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Abstract. A weighted k-uniform loose cycle of length m, denoted by Cm,k, is a cyclic list of weighted
edges e1, e2, . . . , em such that consecutive edges intersect in exactly one vertex, and nonconsecutive edges
are disjoint, where |ei| = k for all 1 ≤ i ≤ m. For a given positive weight set, we determine the distribution
of weights of Cm,k with the maximum spectral radius. Moreover, we characterize the unique weighted
hypergraph with the maximum spectral radius in the class of all weighted uniform unicyclic hypergraphs
with a given positive weight set.

1. Introduction

A hypergraph is a generalization of a graph, in which an edge can connect more than two vertices.
As different edges may have different importance in representing connections among vertices, it is crucial
that edges be weighted corresponding to their representative capabilities. A weighted hypergraph is a
hypergraph in which each edge is assigned a weight.

Let G = (V(G),E(G),W(G)) be a weighted hypergraph with vertex set V(G) = {v1, v2, . . . , vn}, edge set
E(G) = {e1, e2, . . . , em} and weight set W(G) = {wG(e) ∈ R|e ∈ E(G)}, wG(e) is the weight on the edge e of G. An
unweighted hypergraph is a weighted hypergraph with each of the edges bearing weight 1. If every edge
of G contains precisely k vertices, then G is called weighted k-uniform hypergraph. A weighted graph is a
weighted 2-uniform hypergraph.

For v ∈ V(G) and e ∈ E(G), v is said to be incident to e if v ∈ e. For v ∈ V(G), denote by EG(v) the set of all
edges incident to v. The degree of vertex v of G, denoted by dG(v), is |EG(v)|. If dG(v) = 1, then v is called a
pendent vertex. An edge e ∈ E(G) is said to be a pendent edge if it contains exactly k − 1 pendent vertices.

Let P = (v1, e1, v2, . . . , vl, el, vl+1) be an alternating sequence of vertices and edges of G, the sequence P
is called a walk of G, if vi and vi+1 are incident to ei for any 1 ≤ i ≤ l. A walk P is referred to as a path if
all vertices and all edges are distinct. A walk P is called a cycle of length l, if all vertices and all edges are
distinct except v1 = vl+1, where l ≥ 2. For any u, v ∈ V(G), G is said to be connected, if u and v are connected
by a path.
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For a connected weighted k-uniform hypergraph G, let n,m be the numbers of vertices and edges of G,
respectively. If n = m(k − 1) + 1, then G is called weighted k-uniform hypertree. If n = m(k − 1), then G is
called weighted k-uniform unicyclic hypergraph.

For positive integers k and n, a real tensorA = (ai1i2...ik ) of order k and dimension n is a multidimensional
array, where ai1i2...ik ∈ R, i1, i2, . . . , ik ∈ [n], [n] = {1, 2, . . . ,n}.

A hypergraph G is usually represented by a tensor (also called hypermatrix). LetA be a real tensor with
order k and dimension n, and x = (x1, x2, . . . , xn)T

∈ Cn be a column vector of dimension n. According to the
product of tensors defined by Shao [14], thenAx is a column vector in Cn whose ith component is

(Ax)i =

n∑
i2,...,ik=1

aii2...ik xi2 xi3 · · · xik , i ∈ [n]. (1)

In 2005, Qi [11] and Lim [8] independently introduced the concepts of tensor eigenvalues and tensor
spectrums.

Let x[k] = (xk
1, x

k
2, . . . , x

k
n)T
∈ Cn, and letA be a real tensor with order k and dimension n. If there exists a

number λ ∈ C and a nonzero vector x ∈ Cn, such that

Ax = λx[k−1], (2)

then λ is referred to as the eigenvalue of the tensorA, and x is known as the eigenvector of corresponding
to the eigenvalue λ.

The adjacency tensor of a weighted k-uniform hypergraph is defined as follows.

Definition 1.1. Let G be a weighted k-uniform hypergraph with n vertices. The adjacency tensor of G is defined as
the n-dimensional tensorA(G)=(ai1i2...ik ) of order k, where

ai1i2...ik =

{ wG(e)
(k−1)! , e = {i1, i2, . . . , ik} ∈ E(G),
0, otherwise.

(3)

For a weighted uniform hypergraph G, the spectral radius of G is the largest modulus of the eigenvalues
of its adjacency tensorA(G), denoted by ρ(G).

During the past decade, the problem concerning hypergraphs with the extremal spectral radius of a
given class of hypergraphs has been studied extensively. Li et al. [7] determined the first two hypergraphs
with the largest spectral radii over all uniform hypertrees. Yuan et al. [22] determined the first eight
uniform hypergraphs with the larger spectral radii among all uniform hypertrees. Among the set of uniform
hypertrees with given parameters, such as independent number [25], perfect matching [23], stability number
[15], degree sequence [20], the hypergraphs with the extremal spectral radii were characterized. Fan et al.
[2] characterized the hypergraphs with the maximum spectral radius of several classes of uniform unicyclic
hypergraphs with few edges. Yu et al. [21] determined the hypergraph with the maximum spectral radii
over the unicyclic hypergraphs with a given matching number. Kang et al. [5] determined the hypergraph
with the maximum spectral radius over the linear bicyclic uniform hypergraphs. Other related works can
be referred to [1, 4, 6, 9, 10, 13, 17, 24].

Recently, there are few results on the problems of weighted hypergraphs in the literature. Galuppi et al.
[3] obtained the properties of tensor eigenvalues and eigenvectors of weighted hypergraphs. Sun et al. [16]
investigated the eigenvalues of Laplacian tensor and signless Laplacian tensor of weighted hypergraphs.
For a fixed total weight sum, Wang et al. [18, 19] introduced theα-normal labelling method for comparing the
spectral radii of the weighted hypergraphs, and characterized the weighted uniform hypertrees, unicyclic
hypergraphs and bicyclic hypergraphs with the maximum spectral radius, respectively.

Inspired by the work [16, 18, 19], we investigate the spectral extremal problems of weighted uniform
hypergraphs, and focus on the case when the weight set is given.

In what follows, we always suppose that the elements of weight set Wm = {w1,w2, . . . ,wm} are positive
and nondecreasingly order, that is, w1 ≥ w2 ≥ . . . ≥ wm > 0. Now, we are in a position to state two problems
studied of this paper.
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A weighted k-uniform loose cycle of length m, denoted by Cm,k, is a cyclic list of weighted edges
e1, e2, . . . , em such that consecutive edges intersect in exactly one vertex, and nonconsecutive edges are
disjoint, where |ei| = k for all 1 ≤ i ≤ m. Let Γ(Cm,k,Wm) denote the set of weighted k-uniform loose cycles
Cm,k with the weight set Wm. Our first question is: Given a positive weight set Wm and the loose cycle Cm,k,
what is the optimal distribution of weights among the edges of Cm,k, so that the spectral radius of Cm,k is
maximized?

Let Ω(m, k,Wm) denote the set of weighted k-uniform unicyclic hypergraphs with m edges and weight
set Wm. Our second question is: What is the maximum spectral radius among all weighted hypergraphs in
Ω(m, k,Wm)?

This paper is organized as follows. In Section 2, we list some definitions and operating tools which
are useful to the proofs of our results. In Section 3, we characterize the unique weighted k-uniform loose
cycle, which attains the maximum spectral radius in Γ(Cm,k,Wm). In Section 4, we characterize the unique
weighted hypergraph with the maximum spectral radius in Ω(m, k,Wm).

2. Preliminaries

In this section, we give some lemmas which will be used in the follows.
Let G = (V,E,W) be a weighted uniform hypergraph on n vertices, and x be a column vector of dimension

n. For a subset U ⊆ V, we write xU =
∏

vi∈U
xvi , where xvi is the component of x corresponding to vertex vi. By

(1) and the definition of adjacency tensorA(G) of G, we have

(A(G)x)i =
∑

e∈EG(vi)

wG(e)xe\{vi}, (4)

and by (4), we get

xT(A(G)x) =
∑

e∈E(G)

kwG(e)xe. (5)

The tensor A is called symmetric if the elements of A(G)=(ai1i2...ik ) are invariant under arbitrary per-
mutation of their indices i1, i2, . . . , ik. In 2013, Qi [12] given the Rayleigh Quotient Lemma of nonnegative
symmetric tensor.

Lemma 2.1. ([12]) LetA be a nonnegative symmetric tensor with order k and dimension n. Then we have

ρ(A) = max{xT(Ax)|x ∈ Rn
+, ||x||

k
k =

n∑
i=1

xk
i = 1}.

Furthermore, x ∈ Rn
+ is an optimal solution of above optimization problem if and only if x is an eigenvector of A

corresponding to ρ(A).

The Perron-Frobenius theorem for adjacency tensor of weighted hypergraphs is partially described as
the following.

Lemma 2.2. ([18]) Let G be a weighted k-uniform hypergraph of order n, where k,n ≥ 3. If all the weights of G are
positive and G is connected, then ρ(G) is the unique eigenvalue of the adjacency tensorA(G) with positive eigenvector.

In Lemma 2.2, the unique positive eigenvector x with
n∑

i=1

xk
i = 1 is called the principal eigenvector of G.

In [18], Wang et al. introduced the edge-moving operation, edge-releasing operation, weight-moving
operation of weighted k-uniform hypergraphs, and studied the perturbation of the spectral radius under
these operations.
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Definition 2.3. Let G be a connected weighted k-uniform hypergraph of order n, where k,n ≥ 3, u ∈ V(G),
e1, . . . , er ∈ E(G), and u < ei, i = 1, . . . , r(r ⩾ 1). Suppose vi ∈ ei and let e′i = (ei\{vi}) ∪ {u}, where vertices
v1, . . . , vr need not be distinct. Let G′ = (V(G′),E(G′),W(G′)) be a weighted k-uniform hypergraph with V(G′) =
V(G),E(G′) = (E(G)\{e1, . . . , er}) ∪ {e′1, . . . , e

′
r},W(G′) = {wG′ (e)|e ∈ E(G′)}, where wG′ (e) = wG(e) if e , e′i and

wG′ (e) = wG(ei) if e = e′i . Then we say that G′ is obtained from G by moving edges (e1, . . . , er) from (v1, . . . , vr) to u.

For a weighted k-uniform hypergraph G, if the edges e and e′ of G share common k vertices, then we say
e and e′ are two multiple edges.

Lemma 2.4. ([18]) Let G′ and G be two weighted hypergraphs as described in definition 2.3. Suppose that G′ does
not contain multiple edges, and let x be the principal eigenvector of G. If xu ≥ max

1≤i≤r
xvi , then ρ(G′) > ρ(G).

Definition 2.5. Let G be a connected weighted k-uniform hypergraph of order n, where k,n ≥ 3. Let e be a non-
pendent edge of G, and vertex u ∈ e. Let {e1, . . . , er} be all the edges of G adjacent to e but not containing u. Suppose
ei ∩ e = {vi}, where i = 1, 2, . . . , r. Let G′ be a weighted hypergraph obtained from G by moving edges (e1, . . . , er) from
(v1, . . . , vr) to u. Then we say that G′ is obtained from G by the edge-releasing operation on e.

Lemma 2.6. ([18]) Let G′ and G be two weighted hypergraphs as described in definition 2.5. If G′ does not have
multiple edges, then ρ(G′) > ρ(G).

By doing a slight modification to the Lemma 3.3 in [18], we get the following Lemma.

Lemma 2.7. Let G be a connected weighted k-uniform hypergraph of order n. Let e1, e2 be two distinct edges of G,
and let δ be a positive real number with 0 < δ < wG(e1). Let G′ = (V(G′),E(G′),W(G′)), where V(G′) = V(G),
E(G′) = E(G), W(G′) = {wG′ (e)|e ∈ E(G′)} with wG′ (e1) = wG(e1) − δ, wG′ (e2) = wG(e2) + δ, and wG′ (e) = wG(e) for
e , e1, e2. Let x be the principal eigenvector of G. If xe1 ≤ xe2 , then ρ(G′) > ρ(G).

Proof. Let G′ and G be two weighted k-uniform hypergraphs as described in Lemma 2.7. By Lemmas 2.1,
2.2 and (5), we get

ρ(G
′

) − ρ(G) ≥xT(A(G
′

)x) − xT(A(G)x) (6)

=k
( ∑

e∈E(G′ )

wG′ (e)xe
−

∑
e∈E(G)

wG(e)xe
)

=k
(
wG′ (e1)xe1 + wG′ (e2)xe2 − wG(e1)xe1 − wG(e2)xe2

)
=kδ
(
xe2 − xe1

)
≥0. (7)

Where (7) follows from 0 < δ < wG(e1) and xe1 ≤ xe2 . Thus, we obtain ρ(G′) ≥ ρ(G).
Next, we suppose ρ(G′) = ρ(G), it is obvious that the two equalities in (6) and (7) hold. Thus, ρ(G′) =

xT(A(G′)x). By Lemma 2.1, we have that x is also the principal eigenvector of G′ corresponding to ρ(G′).
Since e1, e2 are two distinct edges of G, in e2, there exists a vertex u such that u < e1. By using the eigenequation
for vertex u of G′, we have

ρ(G′)xk−1
u =wG′ (e2)xe2\{u} +

∑
e∈EG′ (u)\{e2}

wG′ (e)xe\{u}

=(wG(e2) + δ)xe2\{u} +
∑

e∈EG(u)\{e2}

wG(e)xe\{u}

=δxe2\{u} +
∑

e∈EG(u)

wG(e)xe\{u}

>
∑

e∈EG(u)

wG(e)xe\{u} (8)

=ρ(G)xk−1
u .
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Where (8) follows from 0 < δ < wG(e1) and xe2\{u} > 0. Thus, we obtain ρ(G′) > ρ(G), which contradicts with
ρ(G′) = ρ(G). □

3. The maximum weighted uniform loose cycle

Let Wm = {w1,w2, . . . ,wm} be a positive weight set, where w1 ≥ w2 ≥ . . . ≥ wm > 0. In this section, we
investigate how to assign weights w1,w2, . . . ,wm to the m edges of Cm,k, such that the spectral radius of Cm,k
is maximized. Let Γ(Cm,k,Wm) be the set of weighted k-uniform loose cycles Cm,k with the weight set Wm,
and let G∗ be the weighted hypergraph which attains the maximum spectral radius in Γ(Cm,k,Wm).

Now, we investigate some properties of the principal eigenvector x of G∗.

Lemma 3.1. Let f1, f2 be two distinct edges of G∗.

(i) If x f1 ≥ x f2 , then wG∗ ( f1) ≥ wG∗ ( f2);
(ii) If wG∗ ( f1) > wG∗ ( f2), then x f1 > x f2 ;

(iii) If x f1 = x f2 , then wG∗ ( f1) = wG∗ ( f2).

Proof. (i) Assume that wG∗ ( f1) < wG∗ ( f2). Put δ = wG∗ ( f2) − wG∗ ( f1) > 0. Let G be the weighted hypergraph
obtained from G∗ by exchanging the weights of edges f1 and f2, i.e.,

wG( f1) = wG∗ ( f1) + δ, wG( f2) = wG∗ ( f2) − δ, wG(e) = wG∗ (e) for e ∈ E(G) \ { f1, f2}.

By Lemma 2.7 and x f1 ≥ x f2 , we have ρ(G) > ρ(G∗), a contradiction.
(ii) Assume that x f1 ≤ x f2 . From Lemma 3.1(i), it can be derived that wG∗ ( f1) ≤ wG∗ ( f2), a contradiction.
(iii) Assume that wG∗ ( f1) , wG∗ ( f2). If wG∗ ( f1) > wG∗ ( f2), from Lemma 3.1(ii), we obtain x f1 > x f2 , a

contradiction. If wG∗ ( f1) < wG∗ ( f2), from Lemma 3.1(ii), we have x f1 < x f2 , a contradiction. □

Lemma 3.2. Let f1 = {v1, v1,1, . . . , v1,k−2, v2} and f2 = {u1,u1,1, . . . ,u1,k−2,u2} be two disjoint edges of G∗, where
dG∗ (v1) = dG∗ (v2) = dG∗ (u1) = dG∗ (u2) = 2 and dG∗ (v1,i) = dG∗ (u1,i) = 1 for 1 ≤ i ≤ k − 2. Then(

xv1 − xu1

)(
wG∗ ( f1)x f1\{v1} − wG∗ ( f2)x f2\{u1}

)
⩾ 0.

Furthermore, xv1 = xu1 if and only if wG∗ ( f1)x f1\{v1} = wG∗ ( f2)x f2\{u1}.

Proof. Let G be the weighted k-uniform hypergraph with V(G) = V(G∗), E(G) = (E(G∗)\{ f1, f2}) ∪ { f ′1 , f ′2},
where f ′1 = ( f1\{v1}) ∪ {u1} = {u1, v1,1, . . . , v1,k−2, v2}, f ′2 = ( f2\{u1}) ∪ {v1} = {v1,u1,1, . . . ,u1,k−2,u2} and

wG( f ′1) = wG∗ ( f1), wG( f ′2) = wG∗ ( f2), wG(e) = wG∗ (e) for e , f ′1 , f ′2 .

Obviously, G ∈ Γ(Cm,k,Wm). By Lemmas 2.1, 2.2 and (5), we have

0 ≤ρ(G∗) − ρ(G) (9)

≤xT(A(G∗)x) − xT(A(G)x) (10)

=k
( ∑

e∈E(G∗)

wG∗ (e)xe
−

∑
e∈E(G)

wG(e)xe
)

=k
(
wG∗ ( f1)x f1 + wG∗ ( f2)x f2 − wG( f ′1)x f ′1 − wG( f ′2)x f ′2

)
=k
(
wG∗ ( f1)x f1\{v1} · xv1 + wG∗ ( f2)x f2\{u1} · xu1 − wG∗ ( f1)x f1\{v1} · xu1 − wG∗ ( f2)x f2\{u1} · xv1

)
=k
(
wG∗ ( f1)x f1\{v1}(xv1 − xu1 ) + wG∗ ( f2)x f2\{u1}(xu1 − xv1 )

)
=k
(
xv1 − xu1

)(
wG∗ ( f1)x f1\{v1} − wG∗ ( f2)x f2\{u1}

)
.
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Thus, (
xv1 − xu1

)(
wG∗ ( f1)x f1\{v1} − wG∗ ( f2)x f2\{u1}

)
≥ 0. (11)

Using the eigenequations for vertices u1 and u2 of G∗, respectively. We have

ρ(G∗)xk−1
u1
= wG∗ ( f2)x f2\{u1} +

∑
e∈EG∗ (u1)\{ f2}

wG∗ (e)xe\{u1}, (12)

and

ρ(G∗)xk−1
u2
= wG∗ ( f2)x f2\{u1,u2} · xu1 +

∑
e∈EG∗ (u2)\{ f2}

wG∗ (e)xe\{u2}. (13)

If xv1 = xu1 , it is obvious that the equality in (11) holds. Then the two equalities in (9) and (10) hold.
Thus, ρ(G∗) = ρ(G) and ρ(G) = xT(A(G)x). By Lemmas 2.1 and 2.2, x is also the principal eigenvector of G
corresponding to ρ(G).

Using the eigenequations for vertices u1 and u2 of G, respectively. We have

ρ(G)xk−1
u1
= wG( f ′1)x f ′1\{u1} +

∑
e∈EG(u1)\{ f ′1 }

wG(e)xe\{u1}

= wG∗ ( f1)x f1\{v1} +
∑

e∈EG∗ (u1)\{ f2}

wG∗ (e)xe\{u1},
(14)

and

ρ(G)xk−1
u2
= wG( f ′2)x f ′2\{u2} +

∑
e∈EG(u2)\{ f ′2 }

wG(e)xe\{u2}

= wG∗ ( f2)x f2\{u1,u2} · xv1 +
∑

e∈EG∗ (u2)\{ f2}

wG∗ (e)xe\{u2}.
(15)

Since ρ(G∗) = ρ(G), then by (12) and (14), it can be derived that wG∗ ( f1)x f1\{v1} = wG∗ ( f2)x f2\{u1}.
If wG∗ ( f1)x f1\{v1} = wG∗ ( f2)x f2\{u1}, by (13) and (15), we can similarly obtain that xv1 = xu1 . This completes

the proof. □

Lemma 3.3. Let f1 = {v1, v1,1, . . . , v1,k−2,w} and f2 = {u1,u1,1, . . . ,u1,k−2,w} be two edges of G∗, where dG∗ (v1) =
dG∗ (u1) = dG∗ (w) = 2 and dG∗ (v1,i) = dG∗ (u1,i) = 1 for 1 ≤ i ≤ k − 2. Then(

xv1 − xu1

)(
wG∗ ( f1)x f1\{v1} − wG∗ ( f2)x f2\{u1}

)
⩾ 0.

Furthermore, xv1 = xu1 if and only if wG∗ ( f1)x f1\{v1} = wG∗ ( f2)x f2\{u1}.

Proof. The proof is similar to the proof of Lemma 3.2. □

Next, we label all vertices and edges of G∗ based on the principal eigenvector x and the weights
w1 ≥ w2 ≥ . . . ≥ wm > 0 of G∗.

(a) We choose a vertex u such that xu = max{xv|v ∈ e,wG∗ (e) = w1, d(v) = 2}, and the vertex u labeled by u1.
If there are multiple such vertices, we choose and fix u1 arbitrarily among them.

(b) We choose an edge e such that wG∗ (e) = w1 and u1 ∈ e. The edge e labeled by em. If there are multiple
such edges, we choose em and um such that xum ≥ xu2 .

(c) The labels of the remaining vertices and edges are shown in Figure 1.
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Figure 1: The loose cycle G∗.

For the weighted loose cycle G∗, (a) together with (b) imply that xu1 ≥ xum and wG∗ (em) = w1.
In Lemma 3.4, we will determine the distribution of weights of G∗.

Lemma 3.4. The weights of all edges of G∗ satisfy:

(i) When m = 2r, wG∗ (e2r) ≥ wG∗ (e1) ≥ wG∗ (e2r−1) ≥ wG∗ (e2) ≥ . . . ≥ wG∗ (er+1) ≥ wG∗ (er);
(ii) When m = 2r + 1, wG∗ (e2r+1) ≥ wG∗ (e1) ≥ wG∗ (e2r) ≥ wG∗ (e2) ≥ . . . ≥ wG∗ (er+2) ≥ wG∗ (er) ≥ wG∗ (er+1).

Proof. Let x be the principal eigenvector of G∗. When m = 3, the result is obvious. Assume that m ≥ 4.
Claim 1. xu1 = max

1≤i≤m
{xui }.

Since xu1 ≥ xum , we may assume that there exists 2 ≤ i ≤ m − 1 such that xui > xu1 .
If 2 ≤ i ≤ m − 2, then we apply Lemma 3.2 to edges em and ei, we have(

xu1 − xui

)(
wG∗ (em)xem\{u1} − wG∗ (ei)xei\{ui}

)
⩾ 0.

Since xu1 < xui , we have
wG∗ (em)xem\{u1} ≤ wG∗ (ei)xei\{ui}.

It follows that xem\{u1} ≤ xei\{ui}, since wG∗ (em) ≥ wG∗ (ei). Thus, xem\{u1} ·xu1 < xei\{ui} ·xui , i.e., xem < xei . By Lemma
3.1, we have wG∗ (em) ≤ wG∗ (ei).

Noting that xu1 = max{xv|v ∈ e,wG∗ (e) = w1, d(v) = 2}. If wG∗ (em) = wG∗ (ei) = w1, then xu1 ≥ xui , which
contradicts with xui > xu1 . Thus, wG∗ (em) < wG∗ (ei), which contradicts with wG∗ (em) = w1 ≥ wG∗ (ei).

If i = m − 1, the proof is similar to the case 2 ≤ i ≤ m − 2 in Claim 1.
Claim 2. xum = max

2≤i≤m
{xui }.

Assume that there exists 2 ≤ i ≤ m − 1 such that xui > xum .
If 2 ≤ i ≤ m − 2, apply Lemma 3.2 twice to the edges em and ei, we have

(
xum − xui

)(
wG∗ (em)xem\{u1,um} · xu1 − wG∗ (ei)xei\{ui,ui+1} · xui+1

)
⩾ 0, (16)

and (
xu1 − xui+1

)(
wG∗ (em)xem\{u1,um} · xum − wG∗ (ei)xei\{ui,ui+1} · xui

)
⩾ 0. (17)

We consider the following two possible cases.
Case 1.1. wG∗ (em)xem\{u1,um} ≥ wG∗ (ei)xei\{ui,ui+1}.
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Since xu1 ≥ xui+1 , we have

wG∗ (em)xem\{u1,um} · xu1 ≥ wG∗ (ei)xei\{ui,ui+1} · xui+1 .

If wG∗ (em)xem\{u1,um} · xu1 = wG∗ (ei)xei\{ui,ui+1} · xui+1 , by Lemma 3.2 and (16), we have xum = xui , which is a
contradiction to the assumption xui > xum . If wG∗ (em)xem\{u1,um} · xu1 > wG∗ (ei)xei\{ui,ui+1} · xui+1 , by (16), we have
xum ≥ xui , which is also a contradiction to the assumption xui > xum .

Case 1.2. wG∗ (em)xem\{u1,um} < wG∗ (ei)xei\{ui,ui+1}.
Since xum < xui , we have

wG∗ (em)xem\{u1,um} · xum < wG∗ (ei)xei\{ui,ui+1} · xui . (18)

Combining inequalities (17) and (18), we have xu1 ≤ xui+1 . By Claim 1, we have xu1 = xui+1 . Then the
equality in (17) holds, and by Lemma 3.2, we obtain

wG∗ (em)xem\{u1,um} · xum = wG∗ (ei)xei\{ui,ui+1} · xui ,

which contradicts with (18).
If i = m − 1, the proof is similar to the case 2 ≤ i ≤ m − 2 in Claim 2.

Claim 3. wG∗ (e1) = w2.
Recall that wG∗ (em) = w1, we can assume, to the contrary, that there exists a positive integer 2 ≤ i ≤ m− 1

such that wG∗ (e1) < wG∗ (ei).
Case 2.1. i = 2.
By assuming wG∗ (e1) < wG∗ (ei) and Lemma 3.1, we have

xu1 · x
e1\{u1} < xui+1 · x

ei\{ui+1}.

It follows that xe1\{u1} < xei\{ui+1}, since xu1 ≥ xui+1 . Apply Lemma 3.3 to the edges e1 and ei, we have(
xu1 − xui+1

)(
wG∗ (e1)xe1\{u1} − wG∗ (ei)xei\{ui+1}

)
⩾ 0.

By xe1\{u1} < xei\{ui+1}, xu1 ≥ xui+1 and Lemma 3.3, we have wG∗ (e1) ≥ wG∗ (ei), which contradicts with
wG∗ (e1) < wG∗ (ei).

Case 2.2. 3 ≤ i ≤ m − 1.
Apply Lemma 3.2 to the edges e1 and ei, we have(

xu1 − xui

)(
wG∗ (e1)xe1\{u1} − wG∗ (ei)xei\{ui}

)
⩾ 0.

By xu1 ≥ xui and Lemma 3.2, we have

wG∗ (e1)xe1\{u1} ≥ wG∗ (ei)xei\{ui}.

It follows that xe1\{u1} ≥ xei\{ui}, since wG∗ (e1) < wG∗ (ei). It is easy to see that xu1 ·xe1\{u1} ≥ xui ·xei\{ui}, i.e., xe1 ≥ xei .
By Lemma 3.1, we have wG∗ (e1) ≥ wG∗ (ei), a contradiction.

By using the method similar to that used in Claim 2 and Claim 3, it can be proved in order that

xu2 = max
2≤i≤m−1

{xui }, wG∗ (em−1) = w3, xum−1 = max
3≤i≤m−1

{xui }, wG∗ (e2) = w4, · · ·

When m is even, by analogy, we have

wG∗ (em) = w1, wG∗ (e1) = w2, wG∗ (em−1) = w3, wG∗ (e2) = w4, . . . ,wG∗ (e m
2 +1) = wm−1, wG∗ (e m

2
) = wm.

When m is odd, by analogy, we have

wG∗ (em) = w1, wG∗ (e1) = w2, wG∗ (em−1) = w3, wG∗ (e2) = w4, . . . ,wG∗ (e m−1
2

) = wm−1, wG∗ (e m+1
2

) = wm.

This completes the proof. □
The conditions (i) and (ii) in Lemma 3.4 indicate that, for a given weight set Wm = {w1,w2, . . . ,wm}, the

distribution of weights of G∗ is uniquely determined. Therefore, by Lemma 3.4, we get the following main
result.
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Theorem 3.5. Let G∗ be a weighted k-uniform loose cycle with m edges and a positive weight set Wm (The vertex and
edge labelling as described in Figure 1), where m, k ≥ 3. If the weights of G∗ satisfy the following conditions:

(i) When m = 2r, wG∗ (e2r) ≥ wG∗ (e1) ≥ wG∗ (e2r−1) ≥ wG∗ (e2) ≥ . . . ≥ wG∗ (er+1) ≥ wG∗ (er);
(ii) When m = 2r + 1, wG∗ (e2r+1) ≥ wG∗ (e1) ≥ wG∗ (e2r) ≥ wG∗ (e2) ≥ . . . ≥ wG∗ (er+2) ≥ wG∗ (er) ≥ wG∗ (er+1).

Then G∗ is the unique weighted hypergraph in Γ(Cm,k,Wm) having the maximum spectral radius.

Figure 2: Six weighted 3-uniform loose cycles.

Example 3.6. In Figure 2, six weighted 3-uniform loose cycles are displayed, where the numbers on the edges denote
the weights of the edges.

For a given positive weight set W7 = {10, 9, 8, 7, 6, 5, 4}, three weighted loose cycles G1, G2 and G3 in
Figure 2 are all in Γ(C7,3,W7). From Theorem 3.5, we know that G1 is the weighted 3-uniform loose cycle
with the maximum spectral radius in Γ(C7,3,W7). By calculation, we have

ρ(G1) = 13.0522, ρ(G2) = 12.7795, ρ(G3) = 13.0153.

This is consistent with Theorem 3.5.
Similarly, for a given positive weight set W8 = {12, 8, 8, 5, 4, 2, 2, 1}, three weighted loose cycles G4, G5,

G6 in Figure 2 are all in Γ(C8,3,W8). From Theorem 3.5, we know that G4 is the weighted 3-uniform loose
cycle with the maximum spectral radius in Γ(C8,3,W8). We also calculate

ρ(G4) = 13.8984, ρ(G5) = 12.0532, ρ(G6) = 12.5488.

This is also consistent with Theorem 3.5.

4. The weighted uniform unicyclic hypergraph with the maximum spectral radius

LetΩ(m, k,Wm) denote the set of weighted k-uniform unicyclic hypergraphs with m edges and weight set
Wm. In this section, we characterize the unique weighted hypergraph with the maximum spectral radius in
Ω(m, k,Wm). Let U∗ be the weighted hypergraph with the maximum spectral radius in Ω(m, k,Wm). Firstly,
we characterize the structure of the extremal hypergraph U∗.
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Lemma 4.1. The weighted hypergraph U∗ ∈ Ω(m, k,Wm) is obtained from a weighted loose cycle C2,k by attaching
m − 2 weighted pendent edges at a non-pendent vertex of C2,k, where m, k ≥ 3.

Proof. Let x be the principal eigenvector of U∗, and Cl,k = v1e1v2e2 . . . vlelv1 be the unique weighted loose
cycle in U∗. We partition E(U∗) into E(Cl,k) ∪ E1, and denote E1 = { f1, f2, . . . , fm−l}. The proof is divided into
four claims.
Claim 1. The length of Cl,k is 2.

Suppose that l ⩾ 3 and xv1 ⩾ xv2 . Let G1 be the weighted hypergraph obtained from U∗ by moving edge
e2 from v2 to v1. By Lemma 2.4, we obtain ρ(G1) > ρ(U∗), a contradiction.
Claim 2. All edges in E1 are pendent edges.

Without loss of generality, we assume that there exists a non-pendent edge f1. Let G2 be the weighted
hypergraph obtained from U∗ by the edge-releasing operation on f1. By Lemma 2.6, we have ρ(G2) > ρ(U∗),
a contradiction.
Claim 3. All edges in E1 share a common vertex v∗ ∈ V(Cl,k).

By Claim 2, we know that fi ∩ V(Cl,k) , ∅ for 1 ≤ i ≤ m − l. Without loss of generality, suppose that
f1 ∩ V(Cl,k) = {u} and f2 ∩ V(Cl,k) = {v}.

If xu ⩾ xv, let G3 be the weighted hypergraph obtained from U∗ by moving edge f2 from v to u. By
Lemma 2.4, we get ρ(G3) > ρ(U∗), a contradiction. If xu < xv, let G4 be the weighted hypergraph obtained
from U∗ by moving edge f1 from u to v. By Lemma 2.4, we get ρ(G4) > ρ(U∗), a contradiction.
Claim 4. The common vertex v∗ ∈ {v1, v2}.

Assume that v∗ ∈ e1 \ {v1, v2}. If xv1 ⩾ xv∗ , let G5 be the weighted hypergraph obtained from U∗ by moving
edges f1, f2, . . . , fm−l from v∗ to v1. By Lemma 2.4, we have ρ(G5) > ρ(U∗), a contradiction. If xv1 < xv∗ , let G6
be the weighted hypergraph obtained from U∗ by moving edge e2 from v1 to v∗. By Lemma 2.4, we have
ρ(G6) > ρ(U∗), a contradiction.

Combining Claims 1-4, we have our conclusion. □

An unweighted hypergraph may be regarded as a weighted hypergraph with each of the edges bearing
weight 1. Therefore, the Lemma 4.1 generalizes some known results for unweighted hypergraphs.

Let U∗ be the unicyclic hypergraph is shown in Figure 3. Secondly, we determine the distribution of
weights of U∗.

Figure 3: The unicyclic hypergraph U∗.

Lemma 4.2. The weights of all edges of U∗ satisfy

min
{
wU∗ (e1),wU∗ (e2)

}
≥ wU∗ ( fi), i = 1, 2, . . . ,m − 2. (19)

Proof. Let x be the principal eigenvector of U∗. We prove xv1 > xu1 . Otherwise we can get a weighted
hypergraph G1 obtained from U∗ by moving edge e2 from v1 to u1. By Lemma 2.4, we have ρ(G1) > ρ(U∗), a
contradiction. Thus xv1 > xu1 .
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By symmetry, without loss of generality, we may assume that wU∗ ( f1) ≥ wU∗ ( f2) ≥ . . . ≥ wU∗ ( fm−2) and
wU∗ (e1) ≥ wU∗ (e2). So it needs only to show wU∗ ( f1) ≤ wU∗ (e2).

Suppose to the contrary that wU∗ ( f1) > wU∗ (e2). Put δ = wU∗ ( f1) − wU∗ (e2) > 0. Let G2 be the weighted
hypergraph obtained from U∗ by exchanging the weights of edges f1 and e2, i.e.,

wG2 ( f1) = wU∗ ( f1) − δ,wG2 (e2) = wU∗ (e2) + δ,wG2 (e) = wU∗ (e) for e ∈ E(G2) \ { f1, e2}. (20)

If xe2\{v1} > x f1\{u1}, then by xv1 > xu1 and Lemma 2.7, we have ρ(G2) > ρ(U∗), a contradiction.
Denote f1 = {u1,u1,1, . . . ,u1,k−2, v2}, e2 = {v1, v1,1, . . . , v1,k−2, v2}. If xe2\{v1} ⩽ x f1\{u1}, then we construct a

column vector y from x for G2 as follows.
yv1, j = xu1, j , 1 ≤ j ≤ k − 2,
yu1, j = xv1, j , 1 ≤ j ≤ k − 2,
yu = xu, u ∈ V(G2) \ {v1,1, . . . , v1,k−2,u1,1, . . . ,u1,k−2}.

(21)

By (20), (21), Lemmas 2.1 and 2.2, we have

ρ(G2) − ρ(U∗)

≥

∑
e∈E(G2)

kwG2 (e)ye
−

∑
e∈E(U∗)

kwU∗ (e)xe

=k
(
wG2 ( f1)y f1 + wG2 (e2)ye2 − wU∗ ( f1)x f1 − wU∗ (e2)xe2

)
=k
(
wG2 ( f1)yu1 · yv2 ·

∏
1≤ j≤k−2

yu1, j + wG2 (e2)yv1 · yv2 ·

∏
1≤ j≤k−2

yv1, j − wU∗ ( f1)x f1 − wU∗ (e2)xe2
)

=k
(
wG2 ( f1)xe2\{v1} · xu1 + wG2 (e2)x f1\{u1} · xv1 − wU∗ ( f1)x f1\{u1} · xu1 − wU∗ (e2)xe2\{v1} · xv1

)
=k
(
wU∗ (e2)xe2\{v1} · xu1 + wU∗ ( f1)x f1\{u1} · xv1 − wU∗ ( f1)x f1\{u1} · xu1 − wU∗ (e2)xe2\{v1} · xv1

)
=k
(
wU∗ ( f1)x f1\{u1}(xv1 − xu1 ) + wU∗ (e2)xe2\{v1}(xu1 − xv1 )

)
=k
(
xv1 − xu1

)(
wU∗ ( f1)x f1\{u1} − wU∗ (e2)xe2\{v1}

)
>0. (22)

Where (22) follows from xv1 > xu1 , x f1\{u1} ⩾ xe2\{v1} and wU∗ ( f1) > wU∗ (e2). Thus, we have ρ(G2) > ρ(U∗), a
contradiction. □

Finally, the inequality (19) indicate that, for a given weight set Wm = {w1,w2, . . . ,wm}, the distribution of
weights of U∗ is uniquely determined. Therefore, by Lemmas 4.1 and 4.2, we get the following main result.

Theorem 4.3. Let U∗ be a weighted k-uniform unicyclic hypergraph with m edges and a positive weight set Wm,
where m, k ≥ 3. If U∗ satisfies the following conditions:

(i) The weighted hypergraph U∗ is obtained from a weighted loose cycle C2,k by attaching m − 2 weighted pendent
edges at a non-pendent vertex of C2,k (The vertex and edge labelling as described in Figure 3);

(ii) The weights of U∗ satisfy: min
{
wU∗ (e1),wU∗ (e2)

}
≥ wU∗ ( fi), i = 1, 2, . . . ,m − 2.

Then U∗ is the unique weighted hypergraph in Ω(m, k,Wm) having the maximum spectral radius.

5. Conclusion remarks

The girth 1 of a hypergraph G is the minimum length of cycle in G. Let Θ(m, k, 1,Wm) denote the set of
weighted k-uniform unicyclic hypergraphs with m edges, girth 1 and weight set Wm.

For 1 = m, Theorem 3.5 determines the weighted hypergraph with the maximum spectral radius among
all weighted hypergraphs in Θ(m, k, 1,Wm). For 1 = 2, Theorem 4.3 determines the weighted hypergraph
with the maximum spectral radius among all weighted hypergraphs in Θ(m, k, 1,Wm). A natural question
is to consider the case 3 ≤ 1 ≤ m − 1.
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Question 5.1. For 3 ≤ 1 ≤ m − 1, what is the maximum spectral radius among all weighted hypergraphs in
Θ(m, k, 1,Wm)?
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