation to show that the approximated problem (8) admits infinitely
non-trivial solutions. In the last section, we will prove our fundamental Theorem 4.1.
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2. Mathematical background

2.1. Generalized Lebesgue space

We consider the set:

C+(Ū) =
{
m : Ū → R+ : m is a continuous function and 1 < m− < m(y) < m+ < +∞

}
,

where m− = min
y∈Ū

m(y), m+ = max
y∈Ū

m(y).

Definition 2.1. (see [20]) Let m ∈ C+(Ū). We define the generalized Lebesgue space Lm(y)(U) as usual:

Lm(y)(U) =
{

u :U → R is a measurable function : ∃λ > 0 :
∫
U

|
u(y)
λ
|
m(y)dx < ∞

}
.

We equip this space with the so-called Luxemburg norm defined as follows:

|w|Lm(y)(U) = inf
{
ξ > 0 :

∫
U

|
w(y)
ξ
|
m(y)dy ≤ 1

}
.

Lemma 2.2. (see [20]) For every w ∈ Lm(y)(RN), the following properties hold:

i) If |w|Lm(y)(RN) < 1, then |w|m
−

Lm(y)(RN) ≤ ρm(y)(w) ≤ |w|m
+

Lm(y)(RN).

ii) If |w|Lm(y)(RN) > 1, then |w|m
+

Lm(y)(RN) ≤ ρm(y)(w) ≤ |w|m
−

Lq(y)(RN).

iii) |w|Lm(y)(RN) < 1,= 1, > 1 if only if ρm(y)(w) < 1,= 1, > 1,

where ρm(y) : Lm(y)(RN)→ R is the mapping defined as follows

ρm(y)(w) =
∫
RN
|w(y)|m(y)dy.

Proposition 2.3. (see [20]) For every w and wn ∈ Lm(y)(RN), the following statements are equivalent:

i) lim
n→+∞

|wn − w|Lm(y)(RN) = 0,

ii ) lim
n→+∞

ρm(y)(wn − w) = 0,

iii ) wn → w in measure on RN and lim
n→+∞

ρm(y)(wn) − ρm(y)w) = 0.

Lemma 2.4. (Hölder’s inequality, see [20]) For every m ∈ C+(RN), the following inequality holds:

|

∫
RN

v(y)w(y)dy| ≤
( 1

m−
+

1
m′−

)
|v|Lm(y)(RN)|w|Lm′ (y)(RN),

for all (v,w) ∈ Lm(y)(RN) × Lm′ (y)(RN), where
1

m(y)
+

1
m′ (y)

= 1.
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2.2. Generalized fractional Sobolev space
We start by fixing the fractional exponent s ∈ (0, 1). LetU be an open bounded set of RN, m1 ∈ C+(U),

and p : Ū × Ū → (1,∞) is a continuous function that satisfies the conditions (4)- (6). We introduce the
generalized fractional Sobolev space Ws,m1(x),p(x,y) (U) as follows

Ws,m1(x),p(x,y)(U) =

w ∈ Lm1(x)(U) :
w(x) −w(y)

β|x − y|s+
N

p(x,y)

∈ Lp(x,y)(U ×U) for some β > 0

 .
Let [w]s,p(x,y) = inf

{
β > 0 :

∫
U×U

|w(x) −w(y)|p(x,y)

βp(x,y)|x − y|N+sp(x,y)
dxdy < 1

}
be the corresponding variable exponent

Gagliardo seminorm. We equip the space Ws,m1(x),p(x,y)(U) with the norm

∥w∥Ws,m1(x),p(x,y)(U) = [w]s,p(x,y) + |w|m1(x),

where (Lm1(x)(U), |.|m1(x)) is the generalized Lebesgue space.

Lemma 2.5. (see [5]) LetU ⊂ RN be a Lipschitz-bounded domain, p :U ×U → (1,+∞) be a continuous function
that satisfies conditions (4)-(6), and m1 ∈ C+(Ū). Then Ws,m1(x),p(x,y)(U) is a separable, and reflexive Banach space.

Theorem 2.6. (see[2, 12, 27]) LetU ⊂ RN be a Lipschitz-bounded domain, p : U ×U → (1,+∞) be a continuous
function that satisfies conditions (4)-(6) m1 ∈ C+(U), and

sp(x,y) < N, p(x, x) < m1(x), for all (x,y) ∈ U2,

and ℓ :U → (1,+∞) is a continuous variable exponent such that

p∗s(x) =
Np(x, x)

N − sp(x, x)
> ℓ(x) ≥ ℓ− = min

x∈U
ℓ(x) > 1.

Then the space Ws,m1(x),p(x,y(U) is continuously embedded in Lℓ(y)(U). That is, there exists a positive constant
C = C(N, s, p,m1,U) such that

|w|Ll(x)(U) ≤ C∥w∥Ws,m1(x),p(x,y)(U), for all w ∈Ws,m1(x),p(x,y)(U).

Moreover, this embedding is compact.

2.3. Homology theory
We now present the fundamental tool that will be used to work with, namely the homology theory.

Definition 2.7. ( see [33]) Given Y is a Banach space, ψ ∈ C(Y,R), and 0 is an isolated critical point of ψ such that
ψ(0) = 0. Let m,n ∈N. We say that ψ has a local (m,n)− linking near the origin if there exist a neighbourhood U of
0 and non-empty sets F0, F ⊂ U, and D ⊂ Y such that 0 < F0 ⊂ F, F ∩D = ∅ and

1) ψ
∣∣∣
F ≤ 0 < ψ

∣∣∣
U∩D\{0} ,

2) 0 is the only critical point of ψ in ψ0
∩U, where ψ0 = {w ∈ Y : ψ(w) = 0},

3) Dim im (i∗) −Dim im
(
j∗
)
≥ n, where

i∗ : Hm−1 (F0)→ Hm−1(Y\D) and j∗ : Hm−1 (F0)→ Hm−1(F)

are the homomorphisms induced by the inclusion maps i : F0 → Y\D and j : F0 → F.

Lemma 2.8. (Morse’s relation) (see [32]) If Y is a Banach space, ψ ∈ C1(Y,R), a, b ∈ R\ψ
({

Kψ
)
, a < b , ψ−1((a, b))

contains a finite number of critical points {wi}
n
i=1 and ψ satisfies the Palais-Smale condition, then
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1) for all k ∈N0, we have
∑n

i=1 rank Ck
(
ψ,ui

)
⩾ rank Hk

(
ψb, ψa

)
;

2) if the Morse-type numbers
∑n

i=1 rank Ck
(
ψ,ui

)
are finite for all k ∈N0 and vanish for all large k ∈N0, then so

do the Betti numbers rank Hk

(
ψb, ψa

)
and we have

∑
k⩾0

n∑
i=1

rank Ck
(
ψ,ui

)
tk =

∑
k⩾0

rank Hk

(
ψb, ψa

)
tk + (1 + t)Q(t) for all t ∈ R,

where Q(t) is a polynomial in t ∈ R with non-negative integer coefficients.

Theorem 2.9. (see [30] Let ψ ∈ C2(Y,R) satisfy the Palais-Smale condition, and let a be a regular value of ψ. Then,
H∗

(
Y, ψa) , 0, implies that Kψ ∩ ψa , ∅.

3. The Approximated Problem

We suggest an approximate problem sequence as
L

s1,s2
p(x,.),q(x,.)wn(x) =

1n(x,wn(x))(
wn(x) + 1

n

)ξ(x)
+V(x)|wn(x) +

1
n
|
σ(x)−2

(
wn(x) +

1
n

)
in U,

wn > 0 in U,
wn = 0 in RN

\U,

(8)

because the energy functional linked to our problem is not differentiable due to the inclusion of a singular

term. 1n(x, t)) = min(n, 1(x, t)), Gn(x, t) =
∫ t

0

1n(x, s)

(s + 1
n )ξ(x)

ds, and 1n : U × R → R is a sequence of functions

that verifies the following conditions.
(H2) There exist θ > p+ and r > 0 such that for a.e x ∈ U and |x| ≥ r,

0 < θGn(x, t) ≤
t1n(x, t)

(t + 1
n )ξ(x)

.

(H3) It holds

lim
t→+∞

1n(x, t)
tp+ = l1 uniformly for a.e x ∈ U,

(H4) There exist η > σ− and a3 > 0 such that

1n(x, t)t − ηGn(x, t) ≥ −a3|t|p
−

for all x ∈ U and t ∈ R.

Example 3.1. Set 1n(t) = l(t+ 1
n )2, p(x,y) = p− = 2, and ξ(x) = 1. A trivial verification shows that (H1)− (H4) are

satisfied under a suitable condition on η, a3, and θ.

Remark 3.2. If the function 1 satisfies condition (H1). Then, the sequence of function 1n also verifies condition (H1).

3.1. Computation of critical group

For the sake of simplicity, we note Y1 :=Ws1,m1(x),p(x,y)(U) and Y2 :=Ws2,m2(x),q(x,y)(U).
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Definition 3.3. We say that {wn}n∈N to be a weak solution of (8) if∫
U×U

|wn(x) −wn(y)|p(x,y)−2(wn(x) −wn(y))(φ(x) − φ(y))
|x − y|N+s1p(x,y)

dxdy

+

∫
U×U

|wn(x) −wn(y)|q(x,y)−2(wn(x) −wn(y))(φ(x) − φ(y))
|x − y|N+s2q(x,y)

dxdy

=

∫
U

 1n(x,wn(x))(
wn(x) + 1

n

)ξ(x)
+V(x)|wn(x) +

1
n
|
σ(x)−2

(
wn(x) +

1
n

)φ(x)dx,

for all φ ∈ Y∗1, where Y∗1 is the dual space of Y1.

Consider the energy functional ψ : Y1 → R defined by

ψ(wn) = ψ1(wn) − ψ2(wn) − ψ3(wn),

where

ψ1(wn) =
∫
U×U

[
1

p(x,y)
|wn(x) −wn(y)|p(x,y)

|x − y|N+s1p(x,y)
+

1
q(x,y)

|wn(x) −wn(y)|q(x,y)

|x − y|N+s2q(x,y)

]
dxdy,

ψ3(wn) =
∫
U

V(x)
σ(x)

|wn(x) +
1
n
|
σ(x)dx, ψ2(wn) =

∫
U

Gn(x,wn(x))dx, and Gn(x, t) =
∫ t

0

1n(x, s)

(s + 1
n )ξ(x)

ds is the

primitive of 1n(x,s)
(s+ 1

n )ξ(x) .

Lemma 3.4. If 1 satisfies (H1) condition and the potentialV satisfies (V). Then ψ2 + ψ3 ∈ C1(Y1,R) and

⟨(ψ2 + ψ3)
′

(wn),vn⟩ =

∫
U

 1n (x,wn(x))

(wn(x) + 1
n )ξ(x)

+V(x)|wn(x) +
1
n
|
σ(x)−2

(
wn(x) +

1
n

) vn(x)dx,

for all wn,vn ∈ Y1.

Proof. (i) ψ2 is Gateaux differentiable in Y1.
Let wn,vn ∈ Y1, and 0 < t < 1, we have

1
t

(Gn (x,wn + tvn) − Gn(x,wn)) =
1
t

∫ wn+tvn

0

1n(x, s)

(s + 1
n )ξ(x)

ds −
1
t

∫ wn

0

1n(x, s)

(s + 1
n )ξ(x)

ds

=
1
t

∫ wn+tvn

wn

1n(x, s)

(s + 1
n )ξ(x)

ds.

By the mean value theorem, there exists 0 < δ < 1 such that

1
t

(Gn(x,wn + tvn) − Gn(x,wn)) =
1n(x,wn + δtvn)

(wn + δtvn +
1
n )ξ(x)

vn.

Combining (H1) with Young’s inequality, we have

1n(x,wn + δtvn) ≤ 1(x,wn + δtvn)

≤ β(|vn| + |wn + δtvn|
r(x)
|vn|)

≤ β2r+ (1 + |wn|
r(x) + |vn|

r(x)).
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Since r(x) ∈ (1, p∗s1
(x)), we have wn,vn ∈ Lr(x(U). Thanks to the Lebesgue’s dominated converge Theorem,

we get

lim
t→0

1
t

(Gn(x,wn + tvn) − Gn(x,wn)) = lim
t→0

∫
U

1n(x,wn + δtvn)

(wn + δtvn +
1
n )ξ(x)

vndx

=

∫
U

limt→0
1n(x,wn + δtvn)

(wn + δtvn +
1
n )ξ(x)

vndx

=

∫
U

1n(x,wn)

(wn +
1
n )ξ(x)

vndx.

(9)

⟨ψ
′

3(wn),vn⟩ = lim
t→0

ψ3(wn + tvn) − ψ3(wn)
t

= lim
t→0

∫
U

V(x)
tσ(x)

(
|wn + vnt +

1
n
|
σ(x)
− |wn +

1
n
|
σ(x)

)
dx.

(10)

Considering the function defined by L : [0, 1] → R as L(z) = V(x)
σ(x) |wn + zvnt + 1

n |
σ(x). According to the mean

value Theorem, there exists 0 < ε < 1 such that

L
′

(z)(ε) = L(1) − L(0). (11)

Combining (10) with (11), it follows that ⟨ψ
′

3(wn),vn⟩ =
∫
U
V(x)|wn(x) + 1

n |
σ(x)−2

(
wn(x) + 1

n

)
vn(x)dx.

(ii) The continuity of Gateaux-derivatives. Let {wn,k}k∈N ⊂ Y1 such that wn,k → wn strongly in Y1 as k→ +∞.
We use Hölder’s inequality and condition (H1), we have that∫

U

|
1n(x,wn,k)

(wn,k +
1
n )ξ(x)

|
r′ (x)dx ≤

∫
U

|1n(x,wn,k)|r
′
(x)dx

≤

∫
U

|1(x,wn,k)|r
′
(x)dx

≤ 2
r++1
r+−1 ∥β∥

r++1
r+−1
∞

∫
U

|wn,k|
r(x)dx

≤ C(β, r+)
∫
U

|wn,k|
r(x)dx

≤ C(∥β∥∞, r+)∥|wn,k|∥
L

ps∗1(x)
r(x) (U)

∥1∥
L

ps∗1(x)
ps∗1(x)−r(x)

(U)

.

So, the sequence {|
1n(x,wn,k)

(wn,k +
1
n )ξ(x)

−
1n(x,wn)

(wn +
1
n )ξ(x)

|
r(x)
}k∈N is uniformly bounded and equi-integrable in L1(U).

Thanks to Vitali converge theorem implies

lim
k→+∞

∫
U

|
1n(x,wn,k)

(wn,k +
1
n )ξ(x)

−
1n(x,wn)

(wn +
1
n )ξ(x)

|
r′ (x)dx = 0,

where
1

r′ (x)
+

1
r(x)
= 1. Thus, by Theorem 2.6 and Hölder’s inequality, we have

∥ψ
′

2(wn,k) − ψ
′

2(wn)∥Y∗1 = sup
vn∈Y1

∥⟨ψ
′

2(wn,k) − ψ
′

2(wn),vn⟩∥Y1

≤ |⟨ψ
′

2(wn,k) − ψ
′

2(wn),vn⟩|

≤ ∥
1n(x,wn,k)

(wn,k +
1
n )ξ(x)

−
1n(x,wn)

(wn +
1
n )ξ(x)

∥
Lq
′

1(x)(U)
∥vn∥Lq1(x)(U) → 0 as k→ +∞,
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where Y∗1 is the dual space of Y1. Similarly, we prove that ψ
′

3 continuous in Y1. From the Lemma 3.4 and
Lemma 4.1 in [12], we have that ψ ∈ C1(Y1,R), and

⟨ψ
′

(wn,k),vn⟩ =

∫
U×U

|wn,k(x) −wn,k(y)|p(x,y)−2(wn,k(x) −wn,k(y))(vn(x) − vn(y))
|x − y|N+s1p(x,y)

dxdy

+

∫
U×U

|wn,k(x) −wn,k(y)|q(x,y)−2(wn,k(x) −wn,k(y))(vn(x) − vn(y))
|x − y|N+s2q(x,y)

dxdy

−

∫
U

 1n (x,wn(x))

(wn(x) + 1
n )ξ(x)

+V(x)|wn(x) +
1
n
|
σ(x)−2

(
wn(x) +

1
n

) vn(x)dx,

for all vn ∈ Y∗1.

Theorem 3.5. The functional ψ satisfies the Palais-Smale condition at level c ∈ R.

Proof. Let {wn,k}k∈N ⊂ Y1 be a Palais-Smale sequence of ψ at level c. Then, we have

ψ
(
wn,k

)
= c + o(1), and ψ′

(
wn,k

)
= o(1). (12)

Claim 1: The sequence {wn,k}k∈N is uniformly bounded in Y1

By using the contradiction approach, we prove Claim 1. We assume the claim 1 does not hold, that is up

to a subsequence still denoted by {wn,k}k∈N such that ∥wn,k∥Y1 → +∞ as k→ +∞ in Y1. Let us vn,k :=
wn,k

∥wn,k∥Y1

.

Clearly {vn,k}k∈N is bounded in Y1. Since Y1 is a reflexive Banach space, up to a subsequence still denoted
by {vn,k}k∈N such that:

vn,k ⇀ vn weakly in Y1 as k→∞,
vn,k → vn strongly k→ +∞ in La(x)(U) for all 1 < a(x) < p∗s1

(x),
vn,k → vn a.e inU as k→∞.

(13)

Combining (12) with 1
∥wn,k∥Y1

= o(1), we have

∥vn,k∥
p+

Y1

p−
+
∥wn,k∥

p+−q−

Y1
∥vn,k∥

q+

Y2

q−
− ∥wn,k∥

−p−

Y1

∫
U

Gn(x,wn,k)dx −
∥wn,k∥

σ−−p+

Y1

σ+

∫
U

V(x)|wn(x) +
1
n
|
σ(x)dx

= o(1),

(14)

and

∥vn,k∥
p+

Y1
+ ∥wn,k∥

q+−p−

Y1
∥vn,k∥

q+

Y2
− ∥wn,k∥

−p−

Y1

∫
U

1n(x,wn,k)

(wn,k +
1
n )
ξ(x)

wn,k(x)dx − ∥wn,k∥
σ−−p+

Y1

∫
U

V(x)|wn(x) +
1
n
|
σ(x)dx

= o(1).
(15)

We use (15) and (14), we have(
η

p−
− 1

)
∥vn,k∥

p−

Y1
+

(
η

q−
− 1

)
∥wn,k∥

q−−p+

Y1
∥vn,k∥

q+

Y2
−

( η
σ−
− 1

)
∥wn,k∥

σ−−p+

Y1

∫
U

V(x)|wn(x) +
1
n
|
σ(x)dx

− η∥wn,k∥
−p−

Y1

∫
U

Gn(x,wn,k) −
1n(x,wn,k)

(wn,k +
1
n )
ξ(x)

wn,k(x)

 dx = o(1).
(16)
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We use (H4), we can write(
η

p−
− 1

)
∥vn,k∥

p−

Y1
=

(
1 −

η

q+

)
∥wn,k∥

q+−p−

Y1
∥vn,k∥

q+

Y2
+ η∥wn,k∥

−p−

Y1

∫
U

Gn(x,wn,k) −
1n(x,wn,k)

(wn,k +
1
n )
ξ(x)

wn,k(x)dx


+

(
1 −

η

σ+

)
∥wn,k∥

σ−−p+

Y1

∫
U

V(x)|wn(x) +
1
n
|
σ(x)dx + o(1)

≤

(
1 −

η

q+

)
∥wn,k∥

q+−p−

Y1
∥vn,k∥

q+

Y2
+

(
1 −

η

σ+

)
∥wn,k∥

σ−−p+

Y1

∫
U

V(x)|wn(x) +
1
n
|
σ(x)dx

+ a3∥wn,k∥
p−−q−

Y1
∥vn∥

p−

Lp− (U)
+ o(1)

= o(1).
(17)

as k → ∞. This is a contradiction as ∥vn∥Y1 = 1, and hence Claim 1 follows. Consequently, there exists
wn ∈ Y1 such that up to a subsequence

wn,k ⇀ wn weakly in Y1 as k→∞,
wn,k → wn strongly in La(x)(U) as k→ +∞ for all 1 < a(x) < p∗s1

(x),
wn,k → wn a.e inU as k→∞.

(18)

From (H1), and (V), we get∫
U

1n
(
x,wn,k

)
wn,k

1
n +wn,k

dx =
∫
U

1n(x,wn)wn
1
n +wn

dx + o(1), (19)∫
U

Gn
(
x,wn,k

)
dx =

∫
U

Gn(x,wn)dx + o(1), (20)

∫
U

V(x)|wn,k +
1
n
|
σ(x)dx =

∫
U

V(x)|wn +
1
n
|
σ(x)dx + o(1). (21)

We have also {wn,k}k∈N is bounded in Y2. Since wn,k → wn a.e. inU as k→ +∞, we have that

|wn,k(x) −wn,k(y)|p(x,y)−2(wn,k(x) −wn,k(y))

|x − y|(
N

p(x,y)+s1)(p(x,y)−1)
→
|wn(x) −wn(y)|p(x,y)−2(wn(x) −wn(y))

|x − y|(
N

p(x,y)+s1)(p(x,y)−1)

a.e (x,y) ∈ U ×U as k→ +∞. Since {wn,k}k∈N is bounded in Y1, there exist c > 0 such that∫
U×U

|
|wn,k(x) −wn,k(y)|p(x,y)−2(wn,k(x) −wn,k(y))

|x − y|(
N

p(x,y)+s1)(p(x,y)−1)
|

p(x,y)
p(x,y)−1 dxdy ≤ C.

So, we have that

|wn,k(x) −wn,k(y)|p(x,y)−2(wn,k(x) −wn,k(y))

|x − y|(
N

p(x,y)+s1)(p(x,y)−1)
⇀
|wn(x) −wn(y)|p(x,y)−2(wn(x) −wn(y))

|x − y|(
N

p(x,y)+s1)(p(x,y)−1)
as k→∞

weakly in Lp′ (x,y)(U ×U), where 1
p′ (x,y) +

1
p(x,y) = 1. Let wn ∈ Y1, it is follows that

wn(x) −wn(y)

|x − y|
N

p(x,y)+s1
∈ Lp(x,y)(U ×U), and

wn(x) −wn(y)

|x − y|
N

q(x,y)+s2
∈ Lq(x,y)(U ×U).
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Finally, we get that∫
U×U

|wn,k(x) −wn,k(y)|p(x,y)−2(wn,k(x) −wn,k(y))

|x − y|(
N

p(x,y)+s1)p(x,y)
dxdy

→

∫
U×U

|wn(x) −wn(y)|p(x,y)−2(wn(x) −wn(y))

|x − y|(
N

p(x,y)+s1)p(x,y)
dxdy as k→∞

and ∫
U×U

|wn,k(x) −wn,k(y)|q(x,y)−2(wn,k(x) −wn,k(y))

|x − y|(
N

p(x,y)+s2)q(x,y)
dxdy

→

∫
U×U

|wn(x) −wn(y)|q(x,y)−2(wn(x) −wn(y))

|x − y|(
N

q(x,y)+s2)q(x,y)
dxdy as k→∞.

Claim 2: wn,k → wn strongly in Y1 as k→∞.

Considering the sequence defined as vn,k = wn,k−wn. Since wn,k → wn a.e inU and {wn,k}k∈N is uniformly
bounded in Y1 and Y2. Thanks to Brezis-Lieb Lemma in [22], we have that∫

U×U

|wn,k(x) −wn,k(y)|p(x,y)−2(wn,k(x) −wn,k(y))

|x − y|(
N

p(x,y)+s1)p(x,y)
dxdy

=

∫
U×U

|vn,k(x) − vn,k(y)|p(x,y)−2(vn,k(x) − vn,k(y))

|x − y|(
N

p(x,y)+s1)p(x,y)
dxdy

+

∫
U×U

|wn(x) −wn(y)|p(x,y)−2(wn(x) −wn(y))

|x − y|(
N

p(x,y)+s1)p(x,y)
dxdy + o(1),

(22)

i.e ∥wn,k∥
p+

Y1
= ∥wn∥

p+

Y1
+ ∥vn,k∥

p+

Y1
+ o(1). Similarly, we get ∥wn,k∥

q+

Y2
= ∥wn∥

q+

Y2 + ∥vn,k∥
q+

Y2
+ o(1). So, we have that

c + o(1) = ψ(wn,k) ≤
1

p+
∥vn,k∥

p+

Y1
+

1
q+
∥vn,k∥

q+

Y2
+

1
p+
∥wn∥

p+

Y1
+

1
q+
∥wn∥

q+

Y2
−

∫
U

Gn(x,wn(x))dx

−

∫
U

V(x)|wn,k +
1
n
|
σ(x)dx.

(23)

On the other hand, using ψ
′

(wn,k)→ 0 as k→ +∞, we have that

lim
k→+∞

∥vn,k∥
p+

Y1
+ ∥vn,k∥

q+

Y2
=

∫
U

1n(x,wn)

(wn +
1
n )
ξ(x)

wn(x)dx − ∥wn∥
p+

Y1
− ∥wn∥

q+

Y2
−

∫
U

V(x)|wn +
1
n
|
σ(x)dx. (24)

We combine (24) with ψ(wn) = 0, we obtain that

lim
k→+∞

∥vn,k∥
p+

Y1
+ ∥vn,k∥

q+

Y2
= 0.

Since ∥vn,k∥
p+

Y1
and ∥vn,k∥

q+

Y2
are bounded sequence, we can write lim

k→+∞
∥vn,k∥

p+

Y1
= a and lim

k→+∞
∥vn,k∥

q+

Y2
= b. Since

a, b ≥ 0 and a + b = 0, we get that a = b = 0. Finally wn,k → wn strongly in Y1 as k→ +∞.

Now, we will use the notion of the local (m,n) linking for computing dim Ck(ψ, 0).

Theorem 3.6. The functional ψ has a local (1, 1)− linking at the origin.
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Proof. According to (H3) and a direct computation, we have

nξ(x)l
2p(x,y)

|wn(x)|p
++1
≤ Gn(x,wn(x)). (25)

We define V = R. Clearly V is a one dimensional vector space subspace of Y1.We choose r ∈ (0, 1) such that
Kψ ∩ Br(0) = {0}, where Br(0) = {wn ∈ Y1 : ∥wn∥Y1 < r} and Kψ = {wn ∈ Y1 : ψ

′

(wn) = 0}. We consider the set
E = V ∩ Br(0) for small enough r ∈ (0, 1). Recall that on a finite-dimensional normed space, all norms are
equivalent. So, by taking r ∈ (0, 1) even Smaler as necessary, we obtain that

∥wn∥Y1 ≤ r⇒ |wn| ≤ δ for all wn ∈ V = R.

Then for any wn ∈ V ∩ Br(0), we have

ψ(wn) =
∫
U×U

1
p(x,y)

|wn(x) −wn(y)|p(x,y)

|x − y|N+s1p(x,y)
dxdy +

∫
U×U

1
q(x,y)

|wn(x) −wn(y)|q(x,y)

|x − y|N+s2q(x,y)
dxdy

−

∫
U

Gn(x,wn(x))dx −
∫
U

V(x)
σ(x)

|wn(x) +
1
n
|
σ(x)dx

≤
1

p−

∫
U×U

|wn(x) −wn(y)|p(x,y)

|x − y|N+s1p(x,y)
dxdy +

1
q−

∫
U×U

|wn(x) −wn(y)|q(x,y)

|x − y|N+s2q(x,y)
dxdy

−
nξ+ l

2(p+ + 1)

∫
U

|wn(x)|p
++1dx −

1
σ+

(1
n

)σ+
|U|

≤ 0.

Further, we consider the set

D =
{

wn ∈ Y1 : min(
1
q+
,

1
p+

)∥wn∥
p(x,y)
Y1

> ∥β∥∞C(U, r,N)∥wn∥
l(x)
Y1

n1−ξ−

1 − ξ−
+

1
σ+
η1∥wn∥Y1

}
,

where l :U → (1,∞) is the continuous function such that l(x) ≤ p∗s(x), and C(U, r,N) is the positive constant.
Using condition (H1), (V), and Theorem 2.6, we have that for any wn ∈ D,

ψ(wn) =
∫
U×U

1
p(x,y)

|wn(x) −wn(y)|p(x,y)

|x − y|N+s1p(x,y)
dxdy +

∫
U×U

1
q(x,y)

|wn(x) −wn(y)|q(x,y)

|x − y|N+s2q(x,y)
dxdy

−

∫
U

Gn(x,wn(x))dx −
∫
U

V(x)
σ(x)

|wn(x) +
1
n
|
σ(x)dx

≥
1

p+
∥wn∥

p(x,y)
Y1

+
1
q+
∥wn∥

q(x,y)
Y2
− 2∥β∥∞∥wn∥

l(x)
Y1
−

1
σ+
η1∥wn∥Y1 > 0.

Let U = Br(0), E0 = V ∩ ∂Br(0), E = V ∩ Br(0), and D as above, we have that 0 < E0 ⊂ E ⊂ U = Br(0) and
E0 ∩D = ∅. Therefore, we arrive the following

ψ|E ≤ 0 < ψ
|D∩Br(0).

Let Y be the topological complement of V. We have that Y1 = V
⊕

Y. So, every wn ∈ Y1 can be written in
unique way as

wn = vn + yn with vn ∈ V,yn ∈ Y.

We consider the map h : [0, 1] × Y1\D→ Y1\D defined by

h(t,wn) = (1 − t)wn + tr
vn

∥vn∥
.
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We have h(0,wn) = wn and h(1,wn) = r
vn

∥vn∥
∈ V ∩ ∂Br(0) = E0. It follows that E0 is a deformation retract of

Y1\D. Hence
i∗ : H0(E0)→ H0(Y1)

i an isomorphism. Note that E0 = {a,−a} for some a , 0. Therefore, from dim H0(E0) = 2, since H0(E0) =
R

⊕
R. Thus dim im(i∗) = 2.

The set E = V ∩ Br(0) is contractible (it is an interval ). By Theorem 11.5 in [19], we have that H0(E,E0) = 0.
Thanks to Remark 6.1.26 in [19], we get dim im( j∗) = 1. So, finally

dim im(i∗) − dim im( j∗) = 2 − 1 = 1.

Thus the hypothesis of Definition 2.7 are satisfied. Hence ψ has a local (1, 1)− linking at 0.

Remark 3.7. For all k ∈N, Ck(ψ, 0) , 0.

Proof. Since ψ has a local (1, 1) linking at the origin. By proposition 2.1 in [28], we get that dim Ck(ψ, 0) ≥
1.

Now, we will compute the group critical of ψ at infinitely.

Theorem 3.8. Suppose that the condition (H3) is satisfied. Then, there exists k ∈N such that Ck(ψ,∞) = 0.

Proof. Firstly, we prove that there exists a positive constant A such that ψa is homotopic to exists a constant
A > 0 such that ψa is homotopic to S1 = {wn ∈ Y1 : ∥wn∥Y1 = 1}, for all a < −A. From the condition (H3), it
follows that

ψ(twn) =
∫
U×U

tp(x,y)

p(x,y)
|wn(x) −wn(y)|p(x,y)

|x − y|N+s1p(x,y)
dxdy +

∫
U×U

tq(x,y)

q(x,y)
|wn(x) −wn(y)|q(x,y)

|x − y|N+s2q(x,y)
dxdy

−

∫
U

V(x)
σ(x)

tσ(x)
|wn(x) +

1
n
|
σ(x)dx −

∫
U

Gn(x, twn(x))dx

≤
tp+

p−
+

tq+

q−
∥wn∥

q(x,y)
Y2
−

ltp+∗s1

2p+∗s1

∫
U

wn(x)p+∗s1 dx −
θ1tσ+

σ+

∫
U

|wn(x) +
1
n
|
σ(x)dx,

where p+∗s1
= max

x∈U
p∗s1

(x). Since p+∗s1
> p+ > q+ > σ+, we have that ψ(twn) → −∞ as t → +∞. Let A ∈ R there

exists t ∈ R such that ∥twn∥Y1 ≥ B, we have that ψ(twn) ≤ A. Since wn ∈ S1, we have that

d
dt
ψ(twn) =

∫
U×U

tp(x,y)−1 |wn(x) −wn(y)|p(x,y)

|x − y|N+s1p(x,y)
dxdy −

∫
U

wn(x)
1n(x, twn(x))

(twn(x) + 1
n )ξ(x)

dx

+

∫
U×U

tq(x,y)−1 |wn(x) −wn(y)|q(x,y)

|x − y|N+s2q(x,y)
dxdy −

∫
U

V(x)tσ(x)−1
|wn(x) +

1
n
|
σ(x)−1dx

≤ tp+−1 + tq+−1
∥wn∥

q(x,y)
Y2
−

∫
U

wn(x)
1n(x, twn(x))

(twn(x) + 1
n )ξ(x)

dx − tσ
−
−1

∫
U

V(x)|wn(x) +
1
n
|
σ(x)−1dx

≤
p+

t

A + ∫
U

Gn(x, twn(x))dx −
p+

t

∫
U

twn(x)
1n(x, twn(x))

(twn(x) + 1
n )ξ(x)

dx

 − tσ
−
−1

∫
U

V(x)|wn(x) +
1
n
|
σ(x)−1dx

≤
p+

t

A + (
1
θ
−

1
p+

) ∫
U

twn(x)
1n(x, twn(x))

(twn(x) + 1
n )ξ(x)

dx


≤

p+

t

[
A + C1

(
1
θ
−

1
p+

)]
− tσ

−
−1

∫
U

V(x)|wn(x) +
1
n
|
σ(x)−1dx

< 0.
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By the implicit function Theorem, there exists an unique T ∈ C(S1,R) such that for any wn ∈ S1,

ψ(T(wn)wn) = A.

For any wn , 0, set τ(wn) =
1
∥wn∥

T(
wn

∥wn∥
). Then τ ∈ C(Y1\0,R) and for all wn ∈ Y1, ψ(wnτ(wn)) = A.

Moreover, if ψ(wn) = A, then τ(wn) = 1. We define a function τ1 : Y1 → R as

τ1(wn) :=
{
τ(wn), if ψ(wn) ≥ A,
1, if ψ(wn) < A.

Since ψ(wn) = A implies that τ(wn) = 1,we conclude that τ1 ∈ C(Y1\0,R). Finally, we set H : [0, 1]×Y1\0→
Y1\0 as

H(t,wn) = (1 − t)wn + tτ1(wn)wn.

We have H(0,wn) = wn, H(1,wn) = τ1(wn)wn ∈ ψ
A, and H(t, .)|ψA = id|ψA for all t ∈ [0, 1]. It follows that

ψA is a strong deformation retract of Y1\0. (26)

We consider the radial retraction r : Y1 → R defined by

r(wn) =
wn

∥wn∥
for all wn ∈ Y1.

This map is continuous and r|S1 = id|S1 . Therefore, S1 is a retract of Y1\0. Considering the map defined by

h(t,wn) = (1 − t)wn + tr(wn) for all (t,wn) ∈ [0, 1] × Y1\0.

Then, h(0,wn) = wn, h(1,wn) = r(wn) ∈ S1, and h(1, .)|S1 = id|S1 . Hence, we refer that

S1 is a deformation retract of Y1\0. (27)

Finally, by 26 and 27 it follow that ψa and S1 are homotopie equivalent. We already know that the space
Y1 is an infinite dimensional Banach space. From Remark 6.1.13 in [32], it follows that the sphere unit S1 is
contractible. So, we have that

Hk(Y1, ψ
a) = Hk(Y1,S1) = 0 for all , k ∈N.

Finally, we obtain that

Ck(ψ,∞) = Hk(Y1, ψ
a) = Hk(Y1,S1) = 0, for all k ∈N. (28)

Theorem 3.9. Suppose that conditions (V), and (H1)− (H4) are satisfied. Then, the problem (8) has nontrivial weak
solution in Y1.

Proof. Since ψ has a local (1, 1)− linking near the origin, then dim C1(ψ, 0) ≥ 1, i,e Ck(ψ, 0) , 0 for some
k ∈N. Thanks to Theorem 6.2.42 in [32], there exists wn ∈ Kψ.

Theorem 3.10. Suppose that condition (V), and (H1) − (H4) are satisfied. Then, the problem (8) has at least
non-trivial weak solution in Y1.

Proof. Thanks to Theorem 3.5 ψ satisfies the Palais-Smale condition and is bounded from below and the
trivial solution wn = 0 is homological nontrivial and is it a minimizer. The conclusion follows from Theorem
2.1 in [28].
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3.2. Existence of infinitely non-trivial solutions

Theorem 3.11. Suppose that conditions (V), and (H1) − (H4) are satisfied. Then, the problem (8) has infinitely
non-trivial weak solutions in Y1.

Proof. We suppose that our problem admits three non-trivial solutions Y1. That is Kψ = {0,wn,vn}. From
Morse’s relation, it follows that

Cn(ψ, 0) =
{
R, k = m(0),
0, otherwise ,

where m(0) is a Morse index of 0. We use Morse’s relation, we get that∑
k≥0

rank Ck(ψ,∞)Xk + (1 + X)Q(X) =
∑
k≥0

rank Ck(ψ, 0)Xk +
∑
k≥0

rank Ck(ψ,wn)Xk +
∑
k≥0

rank Ck(ψ,vn)Xk

=Xm(0) + 2
∑
k≥0

βkXk.

From (28), it follows that

(1 + X)Q(X) = Xm(0) + 2
∑
k≥0

βkXk,

where βk nonnegative integer and Q is a polynomial with nonnegative integer coefficient. In particular, for
X = 1 we have 2a = 1+ 2

∑
k≥0

βk. Since βk ∈N,we have that
∑
k≥0

βk = +∞ leads to a contradiction. Thus, there

exist infinitely solutions to the problem (8).

4. Fundamental Theorem

Theorem 4.1. Suppose that conditions (V), and (H1) − (H4) are satisfied. Then, problem (3) admits an infinitely
weak solutions in Y1.

Proof. Let {wn}n∈N ⊂ Y1 be the sequence of solutions to problem (8). So, we have that∫
U×U

|wn(x) −wn(y)|p(x,y)−2(wn(x) −wn(y))(φ(x) − φ(y))
|x − y|N+s1p(x,y)

dxdy

+

∫
U×U

|wn(x) −wn(y)|q(x,y)−2(wn(x) −wn(y))(φ(x) − φ(y))
|x − y|N+s2q(x,y)

dxdy

=

∫
U

1n(x,wn(x))

(wn(x) + 1
n )ξ(x)

φ(x)dx +
∫
U

V(x)|wn(x) +
1
n
|
σ(x)−2(wn(x) +

1
n

)φ(x)dx, for all φ ∈ Y∗1.

(29)

We take φ = wn in (29), we have that∫
U×U

|wn(x) −wn(y)|p(x,y)

|x − y|N+s1p(x,y)
dxdy +

∫
U×U

|wn(x) −wn(y)|q(x,y)

|x − y|N+s2q(x,y)
dxdy

=

∫
U

1n(x,wn(x))

(wn(x) + 1
n )ξ(x)

wn(x)dx +
∫
U

V(x)|wn(x) +
1
n
|
σ(x)−2(wn(x) +

1
n

)wn(x)dx

≤

∫
U

1n(x,wn(x))

(wn(x) + 1
n )ξ(x)

wn(x)dx +
∫
U

V(x)|wn(x) +
1
n
|
σ(x)dx.
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Combining (H1) with (V), it follows that∫
U×U

|wn(x) −wn(y)|p(x,y)

|x − y|N+s1p(x,y)
dxdy +

∫
U×U

|wn(x) −wn(y)|q(x,y)

|x − y|N+s2q(x,y)
dxdy

≤

∫
U

1n(x,wn(x))

(wn(x) + 1
n )ξ(x)

wn(x)dx +
∫
U

V(x)|wn(x) +
1
n
|
σ(x)dx

≤

∫
U

1(x,wn(x))|wn(x))|1−ξ(x)dx + η1∥wn∥Y1

≤

∫
U

β(x)(1 + |wn(x))|r(x)−1))|wn(x)|1−ξ(x)dx + η1∥wn∥Y1 .

Since r(x) − 1 ≤ r(x) − ξ(x) for all x ∈ U, we get that

∥wn∥Y1 ≤
∥β∥∞C(r(x), p(x,y), q1(x), ξ(x), s1,U)

1 − η1
.

Hence, the sequence {wn}n∈N is bounded in Y1. Since Y1 is a reflexive Banach space, up to a subsequence,
still denoted by {wn} such that wn ⇀ w weakly in Y1, wn → w strongly in La(x)(U) for 1 ≤ a(x) < p∗s1

(x), and
wn → w a.e inU. A similar discussion as in Theorem 3.5 gives that

lim
n→∞

[
∫
U×U

|wn(x) −wn(y)|p(x,y)−2(wn(x) −wn(y))(φ(x) − φ(y))
|x − y|N+s1p(x,y)

dxdy

+

∫
U×U

|wn(x) −wn(y)|q(x,y)−2(wn(x) −wn(y))(φ(x) − φ(y))
|x − y|N+s2q(x,y)

dxdy]

=

∫
U×U

|w(x) −w(y)|p(x,y)−2(w(x) −w(y))(φ(x) − φ(y))
|x − y|N+s1p(x,y)

dxdy

+

∫
U×U

|w(x) −w(y)|q(x,y)−2(w(x) −w(y))(φ(x) − φ(y))
|x − y|N+s2q(x,y)

dxdy.

(30)

Since wn(x) > 0, we get that

|
1n(x,wn(x))φ(x)

( 1
n +wn(x))ξ(x)

| ≤ |1(x,w(x))φ(x)|.

From the dominated converge theorem, it follows that

lim
n→+∞

∫
U

1n(x,wn(x))φ(x)

( 1
n +wn(x))ξ(x)

dx =
∫
U

1(x,w(x))φ(x)
(w(x))ξ(x)

dx.

Similarly, we prove that

lim
n→∞

∫
U

V(x)|wn +
1
n
|
σ(x)−2(wn +

1
n

)φ(x)dx =
∫
U

V(x)|w|σ(x)−2w(x)φ(x)dx. (31)

Finally, passing to the limit in (29), we deduce that∫
U×U

|w(x) −w(y)|p(x,y)−2(w(x) −w(y))(φ(x) − φ(y))
|x − y|N+s1p(x,y)

dxdy

+

∫
U×U

|w(x) −w(y)|q(x,y)−2(w(x) −w(y))(φ(x) − φ(y))
|x − y|N+s2q(x,y)

dxdy

=

∫
U

1(x,w(x))φ(x)
(w(x))ξ(x)

dx +
∫
U

V(x)|w|σ(x)−2w(x)φ(x)dx, for all φ ∈ Y∗1,

(32)

namely w is a weak solution to (3).
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