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Mehmet Gürdala,∗, Hamdullah Başaranb

aDepartment of Mathematics, Suleyman Demirel University, 32260, Isparta, Turkey
bAntalya, Turkey

Abstract. A-Berezin radius distance and A-Berezin norm distance are presented in this study. Furthermore,
by employing the notions of A-Berezin radius distance and A-Berezin norm distance, we find A-Berezin
radius inequalities of the product and commutator of functional Hilbert space operators. Moreover, we
generalize the A-Berezin radius distance. Finally, we prove the theorem pertaining to the A-Berezin radius
distance. To recapitulate, the A-Berezin number of operator V on L (H(Θ)) is defined by the following

special type of quadratic form: berA (V) = supη∈Θ
∣∣∣∣〈V̂kη, k̂η

〉
A

∣∣∣∣, η ∈ Θ,where k̂η is the normalized reproducing

kernel onH and a semi-inner product onH , denoted as ⟨Vk̂η, k̂η⟩A := ⟨AVk̂η, k̂η⟩H , is induced by any positive
operator A.

1. Introduction

We present the A-Berezin norm and radius distances in this publication. Using the notion of A-Berezin
radius distance and A-Berezin norm distance, we also find A-Berezin radius inequalities of the product
and commutator of functional Hilbert space operators. We also extend the concept of the A-Berezin radius
distance. H establishes a non-complex Hilbert space along this work, with associated norm ∥.∥ and an
inner product ⟨., .⟩ . The algebra of all bounded linear operators operating onH is defined asL (H) . Let the
identity operator onH be represented by the symbol I.N (V),R (V) andR (V) stand for null space, the range
and closure of range of V, respectively, for the operator V ∈ L (H). V∗ defines the adjoint of V. V ∈ L (H)
is said to be positive if ⟨Vx, x⟩ ≥ 0 for every x ∈ H , shown by V ≥ 0. The absolute value of V, represented
by |V| for V ∈ L (H), is |V| = (V∗V)1/2. Recall that the functional Hilbert space (shortly FHS) is the Hilbert
spaceH = H(Θ) of complex-valued functions on someΘ such that the evaluation functionals φη( f ) = f (η),
η ∈ Θ, are continuous on H and for every η ∈ Θ there exist a function fη ∈ H such that fη(η) , 0 or,
equivalently, there is no η0 ∈ Ω such that f (η0) = 0 for all f ∈ H . Then by the Riesz representation theorem
for each η ∈ Θ there exists a unique function kη ∈ H which is called the reproducing kernel of the spaceH

such that f (λ) = ⟨ f , kη⟩ for all f ∈ H . The function k̂η := kη
||kη ||
, η ∈ Θ, is called the normalized reproducing

kernel of H . The prototypical FHSs are the Hardy space H2(D), the Bergman space L2
a(D), the Dirichlet

spaceD2(D), whereD = {z ∈ C : |z| < 1} is the unit disc and the Fock spaceF (C). A detailed presentation of
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the theory of reproducing kernels and FHSs is given, for instance in Aronzajn [3]. Note that for a bounded
linear operator V onH (i.e., for V ∈ L(H) its Berezin symbol Ṽ is defined on Θ by (see Berezin [8])

Ṽ(λ) := ⟨V̂kη(z), k̂η(z)⟩, η ∈ Θ.

In other words, Berezin symbol Ṽ is the function on Θ defined by restriction of the quadratic form ⟨Vx, x⟩
with x ∈ H to the subset of all normalized reproducing kernels of the unit sphere in H . The Berezin set,
Berezin number and Berezin norm of operators are defined, respectively, by (see [11, 27, 28])

Ber (V) = Range
(
Ṽ
)
=

{
Ṽ

(
η
)

: η ∈ Θ
}

,

ber (V) = sup
η∈Θ

∣∣∣Ṽ (
η
)∣∣∣ ,

and

∥V∥Ber = sup
η∈Θ

∥∥∥∥V̂kη
∥∥∥∥
H

.

It is obvious that ber(V) ≤ w(V) ≤ ||V|| and Ber(V) ⊂ W(V), where w(V) denotes the numerical radius and
W(V) is the numerical range of operator V.

Let L (H)+ represent the positive operator cone, meaning that

L (H)+ =
{
V ∈ L (H) : ⟨Vx, x⟩ ≥ 0, ∀x ∈ H

}
.

A positive semi-definite sesquilinear form

⟨., .⟩ : H ×H → C,
〈
x, y

〉
A =

〈
Ax, y

〉
, ∀x, y ∈ H ,

is indicated by an operator V ∈ L (H)+ . As expected, this semi-inner product generates a semi-norm ∥.∥A ,
which is represented by ∥x∥A =

√
⟨x, x⟩A =

∥∥∥A
1
2 x

∥∥∥, ∀x ∈ H . It’s obvious that ∥x∥A = 0 iff x ∈ N (A). Therefore,
if and only if A is injective operator, ∥x∥A is a norm onH , and iffR (A) is closed inH , the semi-normed space
(L (H) , ∥.∥A) is complete. The inner product on the quotient space H/N (A) is known to be induced by
the semi-inner product ⟨., .⟩A. If R (A) is not closed inH , then the quotient spaceH/N (A) is not complete.
Nonetheless, the completion H/N (A) is isometrically isomorphic to the Hilbert space R

(
A1/2

)
with the

inner product
〈
A1/2x,A1/2y

〉
R(A)
=

〈
P
R(A)x,PR(A)y

〉
, ∀x, y ∈ H , as shown by a classic construction by de

Branges and Rownvak [10]. The Hilbert space
(
R

(
A1/2

)
, ⟨., .⟩

R(A1/2)

)
for the sequel shall be abbreviated as

R

(
A1/2

)
(see to [2]). Given V ∈ L (H),

∥V∥A = sup
x∈R(A)

x,0

∥Vx∥A
∥x∥A

= sup
x∈R(A)
∥x∥=1

∥Vx∥A < ∞

if there is c > 0 such that for every x ∈ R (A), ∥Vx∥A ≤ c ∥V∥A . Here after, we define

L
A (H) =

{
V ∈ L (H) : ∥V∥A < ∞

}
and assume that A , 0 is a positive operator in L (H). Observe that ∥V∥A = 0 iff V∗AV = 0, and LA (H) is
not a subalgebra of L (H). Furthermore, we obtain

∥V∥A =
{∣∣∣〈Vx, y

〉
A

∣∣∣ : x, y ∈ R (A) and ∥x∥ =
∥∥∥y

∥∥∥ = 1
}

for V ∈ LA (H) . If
〈
Vx, y

〉
A =

〈
x,Yy

〉
A holds for every x, y ∈ H , then an operator Y ∈ L (H) for V ∈ L (H) is

termed an A-adjoint of an operator V. On the other hand, a solution to the operator equation AX = V∗A can
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be understood as the presence of an A-adjoint of V. The equation AX = V∗A has a bounded linear solution
iff R(V∗A) ⊆ R(A), according to Douglas’ theorem in [12]. If all operators allowing A-adjoint are in LA (H) ,
then we get LA(H) = {V ∈ L (H) : R(V∗A) ⊆ R(A)}. The unique solution to equation AX = V∗A is defined
as V♯A if V ∈ LA (H). Keep in mind that V♯A = A†V∗A,R(V♯A ) ⊆ R(A) and N(V♯A ) ⊆ N(V∗A),where A† is A’s
Moore–Penrose inverse. V♯A ∈ LA (H), (V♯A )♯A = PAVPA, and ((V♯A )♯A )♯A = V♯A , where PA is the orthogonal
projection on R(A), may all be verified for V♯A . Also if Y ∈ LA (H), then VY ∈ LA (H), and (VY)♯A = Y♯A V♯A .
Moreover,

∥V∥A =
∥∥∥V♯A

∥∥∥
A =

∥∥∥V♯A V
∥∥∥1/2

A =
∥∥∥VV♯A

∥∥∥1/2

A . (1)

Recall that the set of all operators admitting A1/2-adjoint is denoted byLA1/2 (H). Douglas’ theorem may
be used to confirm that

LA1/2 (H) = {V ∈ L (H) : ∃c > 0, ∥Vx∥A ≤ c ∥x∥A ,∀x ∈ H}.

Any operator in LA1/2 (H) is defined the A-bounded operator. Furthermore, it was showed in [1] that if
V ∈ LA1/2 (H), then

∥V∥A = sup
x∈N(A)

∥Vx∥A
∥x∥A

= sup
x∈H ,∥x∥=1

∥Vx∥A .

In addition, , then V (N (A)) ⊆ N (A) and ∥Vx∥A ≤ ∥V∥A ∥x∥A, ∀x ∈ H if V is A-bounded. Keep in mind that
there are two algebras of L (H) : LA (H) and LA1/2 (H). In LA (H) , these two algebras are likewise neither
dense nor closed (see, [1]). Additionally, the subsequent inclusions LA (H) ⊆ LA1/2 (H) ⊆ LA (H) ⊆ L (H).

Specifically, if AV is selfadjoint, then an operator V ∈ L (H) is A-selfadjoint; this guarantees that
∥V∥A = sup{|⟨Vx, x⟩A| : x ∈ H , ∥x∥A = 1}, as stated in [13]. Provided that AV is positive, an operator
V ∈ L (H) is A-positive. It is obvious that an operator that is A-positive is always an A-selfadjoint operator.
Furthermore, it should be mentioned that both V♯A V and VV♯A are A-positive. The authors of [29] examined
the A-numerical radius of operator using these ideas. See [9, 14, 19, 30, 31, 36] for further research on the
A-numerical radius of operators.

Now, we can give the following definitions, which given by Gürdal and Başaran [20].

Definition 1.1. BerA (V) =
{〈

V̂kη, k̂η
〉

A
: η ∈ Θ

}
defines the A-Berezin set of

〈
V̂kη, k̂η

〉
A

for V ∈ L (H).

It should be noted that even thoughH is finite dimensional, BerA (V) is a nonempty subset of C and is
generally not closed.

Definition 1.2. (a) The A-Berezin number of V is the supremum modulus of BerA (V), represented as berA (V), or
berA (V) = supη∈Θ

∣∣∣∣〈V̂kη, k̂η
〉

A

∣∣∣∣ .
(b) For operators V ∈ L (H (Θ)) , ∥V∥A−Ber = supη∈Θ

∥∥∥∥AV̂kH ,λ
∥∥∥∥
H

defines the A-Berezin norm.

We can determine the Berezin number if A = I. Hence, this idea generalizes the Berezin number
of functional Hilbert space operators, which have garnered interest from several writers lately (see, for
example, [4–6, 15–18, 21, 23, 25, 26, 32–34]).

We can consult [20] for further information and proof on A-Berezin radius operators. V = RA (V)+ iJ (V)
can be used to represent any operator V ∈ L (H) . Here,

RA (V) =
V + V♯A

2
and JA (V) =

V − V♯A

2i
.

A-selfadjoint operators are alsoJA (V) andRA (V) .We also obtain ∥RA (V)∥A−Ber ≤ berA (V) and ∥JA (V)∥A−Ber ≤

berA (V). Moreover,

max
{
∥RA (V)∥A−Ber , ∥JA (V)∥A−Ber

}
≤ berA (V) .
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Huban [24] discovered the inequality mentioned above. For V ∈ LA (H) , the following inequality

1
2
∥V∥A−Ber ≤ berA (V) ≤ ∥V∥A−Ber (2)

was demonstrated by the same author. Also,

∥VR∥A−Ber ≤ ∥VR∥A ≤ ∥V∥A ∥R∥A . (3)

The A-Crawford number of V ∈ LA (H) is denoted by

cA (V) = inf
{
|⟨Vx, x⟩A| : x ∈ H , ∥x∥A = 1

}
(see, [36]). The number c̃A (V) = infη∈Θ

∣∣∣∣〈V̂kη, k̂η
〉

A

∣∣∣∣ is also shown. That recognizes that cA (V) ≤ c̃A (V) ≤
berA (V). Recently, refinements of A-Berezin radius inequalities are examined by [7, 20, 22, 24].

In this work, we introduce A-Berezin radius distance and A-Berezin norm distance. Also, we discover
A-Berezin radius inequalities of the product and commutator of FHS operators using the concept of A-
Berezin radius distance and A-Berezin norm distance. Furthermore, we generalize the A-Berezin radius
distance. Finally, we prove the theorem related to the A-Berezin radius distance.

2. Preliminaries

We need the following lemmas in work. Let V ∈ L (H). An operator Y ∈ L (H) is called (A,Θ)-adjoint
of V if for every τ, µ ∈ Θ, the identity

〈
V̂kτ, k̂µ

〉
A
=

〈̂
kτ, Ŷkµ

〉
A

holds. We denote the set of all operators in

L (H) admitting (A,Θ)-adjoints by LA,Θ (H) (see, [20]). We denote V♯A by (A,Θ)-adjoint operator of V.

Lemma 2.1 ([24]). Let V ∈ LA,Θ (H) be an (A,Θ)-selfadjoint operator. Then

berA (V) = ∥V∥A−Ber . (4)

Lemma 2.2 ([22]). Let V,Y ∈ LA (H). Then

berA

(
VY♯A ∓ YV

)
≤ 2 ∥Y∥A−Ber berA (V) . (5)

Lemma 2.3 ([19]). If z, t ∈ H with t , 0, then

inf
µ∈C

∥∥∥z − µt
∥∥∥2

A =
∥z∥2A ∥t∥

2
A − |⟨z, t⟩A|

2

∥t∥2A
. (6)

Lemma 2.4 ([19]). Let z, t, γ ∈ H with µ, ζ ∈ C. Then∣∣∣〈z, γ
〉

A
〈
t, γ

〉
A

∣∣∣ ≤ |⟨z, t⟩A| + inf
µ∈C

∥∥∥z − µγ
∥∥∥

A inf
ζ∈C

∥∥∥t − ζγ
∥∥∥

A . (7)

3. Inequalities of A-Berezin norm distance and A-Berezin radius distance

The A-Berezin norm distance and A-Berezin radius distance are introduced in this section. Furthermore,
we enhance and expand upon a few inequalities concerning the FHS’s A-Berezin radius and A-Berezin norm
distance.

For V ∈ LA (H), its A-seminorm distance of V from scalar operator is defined by DA (V), denoted as

DA (V) = inf
µ∈C

∥∥∥V − µI
∥∥∥

A .

Also, let dA (V) define the A-numerical radius of V from scalar operators, i.e.,

dA (V) = inf
µ∈C

wA
(
V − µI

)
.

By using compactness, we can determine that there exists µ0 such that dA (V) = wA
(
V − µ0I

)
.
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Definition 3.1. LetH = H (Θ) be a FHS. For V ∈ LA (H), the A-Berezin norm of distance denoted by D̃A (V), is
defined by A-Berezin norm distance of V from the scalar operators, i.e.,

D̃A (V) = inf
λ∈C
∥V − λI∥A−Ber .

Definition 3.2. LetH = H (Θ) be a FHS. For V ∈ LA (H), the A-Berezin radius of distance denoted by d̃A (V), is
defined by A-Berezin radius distance of V from the scalar operators, i.e.,

d̃A (V) = inf
λ∈C

berA (V − λI) .

Again, applying compactness we can see that there exists λ0 such that d̃A (V) = berA (V − λ0I).

It is clear that D̃A (V) ≤ DA (V) and d̃A (V) ≤ dA (V).
Let’s now demonstrate the first theorem.

Theorem 3.3. LetH = H (Θ) be a FHS and let V ∈ LA (H). Then√
D̃2

A (V) + c̃2
A (V) ≤ ∥V∥A−Ber ≤

√
D̃2

A (V) + ber2
A (V). (8)

Proof. From (6), we can write that

inf
λ∈C
∥Vx − λx∥2A =

∥Vx∥2A ∥λx∥2A − |⟨Vx, λx⟩A|
2

∥λx∥2A
, (9)

where x ∈ H . Now, replacing x by k̂η in (9), we reach

inf
λ∈C

∥∥∥∥V̂kη − λ̂kη
∥∥∥∥2

A
=

∥∥∥∥V̂kη
∥∥∥∥2

A

∥∥∥∥λ̂kη
∥∥∥∥2

A
−

∣∣∣∣〈V̂kη, λ̂kη
〉

A

∣∣∣∣2∥∥∥∥λ̂kη
∥∥∥∥2

A

=
∥∥∥∥V̂kη

∥∥∥∥2

A
−

∣∣∣∣〈V̂kη, k̂η
〉

A

∣∣∣∣2
≤ ∥V∥2A−Ber − c̃2

A (V) .

By taking the supremum over η ∈ Θ, we obtain

D̃2
A (V) + c̃2

A (V) ≤ ∥V∥2A−Ber , (10)

which has the first inequality at the theorem. Next, we prove the second inequality. From Lemma 2.3, we
get

∥z∥2A ∥t∥
2
A − |⟨z, t⟩A|

2 = ∥t∥2A inf
λ∈C
∥z − λt∥2A . (11)

Replacing z by V̂kη and t by k̂η in (11), we reach∥∥∥∥V̂kη
∥∥∥∥2

A

∥∥∥∥̂kη
∥∥∥∥2

A
−

∣∣∣∣〈V̂kη, k̂η
〉

A

∣∣∣∣2 = inf
λ∈C

∥∥∥∥V̂kη − λ̂kη
∥∥∥∥2

A
.

That is∥∥∥∥V̂kη
∥∥∥∥2

A

∥∥∥∥̂kη
∥∥∥∥2

A
= inf
λ∈C

∥∥∥∥V̂kη − λ̂kη
∥∥∥∥2

A
+

∣∣∣∣〈V̂kη, k̂η
〉

A

∣∣∣∣2 .
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Taking the supremum over η ∈ Θ in the above inequality, we have

∥V∥2A−Ber ≤ inf
λ∈C
∥V − λI∥2A−Ber + ber2

A (V) = D̃2
A (V) + ber2

A (V) . (12)

By combining (10) and (12), we get

D̃2
A (V) + c̃2

A (V) ≤ ∥V∥2A−Ber ≤ D̃2
A (V) + ber2

A (V) .

Consequently, we have√
D̃2

A (V) + c̃2
A (V) ≤ ∥V∥A−Ber ≤

√
D̃2

A (V) + ber2
A (V).

We completes the proof.

In [35], Yamancı and Karlı show that if V ∈ LA (H), then

ber2 (V) + ber
(
V2

)
≤ inf
λ∈C
∥V − λI∥2 . (13)

The inequality (13) is generalized by the following theorem.

Theorem 3.4. If V ∈ LA (H), then we have

ber2r
A (V) ≤ 2r−1

(
berr

A

(
V2

)
+ D̃2r

A (V)
)

,

for any r ≥ 1.

Proof. Let η ∈ Θ be an arbitrary. Replacing z by V̂kη, t by V♯A k̂η and γ by k̂η in (7), we have∣∣∣∣〈V̂kη, k̂η
〉

A

〈
V♯A k̂η, k̂η

〉
A

∣∣∣∣ ≤ ∣∣∣∣〈V̂kη,V♯A k̂η
〉

A

∣∣∣∣ + inf
λ∈C

∥∥∥∥V̂kη − λ̂kη
∥∥∥∥

A
inf
ξ∈C

∥∥∥∥V♯A k̂η − ξ̂kη
∥∥∥∥

A
.

Hence,∣∣∣∣〈V̂kη, k̂η
〉

A

∣∣∣∣2 ≤ ∣∣∣∣〈V2̂kη, k̂η
〉

A

∣∣∣∣ + inf
λ∈C

∥∥∥∥V̂kη − λ̂kη
∥∥∥∥

A
inf
ξ∈C

∥∥∥∥V♯A k̂η − ξ̂kη
∥∥∥∥

A
.

From the elementary inequality
( x+y

2

)r
≤

xr+yr

2 , x, y > 0 and r ≥ 1, we get∣∣∣∣〈V̂kη, k̂η
〉

A

∣∣∣∣2r
≤ 2r−1

(∣∣∣∣〈V2̂kη, k̂η
〉

A

∣∣∣∣r + inf
λ∈C

∥∥∥∥V̂kη − λ̂kη
∥∥∥∥r

A
inf
ξ∈C

∥∥∥∥V♯A k̂η − ξ̂kη
∥∥∥∥r

A

)
.

Taking the supremum in the inequality above over η ∈ Θ, we have

ber2r
A (V) ≤ 2r−1

(
berr

A

(
V2

)
+ inf
λ∈C
∥V − λI∥rA−Ber inf

ξ∈C

∥∥∥V♯A − ξI
∥∥∥r

A−Ber

)
.

Finally, by taking the infimum λ, ξ ∈ C, we reach

ber2r
A (V) ≤ 2r−1

(
berr

A

(
V2

)
+ D̃r

A (V) D̃r
A

(
V♯A

))
.

Moreover, for every V ∈ LA (H) and for every λ ∈ C one can see that

∥V − λI∥A−Ber =
∥∥∥∥(V − λI)♯A

∥∥∥∥
A−Ber

=
∥∥∥V♯A − λP

∥∥∥
A−Ber

=
∥∥∥∥(V − λP)♯A

∥∥∥∥
A−Ber

= ∥V − λP∥A−Ber .
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Hence, we get

D̃A

(
V♯A

)
= inf
λ∈C

∥∥∥V♯A − λI
∥∥∥

A−Ber
= inf
λ∈C

∥∥∥V♯A − λP
∥∥∥

A−Ber

= inf
λ∈C

∥∥∥∥∥(V − λI
)♯A∥∥∥∥∥

A−Ber

= inf
λ∈C

∥∥∥V − λI
∥∥∥

A−Ber

= D̃A (V) .

Thus,

ber2r
A (V) ≤ 2r−1

(
berr

A

(
V2

)
+ D̃2r

A (V)
)

.

The evidence is now complete.

Specifically, taking into account that r = 1 in Theorem 3.4, we obtain the subsequent corollary.

Corollary 3.5. If V ∈ LA (H), then

berA (V) ≤
√

berA (V2) + D̃2
A (V).

Now, applying compactness argument can see that there existsλ0 ∈ C such that D̃A (V,R) = infλ0∈C ∥V − λ0R∥A−Ber.
Utilizing this generalizing distance D̃A (V,R), and proceeding similarly as in Theorem 3.3, we get the sub-
sequent consequence.

Corollary 3.6. If V,Y ∈ LA (H), then

√
m̃2

A (Y) D̃2
A (V,Y) + c̃2

A

(
Y♯A V

)
∥Y∥A−Ber

≤ ∥V∥A−Ber ≤

√
∥Y∥2A−Ber D̃2

A (V,Y) + ber2
A

(
Y♯A V

)
m̃A (Y)

,

where m̃A (Y) = infη∈Θ
∥∥∥∥Ŷkη

∥∥∥∥
A

.

We shall now demonstrate the subsequent theorem.

Theorem 3.7. LetH = H (Θ) be an FHS and let V,Y ∈ LA,Θ (H). Then

berA (VY) ≤ ∥V∥A−Ber berA (Y) +
1
2

min
{
berA

(
VY + YV

♯A
)
, berA

(
VY − YV

♯A
)}

. (14)
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Proof. Let θ ∈ R. It is clear that RA

(
eiθVY

)
is an (A,Θ)-selfadjoint operator. Hence, we have∥∥∥∥RA

(
eiθVY

)∥∥∥∥
A−Ber

= berA

(
RA

(
eiθVY

))
(by (4))

= berA

(1
2

(
eiθVY + e−iθY

♯A V
♯A
))

= berA

(1
2

(
eiθVY + e−iθVY

♯A + e−iθY
♯A V

♯A
− e−iθVY

♯A
))

= berA

(
VRA

(
eiθY

)
+

1
2

e−iθ
(
Y
♯A V

♯A
− VY

♯A
))

= berA

(
VRA

(
eiθY

))
+ berA

(1
2

e−iθ
(
Y
♯A V

♯A
− VY

♯A
))

≤

∥∥∥∥VRA

(
eiθY

)∥∥∥∥
A−Ber

+
1
2

berA

(
Y
♯A V

♯A
− VY

♯A
)

≤ ∥V∥A−Ber

∥∥∥∥RA

(
eiθY

)∥∥∥∥
A−Ber

+
1
2

berA

(
Y
♯A V

♯A
− VY

♯A
)

≤ ∥V∥A−Ber berA (Y) +
1
2

berA

(
Y
♯A V

♯A
− VY

♯A
)

.

Therefore, by taking the supremum over all θ ∈ R, we have

berA (VY) ≤ ∥V∥A−Ber berA (Y) +
1
2

berA

(
Y
♯A V

♯A
− VY

♯A
)

. (15)

On the other hand, for η ∈ Θwe observe that∣∣∣∣〈(Y♯A V
♯A
− VY

♯A
)

k̂η, k̂η
〉

A

∣∣∣∣ = ∣∣∣∣〈Y
♯A V

♯A k̂η, k̂η
〉

A
−

〈
VY

♯A k̂η, k̂η
〉

A

∣∣∣∣
=

∣∣∣∣〈Y
♯A V

♯A k̂η, k̂η
〉

A
−

〈
P
R(A)VP

R(A)Y
♯A k̂η, k̂η

〉
A

∣∣∣∣ .
Hence, we have∣∣∣∣〈(Y♯A V

♯A
− VY

♯A
)

k̂η, k̂η
〉

A

∣∣∣∣ = ∣∣∣∣∣∣〈Y
♯A V

♯A k̂η, k̂η
〉

A
−

〈(
V
♯A
)♯A

Y
♯A k̂η, k̂η

〉
A

∣∣∣∣∣∣
=

∣∣∣∣∣∣
〈(

VY − YV
♯A
)♯A

k̂η, k̂η

〉
A

∣∣∣∣∣∣
=

∣∣∣∣〈(VY − YV
♯A
)

k̂η, k̂η
〉

A

∣∣∣∣ .
It follows that berA

(
Y♯A V♯A

− VY♯A
)
= berA

(
VY − YV♯A

)
. So, the following inequality have been by (15):

berA (VY) ≤ ∥V∥A−Ber berA (Y) +
1
2

berA

(
VY − YV

♯A
)
. (16)

Also, by replacing V by iV in (15), we obtain

berA (VY) ≤ ∥V∥A−Ber berA (Y) +
1
2

berA

(
VY + YV

♯A
)
. (17)

Thus, the proof is completed by combining (16) together with (17).

We are now prepared to demonstrate the subsequent theorem.

Theorem 3.8. If V,Y ∈ LA (H), then we have

berA (VY) ≤ min
{(
∥V∥A−Ber + D̃A (V)

)
berA (Y) ,

(
∥Y∥A−Ber + D̃A (Y)

)
berA (V)

}
. (18)
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Proof. Let η ∈ Θ be an arbitrary. There exists λ0 ∈ C such that D̃A (V) = infλ0∈C ∥V − λ0I∥A−Ber. If λ0 = 0,
then by the inequalities in (2), we have

berA (VY) ≤ ∥VY∥A−Ber ≤ ∥V∥A−Ber ∥Y∥A−Ber ≤ 2 ∥V∥A−Ber ∥Y∥A−Ber =
(
∥V∥A−Ber + D̃A (V)

)
berA (Y) .

Next, we choose λ0 , 0 and ξ = λ0
|λ0 |

. Then, from the inequality (14), we have

berA (VY) ≤ berA (ξVY) ≤ ∥V∥A−Ber berA (Y) +
1
2

berA

(
ξVY − ξYV

♯A
)

= ∥V∥A−Ber berA (Y) +
1
2

berA

(
ξY

♯A V
♯A
− ξ

(
V
♯A
)♯A

Y
♯A

)
= ∥V∥A−Ber berA (Y) +

1
2

berA

(
ξ
(
V
♯A
)♯A (

Y
♯A
)♯A
− ξ

(
Y
♯A
)♯A

V
♯A

)
= ∥V∥A−Ber berA (Y) +

1
2

berA

ξ ((V♯A
)♯A
− λ0I

) (
Y
♯A
)♯A
− ξ

(
Y
♯A
)♯A ((

V
♯A
)♯A
− λ0I

)♯A 
≤ ∥V∥A−Ber berA (Y) +

∥∥∥∥∥(V♯A
)♯A
− λ0I

∥∥∥∥∥
A−Ber

berA

((
Y
♯A
)♯A )

(by (5))

≤ ∥V∥A−Ber berA (Y) +
∥∥∥∥∥(V♯A

)♯A
− λ0I

∥∥∥∥∥
A−Ber

berA (Y) .

Next, by using the
∥∥∥∥Y♯A

∥∥∥∥
A−Ber

= ∥Y∥A−Ber, for all Y ∈ LA (H) we can see that∥∥∥∥∥(V♯A
)♯A
− λ0I

∥∥∥∥∥
A−Ber

=
∥∥∥∥V

♯A
− λ0P

∥∥∥∥
A−Ber

=
∥∥∥∥(V − λ0I)

♯A
∥∥∥∥

A−Ber
= ∥V − λ0I∥A−Ber .

Hence,

berA (VY) ≤ ∥V∥A−Ber berA (Y) + ∥V − λ0I∥A−Ber berA (Y) =
(
∥V∥A−Ber + D̃A (V)

)
berA (Y) (19)

Replacing V by Y♯A and Y by V♯A in the above inequality and since D̃A

(
Y♯A

)
= D̃A (Y), we have

berA (VY) ≤
(
∥Y∥A−Ber + D̃A (Y)

)
berA (V) . (20)

Combining the inequalities in (19) and (20), we reach the inequality

berA (VY) ≤ min
{(
∥V∥A−Ber + D̃A (V)

)
berA (Y) ,

(
∥Y∥A−Ber + D̃A (Y)

)
berA (V)

}
.

Corollary 3.9. If V,Y ∈ LA (H), then we have

D̃A (V) ≤ ∥V∥A−Ber and D̃A (Y) ≤ ∥Y∥A−Ber ,(
∥V∥A−Ber + D̃A (V)

)
berA (Y) ≤ 2 ∥V∥A−Ber berA (Y) ,

and (
∥Y∥A−Ber + D̃A (Y)

)
berA (V) ≤ 2 ∥Y∥A−Ber berA (V) .

Now, we obtain the following inequalities, which is A-Berezin distance d̃A (V).
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Theorem 3.10. LetH = H (Θ) be a FHS and let V ∈ LA (H). Then

∥V∥A−Ber ≤ berA (V) + d̃A (V) ≤ 2berA (V) . (21)

Proof. There exists λ0 ∈ C such that d̃A (V) = infλ0∈C berA (V − λ0I). If λ0 = 0, then ∥V∥A−Ber ≤ 2berA (V) =
berA (V) + berA (V − λ0I) = berA (V) + d̃A (V).

Next, we choose λ0 , 0 and ξ = λ0
|λ0 |

. Hence,

∥V∥A−Ber = ∥ξV∥A−Ber = ∥RA (ξV) + iJA (ξV)∥A−Ber

≤ ∥RA (ξV)∥A−Ber + ∥JA (ξV)∥A−Ber

= ∥RA (ξV)∥A−Ber + ∥JA (ξ (V − λ0I))∥A−Ber

≤ berA (V) + berA (V − λ0I) .

Therefore, ∥V∥A−Ber ≤ berA (V) + d̃A (V). The second inequality follows from the fact that d̃A (V) ≤
berA (V).

Corollary 3.11. Let V,Y ∈ LA (H). Then

∥VY∥A−Ber ≤
(
berA (V) + d̃A (V)

) (
berA (Y) + d̃A (Y)

)
≤ 4berA (V) berA (Y) .

Proof. There exists λ0 ∈ C such that d̃A (V) = infλ0∈C berA (V − λ0I). If λ0 = 0, then ∥V∥A−Ber ≤ 2berA (V) =
berA (V) + berA (V − λI) = berA (V) + d̃A (V).

Next, we choose λ0 , 0 and ξ = λ0
|λ0 |

. Hence,

∥VY∥A−Ber ≤ ∥V∥A−Ber ∥Y∥A−Ber ≤
(
berA (V) + d̃A (V)

) (
berA (Y) + d̃A (Y)

)
(by (21))

≤ 4berA (V) berA (Y) (by berA (V) ≥ d̃A (V) ).

Assuming V to be A-positive, we then obtain the following inequalities.

Theorem 3.12. LetH = H (Θ) be a FHS and V,Y ∈ LA1/2 (H). If V is A-positive, then

berA (VY) ≤ ∥V∥A−Ber berA (Y) and berA (YV) ≤ ∥Y∥A−Ber berA (V) .

Proof. For all β ∈ [0, 1], we get

berA (VY) = berA
((

V − β ∥V∥A−Ber I
)

Y + β ∥V∥A−Ber Y
)

≤ berA
((

V − β ∥V∥A−Ber I
)

Y
)
+ β ∥V∥A−Ber berA (Y)

≤

∥∥∥(V − β ∥V∥A−Ber I
)

Y
∥∥∥

A−Ber
+ β ∥V∥A−Ber berA (Y)

≤

∥∥∥V − β ∥V∥A−Ber I
∥∥∥

A−Ber
∥Y∥A−Ber + β ∥V∥A−Ber berA (Y) .

Since V is A-positive, we can see that
∥∥∥V − β ∥V∥A−Ber I

∥∥∥
A−Ber

=
(
1 − β

)
∥V∥A−Ber for all β ∈ [0, 1]. Hence

berA (VY) ≤ ∥V∥A−Ber
(
1 − βI ∥Y∥A−Ber + βberA (Y)

)
(22)

Therefore, by considering β = 1 in (22), we have

berA (VY) ≤ ∥V∥A−Ber berA (Y) .

Similarly,

berA (YV) ≤ ∥Y∥A−Ber berA (V) .

This completes the proof.
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The following Berezin radius inequalities for the product of FHS operators are obtained by taking A = I
in Theorem 3.12.

Corollary 3.13. If V,Y ∈ L (H) , V ≥ 0, then we have

ber (VY) ≤ ∥V∥Ber ber (Y) and ber (YV) ≤ ∥Y∥Ber ber (V) .

We shall now demonstrate the next theorem.

Theorem 3.14. If V,Y ∈ LA (H), then we have

berA (VY ∓ YV) ≤ 4berA (V) berA (Y) . (23)

Proof. (2) and (3) imply that

berA (VY + YV) ≤ berA (VY) + berA (YV)
≤ ∥V∥A−Ber berA (Y) + ∥Y∥A−Ber berA (V) (by Theorem 3.12)
≤ 2berA (V) berA (Y) + 2berA (V) berA (Y)
= 4berA (V) berA (Y) .

This completes the evidence.

We derive the following theorem from Theorem 3.14,

Theorem 3.15. LetH = H (Θ) be a FHS and V,Y ∈ LA (H). Then

berA (VY − YV) ≤ 4d̃A (V) d̃A (Y) ≤ 4berA (V) berA (Y) .

Proof. Let λ0, ξ0 ∈ C such that d̃A (V) = infλ0∈C berA (V − λ0I) and d̃A (Y) = infξ0∈C berA (Y − ξ0I). Then, we
get

berA (VY − YV) = berA ((V − λ0I) (Y − ξ0I) − (Y − ξ0I) (V − λ0I))
≤ 4berA (V − λ0I) berA (Y − ξ0I) (by (23))

≤ 4d̃A (V) d̃A (Y) .

Thus,

berA (VY − YV) ≤ 4d̃A (V) d̃A (Y) .

The second desired inequality follows from the fact that d̃A (V) ≤ berA (V) and d̃A (Y) ≤ berA (Y).

We need the following theorem to prove the next corollary.

Theorem 3.16. LetH = H (Θ) be a FHS and let V1,V2,Y1,Y2 ∈ LA (H). Then

berA (V1Y1 ± Y2V2) ≤
√∥∥∥V♯A

1 V1 + V2V♯A

2

∥∥∥
A−Ber

√∥∥∥Y1Y♯A1 + Y♯A2 Y2

∥∥∥
A−Ber

.

Proof. Let η ∈ Θ be an arbitrary. An application of Cauchy-Schwarz inequality obtains∣∣∣∣〈(V1Y1 ± Y2V2) k̂η, k̂η
〉

A

∣∣∣∣ ≤ ∣∣∣∣〈V1Y1̂kη, k̂η
〉

A
+

〈
Y2V2̂kη, k̂η

〉
A

∣∣∣∣
=

∣∣∣∣〈Y1̂kη,V
♯A

1 k̂η
〉

A
+

〈
V2̂kη,Y

♯A

2 k̂η
〉

A

∣∣∣∣
≤

(∥∥∥∥Y1̂kη
∥∥∥∥

A

∥∥∥∥V
♯A

1 k̂η
∥∥∥∥

A
+

∥∥∥∥V2̂kη
∥∥∥∥

A

∥∥∥∥Y
♯A

2 k̂η
∥∥∥∥

A

)
≤

(∥∥∥∥V
♯A

1 k̂η
∥∥∥∥2

A
+

∥∥∥∥V2̂kη
∥∥∥∥2

A

) (∥∥∥∥Y1̂kη
∥∥∥∥2

A
+

∥∥∥∥Y
♯A

2 k̂η
∥∥∥∥2

A

)
=

√〈(
V♯A

2 V2 + V1V♯A

1

)
k̂η, k̂η

〉
A

√〈(
Y♯A1 Y1 + Y2Y♯A2

)
k̂η, k̂η

〉
A

≤

√∥∥∥V♯A

1 V1 + V2V♯A

2

∥∥∥
A−Ber

√∥∥∥Y1Y♯A1 + Y♯A2 Y2

∥∥∥
A−Ber

.
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Hence,∣∣∣∣〈(V1Y1 ± Y2V2) k̂η, k̂η
〉

A

∣∣∣∣ ≤ √∥∥∥V♯A

1 V1 + V2V♯A

2

∥∥∥
A−Ber

√∥∥∥Y1Y♯A1 + Y♯A2 Y2

∥∥∥
A−Ber

.

By taking the supremum over η ∈ Θ in the above inequality, we get

berA (V1Y1 ± Y2V2) ≤
√∥∥∥V♯A

1 V1 + V2V♯A

2

∥∥∥
A−Ber

√∥∥∥Y1Y♯A1 + Y♯A2 Y2

∥∥∥
A−Ber

.

The proof is now complete.

Corollary 3.17. If V,Y ∈ LA (H), then we have

berA (VY ∓ YV) ≤ 2
√

2 ∥V∥A−Ber berA (Y) . (24)

Proof. By putting V1 = V2 = V and Y1 = Y2 = Y in Theorem 3.16 and then using the inequality in [22,
Corollary 1] we have

berA (VY ± YV) ≤
√∥∥∥VV♯A + V♯A V

∥∥∥
A−Ber

√∥∥∥YY♯A + Y♯A Y
∥∥∥

A−Ber

≤ 2
√∥∥∥VV♯A + V♯A V

∥∥∥
A−Ber

berA (Y)

≤ 2
√

2 ∥V∥A−Ber berA (Y) (by (1)).

The proof is now complete.

Corollary 3.17 may be generalized to provide the following conclusion.

Corollary 3.18. Let V,Y ∈ LA (H). Then

berA (VY ∓ YV) ≤ 2
√

2 min {∥V∥A−Ber berA (Y) , ∥Y∥A−Ber berA (V)} . (25)

Proof. By replacing V by Y and Y by V respectively in (24), we have the desired result.

It is clear that (25) provides an upper bound for the A-Berezin radius of the commutator VY − YV.
We can now demonstrate the following theorem.

Theorem 3.19. LetH = H (Θ) be a FHS and V,Y ∈ LA (H). Then

berA (VY − YV) ≤ 2
√

2 min
{
D̃A (V) d̃A (Y) , D̃A (Y) d̃A (V)

}
≤ 2
√

2 ∥V∥A−Ber berA (Y) .

Proof. Let λ0, ξ0 ∈ C such that D̃A (V) = infλ0∈C ∥V − λ0I∥A−Ber and d̃A (Y) = infξ0∈C berA (Y − ξ0I). Then, we
get

berA (VY − YV) = berA ((V − λ0I) (Y − ξ0I) − (Y − ξ0I) (V − λ0I))

≤ 2
√

2 ∥V − λ0I∥A−Ber berA (Y − ξ0I)

= 2
√

2D̃A (V) d̃A (Y) .

Thus, berA (VY − YV) ≤ 2
√

2D̃A (V) d̃A (Y).
Replacing V by Y and Y by V in the above inequality, we get

berA (YV − VY) ≤ 2
√

2D̃A (Y) d̃A (V) .

The first inequality is obtained by combining the two above inequality. Since D̃A (V) ≤ ∥V∥A−Ber and
d̃A (Y) ≤ berA (Y), the second inequality is inferred.
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Next, we generalize the A-Berezin distance d̃A (V,Y) as following from: For V,Y ∈ LA (H)

d̃A (V,Y) = berA (V − ξ0Y) .

Utilizing this generalized A-Berezin distance d̃A (V,Y), we get the following inequalities.

Theorem 3.20. LetH = H (Θ) be a FHS and let V,Y,W ∈ LA (H) be such that W commutes with both V and W.
Then

berA (VY − YV) ≤ 4d̃A (V,W) d̃A (Y,W) ≤ 4berA (V) berA (Y) .

Proof. Let λ0, ξ0 ∈ C such that d̃A (V,W) = infλ0∈C berA (V − λ0W) and d̃A (Y,W) = infξ0∈C berA (Y − ξ0W).
Then, we get

berA (VY − YV) = berA ((V − λ0W) (Y − ξ0W) − (Y − ξ0W) (V − λ0W))
≤ 4berA (V − λ0W) berA (Y − ξ0W)

= 4d̃A (V,W) d̃A (Y,W) .

Thus, berA (VY − YV) ≤ 4d̃A (V,W) d̃A (Y,W).
The second desired inequality follows from fact that d̃A (V,W) ≤ berA (V) and d̃A (Y,W) ≤ berA (Y).

Theorem 3.21. LetH = H (Θ) be a FHS and let V,Y,W ∈ LA (H) be such that W commutes with both V and W.
Then

berA (VY − YV) ≤ 2
√

2 min
{
D̃A (V,W) d̃A (Y,W) , D̃A (Y,W) d̃A (V,W)

}
.

Proof. Let λ0, ξ0 ∈ C such that D̃A (V,W) = infλ0∈C ∥V − λ0W∥A−Ber and d̃A (Y,W) = infξ0∈C berA (Y − ξ0W).
Then, we get

berA (VY − YV) = berA ((V − λ0W) (Y − ξ0W) − (Y − ξ0W) (V − λ0W))

≤ 2
√

2 ∥V − λ0W∥A−Ber berA (Y − ξ0W) (by (24))

≤ 2
√

2D̃A (V,W) d̃A (Y,W) .

Thus, berA (VY − YV) ≤ 2
√

2D̃A (V,W) d̃A (Y,W).
In the inequality above, if we replace V by Y and Y by V,we obtain

berA (YV − VY) ≤ 2
√

2D̃A (Y,W) d̃A (V,W) .

Combining the above two inequalities we obtain the first inequality. Since D̃A (V,W) ≤ ∥V∥A−Ber and
d̃A (Y,W) ≤ berA (Y), the second inequality is inferred.

Finally, we will prove the theorem related to the A-Berezin distance.

Theorem 3.22. LetH = H (Θ) be a FHS and V,Y ∈ LA (H). Then

berA (VY + YV) ≤ 2 min
{
berA (V)

(
berA (Y) + d̃A (Y)

)
, berA (Y)

(
berA (V) + d̃A (V)

)}
≤ 4berA (V) berA (Y) .
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Proof. Let λ0, ξ0 ∈ C such that d̃A (V) = infλ0∈C berA (V − λ0I). If λ0 = 0, then we have

berA (VY + YV) ≤ 2berA (V)
(
berA (Y) + d̃A (Y)

)
= 4berA (V) berA (Y) .

As in the Theorem 3.8 proof, we may take λ0 , 0 and ξ = λ0
|λ0 |

for granted. Then, we have

berA (VY + YV) = berA (V (ξY) + (ξY) V)
≤ berA (VRA (ξY) + iVJA (ξY) +RA (ξY) V + +iJA (ξY) V)
≤ berA (VRA (ξY) +RA (ξY) V) + berA (VJA (ξY) + JA (ξY) V) .

It is simple to verify that

R
♯A

A (ξY) =
(
R
♯A

A

)♯A
(ξY) and J

♯A

A (ξY) =
(
J
♯A

A

)♯A
(ξY) .

Hence, from (5),

berA (VRA (ξY) + VRA (ξY)) = berA

(
R
♯A

A (ξY) V
♯A + V

♯A
R
♯A

A (ξY)
)

= berA

(
V
♯A

(
R
♯A

A

)♯A
(ξY) +R

♯A

A (ξY) V
♯A

)
≤ 2

∥∥∥∥R♯AA (ξY)
∥∥∥∥

A−Ber
berA

(
V
♯A
)

≤ 2 ∥RA (ξY)∥A−Ber berA (V) .

Similarly,

berA (VJA (ξY) + JA (ξY) V) ≤ 2 ∥JA (ξY)∥A−Ber berA (V) .

Therefore,

berA (VY + YV) ≤ 2berA (V) (∥RA (ξY)∥A−Ber + ∥JA (ξY)∥A−Ber)
= 2berA (V) (∥RA (ξY)∥A−Ber + ∥JA (ξ (Y − λ0I))∥A−Ber) .

Since ∥RA (ξY)∥A−Ber ≤ berA (ξY) and ∥JA (ξ (Y − λ0I))∥A−Ber ≤ berA (ξ (Y − λ0I)), we have

berA (VY + YV) ≤ 2berA (V) (berA (Y) + berA (ξ (Y − λ0I))) ≤ 2berA (V)
(
berA (Y) + d̃A (Y)

)
.

Now, replacing V by Y and Y by V in the above inequality, we obtain

berA (VY + YV) ≤ 2berA (Y)
(
berA (V) + d̃A (V)

)
.

Combining the above inequalities we reach the first theorem. For second inequality, since d̃A (V) ≤ 2berA (V)
and d̃A (Y) ≤ 2berA (Y), we have

berA (VY + YV) ≤ 2 min
{
berA (V)

(
berA (Y) + d̃A (Y)

)
, berA (Y)

(
berA (V) + d̃A (V)

)}
≤ 2berA (V)

(
berA (Y) + d̃A (Y)

)
≤ 4berA (V) berA (Y) .
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[5] H. Başaran, M. Gürdal, Berezin number inequalities via inequality, Honam Math. J. 43(3) (2021,) 523–537.
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