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Abstract. This paper addresses scenarios in real-valued series, such as exchange rate and gross production
rate, where non-normal disturbances are occurred due to structural breaks resulting from events like policy
changes, market fluctuations, financial burdens, stock price effects, etc. To justify this, spherically symmet-
ric families of distributions have been explored. We propose a flexible covariate panel autoregressive model
that accounts for multiple structural breaks when the error distribution belongs to the family of spherically
symmetric distributions. Bayesian estimation and testing methodology are introduced to estimate model
parameters and detect significant deviations from normality using a multivariate t-distribution for the anal-
ysis. The comparison using symmetric loss functions for parameter estimation and the classical maximum
likelihood estimation is discussed, with the Bayes factor being calculated to deliver significant evidence
of the error distribution. A simulation study and an analysis of practical economic series are provided to
illustrate the performance of the proposed model.

1. Introduction

Researchers provided numerous time series models in the universe, ranging from univariate to mul-
tivariate, to identify the significant elements of the data generation process and improve prediction, see
[6, 7, 18] and references cited therein. Various linked variables, such as explanatory variables, covariates,
and others, are also incorporated into the time series model to increase efficiency and applied to various
real-world applications [8, 26, 44]. However, other influence factors, such as external disturbances, irregular
dynamic structure, outliers, change point analysis and asymmetric characteristics of the series, are equally
important to explain the more realistic presentation of the given process, see [1, 3, 16, 28, 39, 41]. These
elements and variables similarly affect the distribution of disturbances from normal to non-normal shape.
Various univariate and multivariate time series models based on non-normal errors are already available
in the literature and have been validated by numerous practical applications [25, 35, 37]. However, more
improvements are required in this area to handle various aspects of real-world applications when distur-
bances are spherically symmetric, long, or heavy tail shapes. In this paper, a spherically symmetric family
of distributions is used in the error component to model panel data time series in the presence of structural
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break and covariate, as well as to characterize its conclusions from a Bayesian perspective. In time series,
a structural break is one of the consequences of abnormal conditions in error terms because it breaks the
series in different intervals and each interval may or may not follow the normality assumption. Researchers
in numerous fields, such as economics, agriculture, environment, finance, and engineering, have explored
the structural break with panel data time series models. When the relationship between the variables or
parameters changes, a structural break occurs, and it is critical to conduct a thorough analysis/modelling
of a given series that contains a single structural break or multiple structural breaks to make stronger
inferences. Therefore, several studies consider a single and multiple breaks in level/trend/autoregressive
coefficient or/and error variance for making significant inferences in univariate, panel, or vector autoregres-
sive time series models [2, 5, 24, 33, 36, 41]. The change of error distribution from normal to non-normal also
happened due to other associated explanatory and covariates series. The associated covariates are variables
related to the original time series and depend on their prior data, like an autoregressive process. As a result,
a greater impact on the time series due to covariate has been recognized than the explanatory variable.
This concept is well discussed by several researchers under unit root hypothesis, estimation purpose, and
prediction, see [5, 11, 13].
The references [10, 23] are the first to derive the features of error distribution in terms of spherically sym-
metric form. In the setting of a regression model with spherically symmetric error, [40] produced maximum
likelihood estimators and testing procedures. [20] has discussed Bayesian prediction in a regression model
when the error is spherically distributed. [42] has determined the hypothesis testing for a linear regres-
sion model when the error follows a class of spherical distributions. [43] has introduced the performance
of the positive-rule Stein-type ridge estimator under spherically symmetric error disturbances in a linear
regression model. [15] has considered the canonical form of the general linear model with a spherically
symmetric error density around a mean vector. [34] has determined the Bayesian estimators of the pa-
rameters of the state-space model with disturbances following asymmetric family of distributions. Kock
and Eggers [12] proposed Bayesian variable selection for linear parameterizations with error based on a
spherically symmetric distribution. [25] has developed the Bayesian procedure in the presence of spherical
symmetric error for the covariate autoregressive model and applied it to real-life effective exchange rate
series. Therefore, the study addresses spherically symmetric disturbances in a covariate panel autoregres-
sive model with several structural breaks and defines the substantial impact with normal error. Most of the
existing literature [9, 31, 38] used the transformation method to change the error structure from non-normal
to normal. Therefore, there is a loss of information in the transformation method. As a result, an alternative
method can be used, such as a non-normal distribution like chi-square, Cauchy, or uniform distribution, to
make the error into a normal or symmetric distribution family. As a result, it is simple for the researcher
to deal with a non-normal error without losing information, and it provides a better predictive model for
future series.
The rest of the paper is organized as follows. Section 2 provides the model specification based on structural
breaks, covariate, and a spherical symmetric error. The basics of Bayesian analysis for estimation and
testing are presented in Section 3. Sections 4 and 5 offer simulation results and a practical application
based on economic data demonstrating the improved use of the suggested model and approach. Finally,
the conclusion is defined in Section 6.

2. Model Specification

Let {yit, i = 1, 2, . . . ,n; t = 1, 2, . . . ,T} be a panel data time series with cross-sectional units, and each
cross-sectional unit has T size of time series. Multiple structural breaks are considered in a covariate panel
autoregressive model with breaks at the intercept term, autoregressive coefficients, and covariate series



V. Agiwal et al. / Filomat 38:21 (2024), 7329–7354 7331

coefficients. Then, the form of the model is:

yit =



αi1 +
∑p1

j=1 β
(1)
i j yi,t− j +

∑q1

k=1 γ
(1)
ik wi,t−k + εit 0 < t < T1

...

αir +
∑pr

j=1 β
(r)
i j yi,t− j +

∑qr

k=1 γ
(r)
ik wi,t−k + εit Tr−1 < t < Tr,

...

αis +
∑ps

j=1 β
(s)
i j yi,t− j +

∑qs

k=1 γ
(s)
ik wi,t−k + εit Ts−1 < t < Ts

αis+1 +
∑ps+1

j=1 β
(s+1)
i j yi,t− j +

∑qs+1

k=1 γ
(s+1)
ik wi,t−k + εit Ts < t < T

(1)

where s is the number of structural breaks as r = 1, 2, 3, . . . , s, αir is the intercept term, β(r)
ipr

is the autoregressive

coefficient at la1(pr) and γ(r)
iqr

is the covariate coefficient at la1(qr) for the ith cross-sectional unit at rth break. It
is assumed that the error is normally distributed in most of the existing literature [[44],[41],[5]]. However,
this situation is not always satisfied for many practical applications, such as stock market series, gross
domestic product rate, and so forth, because extreme values, outliers, or non-asymptotic conditions divert
the observation from symmetric to other forms depending on kurtosis. As a result, these applications
must be handled by assuming that errors are distributed according to other symmetric distributions like
Student’s t-distribution, Laplace distribution, and others. One of the symmetric classes is a spherically
symmetric distribution where the error distribution is spherically symmetric with the density:

f (εit) =
∫
∞

0

δ
1
2

(2π)
1
2ψ(ζ)

exp
[
−

δ

2ψ2(ζ)
ε2

it

]
dG(ζ), (2)

where ψ(ζ) is a positive measurable function, 1
δ is the scale parameter and G(ζ) is a distribution function of

ζ. [23] has derived the properties of this distribution and [10] has summarized their literature review. In
matrix notation, the model defined by (1) is presented as

Y = (L ⊗ In)α + Xβ +Wγ + ε, (3)

with

f (ε) =
∫
∞

0

δ
nT
2

(2π)
nT
2 ψT(ζ)

exp
[
−

δ

2ψ2(ζ)
ε′ε

]
dG(ζ), (4)

where ⊗ is the Kronecker product and

yi =
(

yi1 yi2 · · · yiT

)
, Y =

(
y1 y2 · · · yn

)′
,

αi =
(
αi1 · · · αir · · · αis+1

)
, α =

(
α1 α2 · · · αn

)′
,

β(r)
i =

(
β(r)

i1 β(r)
i2 · · · β(r)

ipr

)
, βi =

(
β(1)

i · · · β(r)
i · · · β(s+1)

i

)
,

β =
(
β1 β2 · · · βn

)′
, γ(r)

i =
(
γ(r)

i1 γ(r)
i2 · · · γ(r)

iqr

)
,

γi =
(
γ(1)

i · · · γ(r)
i · · · γ(s+1)

i

)
, γ =

(
γ1 γ2 · · · γn

)′
,
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X(r)
i =


yi,Tr−1 yi,Tr−1−1 · · · yi,Tr−1+1−pr

yi,Tr−1+1 yi,Tr−1 · · · yi,Tr−1+2−pr

...
...

. . .
...

yi,Tr−1 yi,Tr−2 · · · yi,Tr−pr

 ,

Xi =



X(1)
i 0 0 0 0
...

. . .
...

...
...

0 0 X(r)
i 0 0

...
...

...
. . .

...

0 0 0 0 X(s+1)
i


, X =


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...

0 0 · · · Xn,

 ,

W(r)
i =


wi,Tr−1 wi,Tr−1−1 · · · wi,Tr−1+1−qr

wi,Tr−1+1 wi,Tr−1 · · · wi,Tr−1+2−qr

...
...

. . .
...

wi,Tr−1 wi,Tr−2 · · · wi,Tr−qr

 ,

Wi =



W(1)
i 0 0 0 0
...

. . .
...

...
...

0 0 W(r)
i 0 0

...
...

...
. . .

...

0 0 0 0 W(s+1)
i


, W =


W1 0 · · · 0
0 W2 · · · 0
...

...
. . .

...

0 0 · · · Wn

 ,

εi =
(
εi1 εi2 · · · εiT

)
, ε =

(
ε1 ε2 · · · εn

)′
,

L be a T × 1 vector with all elements 1 and In is the identity matrix of order n.

3. Bayesian Inference

Under the Bayesian approach, the observed data information is combined with a prior belief about
an unknown parametric function. Given the parameter facts, the data information is defined using the
likelihood function. For the proposed model, the likelihood function is given by

L(Y | α, β, γ, δ) =
∫
∞

0

δ
nT
2

(2π)
nT
2 ψnT(ζ)

exp

 − δ
2ψ2(ζ)

(
Y − (L ⊗ In)α − Xβ −Wγ

)′(
Y − (L ⊗ In)α − Xβ −Wγ

)  dG(ζ). (5)

The knowledge about the parameters known as prior distribution delineated using some functional forms.
The following multivariate prior distributions are considered as follows:
α ∼MNn(s+1)

(
α0, 1

δV−1
1

)
, V−1

1 is a symmetric positive definite matrix,

β ∼MNnP

(
β0, 1

δV−1
2

)
, V−1

2 is a symmetric positive definite matrix,

γ ∼MNnQ

(
γ0, 1

δV−1
3

)
, V−1

3 is a symmetric positive definite matrix,
δ ∼ χ2(v), v is a number of degree of freedom.
Here , MNn(s+1), MNnP, and MNnQ denote multivariate normal distributions with n(s + 1), nP, and nQ
components, respectively, and their respective mean vectors are α0, β0, and γ0, where P =

∑s+1
r=1 pr defined in

β prior, Q =
∑s+1

r=1 qr defined in γ prior and Vi =


1 · · · 0
...

. . .
...

0 · · · 1


n×n

, i = 1, 2, 3.
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The joint prior distribution has the expression

π(α, β, γ, δ) =
δ

n(s+P+Q+1)+v
2 −1

|V1|
1
2 |V2|

1
2 |V3|

1
2

(2π)
n(s+P+Q+1)

2 2
v
2 Γ

(
v
2

) exp

−δ2
 (α − α0)′ V−1

1 (α − α0) +
(
β − β0

)′ V−1
2

(
β − β0

)
+

(
γ − γ0

)′ V−1
3

(
γ − γ0

)
+ 1


 . (6)

With the help of the likelihood function in (5) and the joint prior distribution in (6), the posterior distribution
is

π(α, β, γ, δ | Y) =
δ

n(T+s+P+Q+1)+v
2 −1

|V1|
1
2 |V2|

1
2 |V3|

1
2

(2π)
n(T+s+P+Q+1)

2 2
v
2 Γ

(
v
2

) ∫
∞

0

1
ψnT(ζ)

exp
[
−

δ

2ψ2(ζ)

{(
Y − (L ⊗ In)α − Xβ −Wγ

)′
(
Y − (L ⊗ In)α − Xβ −Wγ

)
+ ψ2(ζ) (α − α0)′ V−1

1 (α − α0) + ψ2(ζ)
(
β − β0

)′ V−1
2(

β − β0
)
+ ψ2(ζ)

(
γ − γ0

)′ V−1
3

(
γ − γ0

)
+ ψ2(ζ)

}]
dG(ζ).

(7)

3.1. Bayesian Estimation

The Bayes estimator is obtained based on the loss function using the joint posterior distribution given
in equation (7). The loss/utility function is a specific risk adopted in a specific context for each parameter
in decision theory. Here, we only consider two symmetric loss functions to determine a better optimum
result. These loss functions are the squared error loss function (SELF) and the absolute loss function (ALF).
Mathematical formulations for deriving Bayes estimators based on these loss functions are extremely
complicated because numerous integrations are involved in these expressions. Therefore, the Markov
Chain Monte Carlo (MCMC) technique is applied to generate the estimated values of Bayes estimators
based on posterior distribution and loss function. For this, the conditional posterior distribution for
all model parameters is derived. Since the conditional posterior distribution of each parameter involves
integration concerning dG(ζ). In this situation and for computational purposes, we consider ζ as a parameter
with a density function that follows a chi-square distribution with u degree of freedom π(ζ) ∼ χ2(u) and
ψ2(ζ) = (ζ/u)−

1
2 . The chi-square distribution is chosen because it deals with a single unknown parameter

(degree of freedom), which depends upon the observations. So, it is better to analyse and make inferences
with different degrees of freedom. The conditional posterior density functions for each parameter are then
defined as follows:

α | Y, β, γ, δ ∼MN
(
B1A−1

1 ,
u
δζ

A−1
1

)
,

β | Y, α, γ, δ ∼MN
(
B2A−1

2 ,
u
δζ

A−1
2

)
,

γ | Y, α, β, δ ∼MN
(
B3A−1

3 ,
u
δζ

A−1
3

)
,

δ | Y, α, β, γ ∼ Gamma
(

n(T + s + P +Q + 1) + v
2

,
A4

2

)
,
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where

A1 = (L ⊗ In)′ (L ⊗ In) +
u
ζ

V−1
1 ,

B1 = (Y − Xβ −Wγ)′ (L ⊗ In) +
u
ζ
α′0V−1

1 ,

A2 = X′X +
u
ζ

V−1
2 ,

B2 =
(
Y − (L ⊗ In)α −Wγ

)′ X + u
ζ
β′0V−1

2 ,

A3 =W′W +
u
ζ

V−1
3 ,

B3 =
(
Y − (L ⊗ In)α − Xβ

)′W + u
ζ
γ′0V−1

3 ,

A4 =
ζ
u

[(
Y − (L ⊗ In)α − Xβ −Wγ

)′ (Y − (L ⊗ In)α − Xβ −Wγ
)]
+ (α − α0)′ V−1

1 (α − α0)

+
(
β − β0

)′ V−1
2

(
β − β0

)
+

(
γ − γ0

)′ V−1
3

(
γ − γ0

)
+ 1.

It is observed that the conditional posterior distributions for all model parameters are conditionally in the
standard distribution. Thus, the Gibbs sampler method is utilized to generate samples from a closed-form
posterior distribution.

3.2. Bayesian Testing Procedure

The Bayes factor (BF) is used in decision-making for hypothesis testing problem/model selection pro-
cedures from a Bayesian perspective. Bayes factor (BF10) is the likelihood ratio of the marginal probability
P(y|.) for the observed series under the alternative (H1) and the null (H0) hypothesis. For the proposed
study, the hypotheses under null and alternative are:
H0: Errors are distributed normally ,
H1: Errors are distributed spherically symmetric.
Thus, the posterior probability under the null hypothesis is

P (H0 | Y) =
|V1|

1
2 |V2|

1
2 |V3|

1
2 Γ

(
nT+v

2

)
π

nT
2 Γ

(
v
2

)
|A21|

1
2 |C21|

1
2 |E21|

1
2 [G21]

nT+v
2

,

and the alternative hypothesis is

P (H1 | Y) =
|V1|

1
2 |V2|

1
2 |V3|

1
2 Γ

(
nT+v

2

)
π

nT
2 Γ

(
v
2

) ∫
∞

0

|A11|
−

1
2 |C11|

−
1
2 |E11|

−
1
2 [G11]−

nT+v
2

ψn(T−s−P−Q−1)(ζ)
dG(ζ),

where
A11 = (L ⊗ In)′ (L ⊗ In) + ψ2(ζ)V−1

1 ,

B11 = (Y − Xβ −Wγ)′ (L ⊗ In) + ψ2(ζ)α′0V−1
1 ,

C11 = X′X + ψ2(ζ)V−1
2 − X′ (L ⊗ In) A−1

11 (L ⊗ In)′ X,

D11 = (Y −Wγ)′X + ψ2(ζ)β′0V−1
2 −

(
(Y −Wγ)′ (L ⊗ In) +

u
ζ
α′0V−1

1

)′
A−1

11 (L ⊗ In)′ X,

E11 =W′W + ψ2(ζ)V−1
3 −W′ (L ⊗ In) A−1

11 (L ⊗ In)′W −W′
(
I − (L ⊗ In)′ A−1

11 (L ⊗ In)
)

X

C−1
11 W′

(
I − (L ⊗ In)′ A−1

11 (L ⊗ In)
)

X,
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F11 = Y′W + ψ2(ζ)γ′0V−1
3 −

(
Y′ (L ⊗ In) + ψ2(ζ)α′0V−1

1

)
A−1

11 (L ⊗ In)′W

−

(
Y′X + ψ2(ζ)β′0V−1

2 −
(
Y′ (L ⊗ In) + ψ2(ζ)α′0V−1

1

)
A−1

11 (L ⊗ In)′ X
)

C−1
11 W′

(
I − (L ⊗ In)′ A−1

11 (L ⊗ In)
)

X,

G11 = Y′Y + ψ2(ζ)
(
α′0V−1

1 α0 + β
′

0V−1
2 β0 + γ

′

0V−1
3 γ0 + 1

)
−

(
Y′ (L ⊗ In) + ψ2(ζ)α′0V−1

1

)
A−1

11(
Y′ (L ⊗ In) + ψ2(ζ)α′0V−1

1

)′
−

(
Y′X + ψ2(ζ)β′0V−1

2 −
(
Y′ (L ⊗ In) + ψ2(ζ)α′0V−1

1

)
A−1

11 (L ⊗ In)′ X
)

C−1
11(

Y′X + ψ2(ζ)β′0V−1
2 −

(
Y′ (L ⊗ In) + ψ2(ζ)α′0V−1

1

)
A−1

11 (L ⊗ In)′ X
)′
− F11E−1

11 F′11,

A21 = (L ⊗ In)′ (L ⊗ In) + V−1
1 ,

B21 = (Y − Xβ −Wγ)′ (L ⊗ In) + α′0V−1
1 ,

C21 = X′X + V−1
2 − X′ (L ⊗ In) A−1

21 (L ⊗ In)′ X,

E21 =W′W + V−1
3 −W′ (L ⊗ In) A−1

21 (L ⊗ In)′W −W′
(
I − (L ⊗ In)′ A−1

21 (L ⊗ In)
)

X

C−1
21 W′

(
I − (L ⊗ In)′ A−1

21 (L ⊗ In)
)

X,

D21 = (Y −Wγ)′X + β′0V−1
2 −

(
(Y −Wγ)′ (L ⊗ In) + α′0V−1

1

)
A−1

21 (L ⊗ In)′ X,

F21 = Y′W + γ′0V−1
3 −

(
Y′ (L ⊗ In) + α′0V−1

1

)
A−1

21 (L ⊗ In)′W

−

(
Y′X + β′0V−1

2 −
(
Y′ (L ⊗ In) + α′0V−1

1

)
A−1

21 (L ⊗ In)′ X
)′

C−1
21 W′

(
I − (L ⊗ In)′ A−1

21 (L ⊗ In)
)

X,

G21 = Y′Y + α′0V−1
1 α0 + β

′

0V−1
2 β0 + γ

′

0V−1
3 γ0 + 1 −

(
Y′ (L ⊗ In) + α′0V−1

1

)
A−1

21

(
Y′ (L ⊗ In) + α′0V−1

1

)′
−

(
Y′X + β′0V−1

2 −
(
Y′ (L ⊗ In) + α′0V−1

1

)
A−1

21 (L ⊗ In)′ X
)

C−1
21(

Y′X + β′0V−1
2 −

(
Y′ (L ⊗ In) + α′0V−1

1

)
A−1

21 (L ⊗ In)′ X
)′
− F21E−1

21 F′21.

Since, the null hypothesis error is based on normal distribution. So, we easily get the closed form expres-
sion of null hypothesis, whereas the alternative hypothesis depends upon the distribution of spherically
symmetric, which is not known in advance. So, the closed form expression is not achieved. For better
understanding, one can refer [25] and [2].
For the proposed model, BF10 is expressed as

BF10 =
P (H1 | Y)
P (H0 | Y)

= |A21|
1
2 |C21|

1
2 |E21|

1
2 [G21]

nT+v
2

∫
∞

0

|A11|
−

1
2 |C11|

−
1
2 |E11|

−
1
2 [G11]−

nT+v
2

ψn(T−s−P−Q−1)(ζ)
dG(ζ).

The fact says that BF10 is more than 20 provide strong evidence for rejecting the null hypothesis. [22] has
provided a rule of thumb to interpret the magnitude of the BF using the transformation 2 ln(BF10). The
Monte Carlo methods are employed to handle this integral problem with known information regarding
spherical symmetric distribution, number of structural break and location of structural break. In this context,
we generate random samples from the spherical symmetric distribution by using random command in R.
Then, we use these samples to estimate the integral via Monte Carlo integration techniques.

4. Simulation Study

An artificial series is formed from the model in the simulation research, considering the true value of
model parameters and defining the initial value of the remaining variables. The size of the time series (T)
is 40 with two cross-sectional units (n = 2). In the series, two structural breaks (s = 2) are considered and
the locations of breakpoints are taken from various sets of combinations ( T

4 ,
T
2 ), ( T

2 ,
3T
4 ), and ( T

4 ,
3T
4 ) to obtain

better outcomes. For making the computation simple, we assume that lag (order) of each observed and
covariate series at each break interval is equal to one, that is p1 = q1 = p2 = q2 = p3 = q3 = 1. For a series
generation, the true parameter values are (α11, α12) = (1, 3), (α21, α22) = (5, 2), (α31, α32) = (3, 3), (β1

11, β
1
21) =

(0.1, 0.5), (β2
11, β

2
21) = (0.1, 0.3), (β3

11, β
3
21) = (0.35, 0.15), (γ1

11, γ
1
21) = (0.3, 0.4), (γ2

11, γ
2
21) = (0.6, 0.2),
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(γ3
11, γ

3
21) = (0.4, 0.5) and δ = 5. To acquire a more generalized inference, various degrees of freedom

u = (5, 10, 20, 30, 50) are considered to obtain the estimates and testing of the hypothesis. For Bayesian
computation, the 11000 cycles are generated, and 1000 cycles are burn-in period. The complete process is
repeated 1000 times and records the average results. The steps for Metropolis and Gibbs algorithm are as
follows:
Step 1: Specify the panel time series model, including the specific form of the non-Gaussian stochastic
disturbances and the structural break model.
Step 2: Define the prior distributions for the model parameters.
Step 3: Initialize the parameters for the MCMC algorithm.
Step 4: Iterate through the following steps until convergence.
Step 5: Propose new candidate values for the parameters and calculate the acceptance probability based on
the target distribution and the proposal distribution.
Step 6: Accept or reject the proposed values based on the acceptance probability.
Step 7: After convergence, analyze the posterior distribution of the parameters to estimate their values and
assess their uncertainty.
To examine the convergence of Markov Chain, we summarize the Gelman-Rubin convergence test (GRCT)
and the Geweke diagnostic test (GDT) p-value in Table 1 for all parameters. Form Table 1, it is observed
that the statistic value of the GRCT is almost equal to one and GDT p-value is greater than 0.05 so the
simulated series is converged. The results are shown in Tables 2-4 in terms of average estimate (AE) for
various degrees of freedom and breakpoint locations. The mean squared error (MSE) is shown in Figures
1-19 to compare different estimates evaluated in this study.

Table 1: Convergence and stationary test of proposed model parameters .

Parameter
(Value)

GRCT
P-value
(GDT)

Parameter
(Value)

GRCT
P-value
(GDT)

Parameter
(Value)

GRCT
P-value
(GDT)

α11(1) 1.0267 0.1651 α21(5) 1.0203 0.217 α31(3) 1.0126 0.1836
α12(3) 1.0101 0.2134 α22(2) 0.9989 0.3015 α32(3) 1.0325 0.2538
β1

11(0.1) 1.0311 0.3475 β2
11(0.1) 1.0238 0.2743 β3

11(0.35) 1.0261 0.1302
β1

21(0.5) 1.0245 0.1781 β2
21(0.3) 1.0191 0.1852 β3

21(0.15) 1.0221 0.174
γ1

11(0.3) 1.0091 0.1334 γ2
11(0.6) 1.0111 0.2032 γ3

11(0.4) 1.0176 0.2541
γ1

21(0.4) 1.0167 0.2614 γ2
21(0.2) 1.0215 0.3278 γ3

21(0.5) 1.0195 0.2137

From Tables 2-4, we observe that the AEs of the parameters are close to the true parameter values.
Moreover, as the degree of freedom increases, the AE values move closer to the true values and thus
provide more efficient estimates for all model parameters. Different breakpoint positions are also important
when determining the most efficient estimates using various estimators. Figures 1-19 show that for various
combinations of breakpoint locations, the MSE of all estimates decreases as the degree of freedom increases.
This shows that higher values of degree of freedom result in better-estimated values for all estimators.
MSEs of Bayes estimates are lower than MLEs in all parameters. Hence, Bayes estimates perform well
when estimating parameters. There is a significant difference in the MSE of MLEs and Bayes estimators for
small degrees of freedom, but only a tiny difference in their MSE under the normal level. As a result, this
simulation study demonstrates that the degree of freedom, that is, error distribution, plays a vital role in
obtaining superior parameter estimates using the derived estimates.

The BF is used to choose the suggested model, and the result is shown in Table 5. Models with spherically
symmetric error provide significant BF support when compared to models with normal error. Because the
spherically symmetric distribution approximates the normal distribution at larger degrees of freedom, the
probability of rejecting the null hypothesis decreases as the degree of freedom increases.
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Table 2: MLE and Bayes estimate when T=40 and u=10 .

(T1,T2) (10, 20) (10, 30) (20, 30)
Parameter (Value) MLE SELF ALF MLE SELF ALF MLE SELF ALF

α11(1) 1.3342 1.3032 1.3235 1.3280 1.2935 1.3153 1.1531 1.1422 1.1482
α12(3) 3.1687 3.1566 3.1624 3.1579 3.1479 3.1552 3.1770 3.1716 3.1734
α21(5) 5.2930 5.2848 5.2891 5.2840 5.2266 5.2645 5.2803 5.2279 5.2620
α22(2) 2.5725 2.4882 2.4424 2.5837 2.4032 2.4537 2.4339 2.4100 2.4258
α31(3) 3.0459 2.9919 3.0274 2.7864 2.7755 2.7821 3.0300 2.9822 3.0120
α32(3) 3.2458 3.2353 3.2414 3.1975 3.1539 3.1820 3.1769 3.1353 3.1590
β1

11(0.1) 0.1150 0.1101 0.1089 0.1094 0.1050 0.1040 0.1069 0.1019 0.1017
β1

21(0.5) 0.4682 0.4692 0.4688 0.4733 0.4737 0.4737 0.4657 0.4665 0.4660
β2

11(0.1) 0.1255 0.1263 0.1257 0.1118 0.1125 0.1133 0.1123 0.1137 0.1137
β2

21(0.3) 0.2610 0.2660 0.2654 0.2586 0.2639 0.2626 0.2776 0.2783 0.2788
β3

11(0.35) 0.3274 0.3276 0.3276 0.3347 0.3356 0.3352 0.3278 0.3281 0.3280
β3

21(0.15) 0.1434 0.1442 0.1438 0.1370 0.1390 0.1389 0.1416 0.1449 0.1439
γ1

11(0.3) 0.3348 0.3299 0.3347 0.3344 0.3297 0.3342 0.3203 0.3190 0.3200
γ1

21(0.4) 0.4065 0.4081 0.4063 0.4074 0.4067 0.4075 0.4078 0.4069 0.4074
γ2

11(0.6) 0.6183 0.6184 0.6185 0.6332 0.6290 0.6342 0.6317 0.6274 0.6320
γ2

21(0.2) 0.2287 0.2209 0.2300 0.2295 0.2240 0.2310 0.2213 0.2181 0.2215
γ3

11(0.4) 0.4282 0.4212 0.4286 0.4209 0.4204 0.4213 0.4269 0.4241 0.4276
γ3

21(0.5) 0.5219 0.5214 0.5218 0.5331 0.5263 0.5325 0.5358 0.5351 0.5362
δ(5) 4.4430 4.4840 4.4850 4.4484 4.4883 4.4732 4.4480 4.4742 4.4840
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Table 3: MLE and Bayes estimate when T=40 and u=30 .

(T1,T2) (10, 20) (10, 30) (20, 30)
Parameter (Value) MLE SELF ALF MLE SELF ALF MLE SELF ALF

α11(1) 1.3137 1.3045 1.3104 1.3168 1.3096 1.3136 1.1399 1.1375 1.1390
α12(3) 3.1416 3.1383 3.1401 3.1273 3.1259 3.1263 3.1717 3.1699 3.1705
α21(5) 5.2569 5.2532 5.2554 5.2137 5.1961 5.2090 5.2450 5.2284 5.2403
α22(2) 2.5660 2.3520 2.4880 2.5060 2.4274 2.4424 2.4261 2.4200 2.4239
α31(3) 3.0008 2.9889 2.9961 2.7644 2.7619 2.7630 3.0038 2.9905 2.9986
α32(3) 3.2253 3.2213 3.2240 3.4524 3.4390 3.4480 3.4493 3.4360 3.4451
β1

11(0.1) 0.1173 0.1092 0.1086 0.1157 0.1081 0.1070 0.1144 0.1092 0.1084
βl

21(0.5) 0.4733 0.4738 0.4736 0.4782 0.4784 0.4783 0.4693 0.4696 0.4694
β2

11(0.1) 0.1212 0.1113 0.1113 0.1223 0.1222 0.1226 0.1173 0.1172 0.1175
β2

21(0.3) 0.2655 0.2675 0.2667 0.2666 0.2684 0.2678 0.2804 0.2809 0.2809
β3

11(0.35) 0.3285 0.3286 0.3285 0.3389 0.3394 0.3391 0.3283 0.3284 0.3284
β3

21(0.15) 0.1481 0.1481 0.1482 0.1464 0.1465 0.1468 0.1463 0.1467 0.1467
γl

11(0.3) 0.3331 0.3325 0.3334 0.3345 0.3347 0.3345 0.3204 0.3200 0.3202
γ1

21(0.4) 0.4045 0.4051 0.4046 0.4081 0.4082 0.4082 0.4002 0.4004 0.4002
γ2

11(0.6) 0.6165 0.6161 0.6166 0.6284 0.6260 0.6284 0.6291 0.6265 0.6292
γ2

21(0.2) 0.2275 0.2266 0.2278 0.2305 0.2283 0.2307 0.2184 0.2177 0.2183
γ3

11(0.4) 0.4279 0.4277 0.4281 0.4210 0.4212 0.4210 0.4265 0.4253 0.4267
γ3

21(0.5) 0.5196 0.5189 0.5196 0.5314 0.5300 0.5315 0.5332 0.5316 0.5330
δ(5) 5.2840 5.1299 5.0436 5.2768 5.1284 5.0444 5.2596 5.1237 5.0378
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Table 4: MLE and Bayes estimate when T=40 and u=50 .

(T1,T2) (10, 20) (10, 30) (20, 30)
Parameter (Value) MLE SELF ALF MLE SELF ALF MLE SELF ALF

α11(1) 1.2985 1.2953 1.2968 1.3126 1.3078 1.3109 1.1508 1.1495 1.1505
α12(3) 3.1592 3.1572 3.1582 3.1224 3.1224 3.1222 3.1561 3.1557 3.1556
α21(5) 5.2792 5.2773 5.2782 5.2204 5.2116 5.2179 5.1952 5.1886 5.1930
α22(2) 2.4410 2.4277 2.4363 2.4706 2.4571 2.4661 2.4287 2.4254 2.4277
α31(3) 2.9932 2.9850 2.9901 2.7696 2.7683 2.7689 3.0143 3.0039 3.0111
α32(3) 3.2151 3.2137 3.2145 3.4428 3.4368 3.4404 3.4590 3.4502 3.4564
β1

11(0.1) 0.1227 0.1205 0.1202 0.1182 0.1173 0.1169 0.1102 0.1102 0.1102
β1

21(0.5) 0.4702 0.4705 0.4703 0.4785 0.4786 0.4785 0.4706 0.4709 0.4706
β2

11(0.1) 0.1278 0.1179 0.1179 0.1212 0.1202 0.1203 0.1248 0.1151 0.1150
β2

21(0.3) 0.2697 0.2707 0.2704 0.2613 0.2623 0.2620 0.2792 0.2794 0.2794
β3

11(0.35) 0.3286 0.3287 0.3287 0.3386 0.3388 0.3386 0.3280 0.3281 0.3281
β3

21(0.15) 0.1399 0.1411 0.1416 0.1482 0.1488 0.1485 0.1442 0.1442 0.1445
γ1

11(0.3) 0.3329 0.3331 0.3329 0.3355 0.3346 0.3355 0.3204 0.3203 0.3205
γ1

21(0.4) 0.4065 0.4065 0.4067 0.4072 0.4075 0.4073 0.4068 0.4074 0.4070
γ2

11(0.6) 0.6164 0.6160 0.6164 0.6270 0.6262 0.6271 0.6290 0.6287 0.6290
γ2

21(0.2) 0.2264 0.2254 0.2267 0.2273 0.2264 0.2276 0.2196 0.2190 0.2195
γ3

11(0.4) 0.4256 0.4250 0.4257 0.4188 0.4193 0.4188 0.4289 0.4277 0.4288
γ3

21(0.5) 0.5204 0.5202 0.5204 0.5303 0.5305 0.5304 0.5356 0.5350 0.5357
δ(5) 5.4437 5.1400 5.0430 5.4592 5.1443 5.0476 5.4784 5.1487 5.0520

Table 5: BF for the proposed null and alternative hypothesis .

u
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) (
T
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3T
4

)
5 516.9778 498.0591 524.8904
10 318.5348 294.2397 320.1745
20 201.3627 198.8024 199.2185
30 93.9109 91.2651 94.1693
50 32.1709 29.0707 36.5292
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5. Real-life Data Analysis

To study the performance of the proposed model and elucidate the methodology, we observe the annual
series of gross domestic product (GDP) and real-life effective exchange rate (REER) of the Brazilian and
Indian countries from 1961 to 2020. This series is collected from ”The World Bank” data source and contains
the yearly observations for all countries. It is known that the GDP measures a country’s economy and is
linked to different factors, such as imports, exports, interest rates, etc. Brazil and India are the cross-sectional
units in the proposed research, and their GDP data are the observed panel series. The REER series from
both nations are included as covariate variables, demonstrating a significant impact on the GDP series. A
normality test is executed on each country’s GDP and REER series, and the output is displayed in Table 6,
all to ensure the assumption of normality. The Shapiro-Wilk test p-value is highly significant; hence, the
GDP and REER series of India and Brazil are not normally distributed. This indicates that the series has
switched from a symmetric to an asymmetric shape, as indicated by the skewness value also.

Table 6: Descriptive statistics and normality test for real-life data series .

Series Country Mean Standard deviation Skewness Kurtosis Normality P-value

GDP
Brazil 3874.3605 3696.9298 1.1179 0.1642 < 0.0001
India 553.1443 561.8869 1.4640 0.9591 < 0.0001

REER
Brazil 88.6897 16.4329 0.3361 -0.5919 0.0002
India 149.5900 60.8546 0.7108 -0.6056 0.0006

For breakpoint detection, the in-built command ”breakpoints” described in ”strucchange” package in
R-language [45] is used. This used model selection criteria to determine the optimal number and positions
of breakpoints. It is easily used to penalize models with more breakpoints or excessive complexity, encour-
aging the selection of simpler models that adequately explain the structural changes. The methodology
presented by [4] and [5] was used to estimate breakpoints in a time series regression model. Table 7 shows
the number of breaks and the most acceptable break locations when this method is used.

In both series, two common breakpoints in 1989 and 2008 are established for each country, as shown in
Table 7. The reasons behind these years for change point were banking recession and economic crisis. In
1989 especially, a banking recession occurred in many countries, and then a common and similar structural
break was identified due to abrupt changes in GDP and REER series. This was well discussed in [17] and
[14]. The second common break year is 2008, which occurred due to the global financial and economic crisis,
as reported in [19, 21, 32]. The order of the process before and after breaks is calculated using the in-built

Table 7: Summary of break years in the GDP and REER series .

Series Country Number of Breaks T1 T2 T3 T4

GDP
Brazil 3 1969 1989 2008 NA
India 4 1989 1997 2008 2014

REER
Brazil 4 1983 1989 1999 2008
India 4 1976 1981 1989 2008
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Table 8: Order (lag) selection for the process based on AIC.

Break interval 1961 − 1989 1990 − 2008 2008 − 2020
Series Country lag 1 lag 2 lag 3 lag 1 lag 2 lag 3 lag 1 lag 2 lag 3

GDP
Brazil 371.10 372.89 374.89 313.02 314.22 316.05 197.06 197.51 199.47
India 235.87 236.73 237.47 197.57 201.20 205.10 127.57 129.45 129.82

REER
Brazil 203.56 196.02 197.33 154.37 156.18 157.78 85.80 87.16 88.67
India 239.17 238.64 239.28 118.90 120.67 122.20 77.89 79.88 81.57

command in R software based on the minimal value of the Akaike information criterion (AIC) described in
Table 8, utilizing only these breakpoints (1989, 2008) for the investigation.

Table 8 demonstrates that the process order is one for all break intervals in both countries’ GDP and
REER series, except the break interval (1961-1989) for the REER series, which is of order two. The BF is
39.4601 if the error follows a multivariate Student’s t-distribution with u=10 degrees of freedom. This
value indicates that the error in real-life economic series belongs to the spherical symmetric family. The
suggested model’s parameters are then estimated, and the results are recorded in Table 9. Because negative
(positive) values are related to the covariate coefficients, Table 9 reveals that the Brazilian GDP and REER
series have a negative relationship. In contrast, the Indian series has a positive relationship. Most of the
remaining coefficients express a positive sign between the study series. Table 10 presents a comparison of
different models fitted to this dataset. Among the considered models, the proposed model stands out as the
most favourable choice, as it exhibits the lowest AIC and BIC values, indicating a superior balance between
model fit and complexity. Additionally, it boasts the lowest MSE, signifying the highest level of predictive
accuracy when compared to the other models. Hence, the proposed model appears to be the most suitable
and effective for describing and predicting the dataset. Apart from the compared models, a numerical
simulation technique is also available in the literature [29, 30]. Still, it needs to be considered more timely in
light of the objectives set forth for the proposed study. In future, we will use various numerical simulation
techniques when the objective is towards more application perspective rather than developing models.

6. Conclusion

This paper discusses spherical symmetric disturbances in the panel autoregressive model with covariate
and multiple structural breaks. Parameters are estimated using the Bayesian technique under various loss
functions, and testing is carried out using the Bayes factor with disturbances considered using a multi-
variate Student’s t-distribution. The proposed model can establish the relationship of non-normal error
at each break point interval when the structure of the series is also affected due to covariates. Based on
the simulation results, it appears that Bayes estimates outperform MLE and correctly produce from the
suggested model. This indicates that the simulated series’ residuals have a spherical symmetric pattern.
The application to economic series demonstrates the model’s potential, demonstrating that the series has
a spherically symmetric error and is well suited for this series. For numerical purposes, the chi-square
distribution is considered to convert the error as a spherically symmetric distribution. However, other
spherically symmetric distributions are also available to convert the non-normal error to a normal error.
The future work in this direction is to create a generalized model that includes a mixture of spherically
symmetric distributions and introduce the stochastic stability captures the series’ change nature. Also,
some different simulation methods will be used to compare the developed models based on real-world data
applications.
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Table 9: Estimated values of the fitted model based on MLE and Bayes estimators.

Parameter MLE SELF ALF
α11 0.1008 0.0890 0.0901
α12 0.0690 0.0517 0.0418
α21 -0.0678 -0.0780 -0.0719
α22 0.6933 0.6270 0.6720
α31 1.0988 0.7913 0.9622
α32 -4.1595 -4.4722 -4.5920
β1

11 0.8900 0.6406 0.6900
β1

21 1.1319 1.2324 1.2666
β2

11 0.8505 0.9004 0.8898
β2

21 0.9639 0.9391 0.9557
β3

11 1.2454 1.1911 1.1979
β3

21 0.1390 0.1168 0.1776
γ1

11 -0.3741 -0.3894 -0.3941
γ1

21 0.0233 -0.4554 -0.4848
γ1

12 -1.0710 -0.6440 -0.5633
γ1

22 2.9973 2.1245 2.7341
γ2

11 -8.6296 -5.4356 -5.3568
γ2

21 -1.4491 -1.9921 -1.4263
γ3

11 -19.8291 -16.3773 -17.8185
γ3

21 148.2338 109.4322 113.3805
δ 4.6166 1.9382 2.0647

Table 10: Model fitting summary for the considered data set .

Model Fitting AIC BIC MSE
Panel AR(1) model with multiple structural breaks, covariate, and 326.40 370.38 114.43
spherical symmetric error
Panel AR(1) model with multiple structural breaks [43] 356.10 383.33 245.12
Panel AR(1) model with stationary covariates [44] 372.83 389.59 382.68
Panel AR(1) model with spherically symmetric disturbances [45] 370.95 381.42 409.84
Panel AR(1) model [46] 388.96 399.44 553.40



V. Agiwal et al. / Filomat 38:21 (2024), 7329–7354 7343

Acknowledgement: The third author acknowledges the grant of MNTRI 451-03-65/2024-03/200124 for
carrying out this research.

Abbreviations: The following abbreviations are used in this manuscript.

MLE Maximum likelihood estimator
AE Average estimate
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Figure .1: MSE under MLE and Bayes estimator for α11 with varying u and Tr .

Figure .2: MSE under MLE and Bayes estimator for α12 with varying u and Tr .
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Figure .3: MSE under MLE and Bayes estimator for α21 with varying u and Tr .

Figure .4: MSE under MLE and Bayes estimator for α22 with varying u and Tr .
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Figure .5: MSE under MLE and Bayes estimator for α31 with varying u and Tr .

Figure .6: MSE under MLE and Bayes estimator for α32 with varying u and Tr .
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Figure .7: MSE under MLE and Bayes estimator for β1
11 with varying u and Tr .

Figure .8: MSE under MLE and Bayes estimator for β1
21 with varying u and Tr .
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Figure .9: MSE under MLE and Bayes estimator for β2
11 with varying u and Tr .

Figure .10: MSE under MLE and Bayes estimator for β2
21 with varying u and Tr .
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Figure .11: MSE under MLE and Bayes estimator for β3
11 with varying u and Tr .

Figure .12: MSE under MLE and Bayes estimator for β3
21 with varying u and Tr .
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Figure .13: MSE under MLE and Bayes estimator for γ1
11 with varying u and Tr .

Figure .14: MSE under MLE and Bayes estimator for γ1
21 with varying u and Tr .
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Figure .15: MSE under MLE and Bayes estimator for γ2
11 with varying u and Tr .

Figure .16: MSE under MLE and Bayes estimator for γ2
21 with varying u and Tr .
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Figure .17: MSE under MLE and Bayes estimator for γ3
11 with varying u and Tr .
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Figure .18: MSE under MLE and Bayes estimator for γ3
21 with varying u and Tr .

Figure .19: MSE under MLE and Bayes estimator for δ with varying u and Tr .


