Filomat 38:21 (2024), 7657–7671 https://doi.org/10.2298/FIL2421657G

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On *A***-Berezin number in functional Hilbert space**

Mehmet G ¨urdala,[∗] **, Hamdullah Bas¸aran^b**

^aDepartment of Mathematics, Suleyman Demirel University, 32260, Isparta, Turkey ^bAntalya, Turkey

Abstract. *A*-Berezin radius distance and *A*-Berezin norm distance are presented in this study. Furthermore, by employing the notions of *A*-Berezin radius distance and *A*-Berezin norm distance, we find *A*-Berezin radius inequalities of the product and commutator of functional Hilbert space operators. Moreover, we generalize the *A*-Berezin radius distance. Finally, we prove the theorem pertaining to the *A*-Berezin radius distance. To recapitulate, the *A*-Berezin number of operator *V* on $\mathcal{L}(\mathcal{H}(\Theta))$ is defined by the following special type of quadratic form: $\text{ber}_{A}(V) = \text{sup}_{\eta \in \Theta} \Big|$ $\left\langle \widehat{Vk_{\eta}},\widehat{k}_{\eta}\right\rangle _{A}$ $\vert, \eta \in \Theta$, where \hat{k}_η is the normalized reproducing kernel on H and a semi-inner product on H , denoted as $\langle V\hat k_\eta,\hat k_\eta\rangle_A:=\langle AV\hat k_\eta,\hat k_\eta\rangle_H$, is induced by any positive operator *A*.

1. Introduction

We present the *A*-Berezin norm and radius distances in this publication. Using the notion of *A*-Berezin radius distance and *A*-Berezin norm distance, we also find *A*-Berezin radius inequalities of the product and commutator of functional Hilbert space operators. We also extend the concept of the *A*-Berezin radius distance. H establishes a non-complex Hilbert space along this work, with associated norm ∥.∥ and an inner product $\langle ., . \rangle$. The algebra of all bounded linear operators operating on H is defined as $\mathcal{L}(\mathcal{H})$. Let the identity operator on H be represented by the symbol *I*. $N(V)$, $R(V)$ and $\overline{R(V)}$ stand for null space, the range and closure of range of *V*, respectively, for the operator $V \in \mathcal{L}(\mathcal{H})$. *V*^{*} defines the adjoint of *V*. $V \in \mathcal{L}(\mathcal{H})$ is said to be positive if $\langle Vx, x \rangle \ge 0$ for every $x \in \mathcal{H}$, shown by $V \ge 0$. The absolute value of *V*, represented by |*V*| for $V \in \mathcal{L}(\mathcal{H})$, is |*V*| = $(V^*V)^{1/2}$. Recall that the functional Hilbert space (shortly FHS) is the Hilbert space $H = H(\Theta)$ of complex-valued functions on some Θ such that the evaluation functionals $\varphi_{\eta}(f) = f(\eta)$, $\eta \in \Theta$, are continuous on H and for every $\eta \in \Theta$ there exist a function $f_\eta \in \mathcal{H}$ such that $f_\eta(\eta) \neq 0$ or, equivalently, there is no $\eta_0 \in \Omega$ such that $f(\eta_0) = 0$ for all $f \in \mathcal{H}$. Then by the Riesz representation theorem for each $\eta \in \Theta$ there exists a unique function $k_\eta \in \mathcal{H}$ which is called the reproducing kernel of the space \mathcal{H} such that $f(\lambda) = \langle f, k_{\eta} \rangle$ for all $f \in \mathcal{H}$. The function $\widehat{k}_{\eta} := \frac{k_{\eta}}{||k_{\eta}||}$, $\eta \in \Theta$, is called the normalized reproducing kernel of H . The prototypical FHSs are the Hardy space $H^2(\mathbb{D})$, the Bergman space $L^2_a(\mathbb{D})$, the Dirichlet space $\mathcal{D}^2(\mathbb{D})$, where $\mathbb{D} = \{z \in \mathbb{C}: |z| < 1\}$ is the unit disc and the Fock space $\mathcal{F}(\mathbb{C})$. A detailed presentation of

²⁰²⁰ *Mathematics Subject Classification*. Primary 47A30; Secondary 47A63.

Keywords. *A*-Berezin number, *A*-Berezin norm, positive operator, *A*-Berezin radius distance, *A*-Berezin norm distance, functional Hilbert space, inequality.

Received: 25 November 2023; Revised: 20 January 2024; Accepted: 03 February 2024

Communicated by Fuad Kittaneh

^{*} Corresponding author: Mehmet Gurdal ¨

Email addresses: gurdalmehmet@sdu.edu.tr (Mehmet Gürdal), @7hamdullahbasaran@gmail.com (Hamdullah Başaran)

the theory of reproducing kernels and FHSs is given, for instance in Aronzajn [3]. Note that for a bounded linear operator *V* on *H* (i.e., for $V \in \mathcal{L}(\mathcal{H})$ its Berezin symbol *V* is defined on Θ by (see Berezin [8])

$$
\widetilde{V}(\lambda) := \langle V \widehat{k}_{\eta}(z), \widehat{k}_{\eta}(z) \rangle, \eta \in \Theta.
$$

In other words, Berezin symbol \overline{V} is the function on Θ defined by restriction of the quadratic form $\langle Vx, x \rangle$ with $x \in H$ to the subset of all normalized reproducing kernels of the unit sphere in H. The Berezin set, Berezin number and Berezin norm of operators are defined, respectively, by (see [11, 27, 28])

$$
Ber(V) = Range\left(\widetilde{V}\right) = \left\{\widetilde{V}(\eta) : \eta \in \Theta\right\},\
$$

$$
ber(V) = sup\left|\widetilde{V}(\eta)\right|,
$$

and

$$
||V||_{\text{Ber}} = \sup_{\eta \in \Theta} \left\|V\widehat{k}_{\eta}\right\|_{\mathcal{H}}.
$$

It is obvious that $\text{ber}(V) \leq w(V) \leq ||V||$ and $\text{Ber}(V) \subset W(V)$, where $w(V)$ denotes the numerical radius and *W*(*V*) is the numerical range of operator *V*.

Let $\mathcal{L}(\mathcal{H})^+$ represent the positive operator cone, meaning that

 $\mathcal{L}(\mathcal{H})^+ = \{ V \in \mathcal{L}(\mathcal{H}) : \langle Vx, x \rangle \geq 0, \forall x \in \mathcal{H} \}.$

A positive semi-definite sesquilinear form

$$
\left\langle.,.\right\rangle:\mathcal{H}\times\mathcal{H}\rightarrow\mathbb{C},\ \left\langle x,y\right\rangle _{A}=\left\langle Ax,y\right\rangle ,\forall x,y\in\mathcal{H},
$$

is indicated by an operator $V \in \mathcal{L}(\mathcal{H})^+$. As expected, this semi-inner product generates a semi-norm $\|.\|_A$, which is represented by $||x||_A = \sqrt{\langle x, x \rangle_A} = ||A^{\frac{1}{2}}x||$, $\forall x \in \mathcal{H}$. It's obvious that $||x||_A = 0$ iff $x \in \mathcal{N}(A)$. Therefore, if and only if *A* is injective operator, $||x||_A$ is a norm on H , and iff $\mathcal R(A)$ is closed in H , the semi-normed space $(L(H), \|\cdot\|_A)$ is complete. The inner product on the quotient space $H/N(A)$ is known to be induced by the semi-inner product $\langle .,.\rangle_A$. If $\mathcal{R}(A)$ is not closed in \mathcal{H} , then the quotient space $\mathcal{H}/N(A)$ is not complete. Nonetheless, the completion $\mathcal{H}/\mathcal{N}(A)$ is isometrically isomorphic to the Hilbert space $\mathcal{R}(A^{1/2})$ with the inner product $\langle A^{1/2}x, A^{1/2}y \rangle$ $R_{\mathsf{R}(A)} = \left\langle P_{\overline{\mathcal{R}(A)}} x, P_{\overline{\mathcal{R}(A)}} y \right\rangle$, $\forall x, y \in \mathcal{H}$, as shown by a classic construction by de Branges and Rownvak [10]. The Hilbert space $\left(\mathcal{R}\big(A^{1/2}\big), \langle .,. \rangle_{\mathcal{R}(A^{1/2})}\right)$ for the sequel shall be abbreviated as $\mathcal{R}\big(A^{1/2}\big)$ (see to [2]). Given $V\in\mathcal{L}\left(\mathcal{H}\right)$,

$$
||V||_{A} = \sup_{\substack{x \in \overline{\mathcal{R}}(A) \\ x \neq 0}} \frac{||Vx||_{A}}{||x||_{A}} = \sup_{\substack{x \in \overline{\mathcal{R}}(A) \\ ||x|| = 1}} ||Vx||_{A} < \infty
$$

if there is *c* > 0 such that for every $x \in \overline{\mathcal{R}(A)}$, $||Vx||_A \le c ||V||_A$. Here after, we define

$$
\mathcal{L}^A(\mathcal{H}) = \{ V \in \mathcal{L}(\mathcal{H}) : ||V||_A < \infty \}
$$

and assume that $A \neq 0$ is a positive operator in $\mathcal{L}(\mathcal{H})$. Observe that $||V||_A = 0$ iff $V^*AV = 0$, and $\mathcal{L}^A(\mathcal{H})$ is not a subalgebra of $\mathcal{L}(\mathcal{H})$. Furthermore, we obtain

$$
||V||_A = \left\{ |\langle Vx, y \rangle_A| : x, y \in \overline{\mathcal{R}(A)} \text{ and } ||x|| = ||y|| = 1 \right\}
$$

for $V \in \mathcal{L}^A(\mathcal{H})$. If $\langle Vx, y \rangle_A = \langle x, Yy \rangle_A$ holds for every $x, y \in \mathcal{H}$, then an operator $Y \in \mathcal{L}(\mathcal{H})$ for $V \in \mathcal{L}(\mathcal{H})$ is termed an *A*-adjoint of an operator *V*. On the other hand, a solution to the operator equation $AX = V^*A$ can

be understood as the presence of an *A*-adjoint of *V*. The equation *AX* = *V* [∗]*A* has a bounded linear solution iff *R*(*V* [∗]*A*) ⊆ *R*(*A*), according to Douglas' theorem in [12]. If all operators allowing *A*-adjoint are in L*^A* (H) , then we get $\mathcal{L}_A(\mathcal{H}) = \{V \in \mathcal{L}(\mathcal{H}) : R(V^*A) \subseteq R(A)\}\$. The unique solution to equation $AX = V^*A$ is defined as V^{\sharp_A} if $V\in \mathcal{L}_A(\mathcal{H})$. Keep in mind that $V^{\sharp_A}=A^+V^*A$, $R(V^{\sharp_A})\subseteq \overline{R(A)}$ and $N(V^{\sharp_A})\subseteq N(V^*A)$, where A^{\dag} is $A's$ Moore–Penrose inverse. $V^{\sharp_A}\in\mathcal{L}_A(\mathcal{H})$, $(V^{\sharp_A})^{\sharp_A}=P_AVP_A$, and $((V^{\sharp_A})^{\sharp_A})^{\sharp_A}=V^{\sharp_A}$, where P_A is the orthogonal projection on $\overline{R(A)}$, may all be verified for $V^{\sharp_A}.$ Also if $Y\in \mathcal{L}_A\left(\mathcal{H}\right)$, then $VY\in \mathcal{L}_A\left(\mathcal{H}\right)$, and $(VY)^{\sharp_A} = Y^{\sharp_A}V^{\sharp_A}.$ Moreover,

$$
||V||_{A} = ||V^{\sharp_{A}}||_{A} = ||V^{\sharp_{A}}V||_{A}^{1/2} = ||VV^{\sharp_{A}}||_{A}^{1/2}.
$$
\n(1)

Recall that the set of all operators admitting $A^{1/2}$ -adjoint is denoted by $\mathcal L_{A^{1/2}}(\mathcal H)$. Douglas' theorem may be used to confirm that

$$
\mathcal{L}_{A^{1/2}}(\mathcal{H}) = \{ V \in \mathcal{L}(\mathcal{H}) : \exists c > 0, ||Vx||_A \le c \, ||x||_A, \forall x \in \mathcal{H} \}.
$$

Any operator in $\mathcal{L}_{A^{1/2}}(\mathcal{H})$ is defined the *A*-bounded operator. Furthermore, it was showed in [1] that if $V \in \mathcal{L}_{A^{1/2}}(\mathcal{H})$, then

$$
||V||_A = \sup_{x \in \mathcal{N}(A)} \frac{||Vx||_A}{||x||_A} = \sup_{x \in \mathcal{H}, ||x|| = 1} ||Vx||_A.
$$

∥*Vx*∥*^A*

In addition, , then $V(N(A)) \subseteq N(A)$ and $||Vx||_A \le ||V||_A ||x||_A$, $\forall x \in H$ if *V* is *A*-bounded. Keep in mind that there are two algebras of $\mathcal{L}(\mathcal{H})$: $\mathcal{L}_A(\mathcal{H})$ and $\mathcal{L}_{A^{1/2}}(\mathcal{H})$. In $\mathcal{L}_A(\mathcal{H})$, these two algebras are likewise neither dense nor closed (see, [1]). Additionally, the subsequent inclusions $\mathcal{L}_{A}(\mathcal{H}) \subseteq \mathcal{L}_{A^{1/2}}(\mathcal{H}) \subseteq \mathcal{L}^{A}(\mathcal{H}) \subseteq \mathcal{L}(\mathcal{H})$.

Specifically, if *AV* is selfadjoint, then an operator $V \in \mathcal{L}(\mathcal{H})$ is *A*-selfadjoint; this guarantees that $||V||_A$ = sup{ $|\langle Vx, x \rangle_A|$: $x \in H$, $||x||_A = 1$ }, as stated in [13]. Provided that AV is positive, an operator $V \in \mathcal{L}(\mathcal{H})$ is *A*-positive. It is obvious that an operator that is *A*-positive is always an *A*-selfadjoint operator. Furthermore, it should be mentioned that both *V* [♯]*^A V* and *VV*[♯]*^A* are *A*-positive. The authors of [29] examined the *A*-numerical radius of operator using these ideas. See [9, 14, 19, 30, 31, 36] for further research on the *A*-numerical radius of operators.

Now, we can give the following definitions, which given by Gürdal and Basaran [20].

Definition 1.1. $\text{Ber}_A(V) = \{ \langle V\hat{k}_\eta, \hat{k}_\eta \rangle \}$ \mathcal{A} : $\eta \in \Theta$ defines the A-Berezin set of $\left\langle \widehat{Vk_{\eta},k_{\eta}} \right\rangle$ $_A$ for $V \in \mathcal{L}(\mathcal{H})$.

It should be noted that even though H is finite dimensional, $Ber_A(V)$ is a nonempty subset of C and is generally not closed.

Definition 1.2. *(a) The A-Berezin number of V is the supremum modulus of* Ber*^A* (*V*)*, represented as* ber*^A* (*V*)*, or* $\text{ber}_A(V) = \text{sup}_{\eta \in \Theta}$ $\left\langle \widehat{Vk_{\eta}},\widehat{k}_{\eta}\right\rangle$ *A* $\vert \cdot$

(b) For operators
$$
V \in L(\mathcal{H}(\Theta))
$$
, $||V||_{A-\text{Ber}} = \sup_{\eta \in \Theta} ||AV\widehat{k}_{\mathcal{H},\lambda}||_{\mathcal{H}}$ defines the A-Berezin norm.

We can determine the Berezin number if $A = I$. Hence, this idea generalizes the Berezin number of functional Hilbert space operators, which have garnered interest from several writers lately (see, for example, [4–6, 15–18, 21, 23, 25, 26, 32–34]).

We can consult [20] for further information and proof on *A*-Berezin radius operators. $V = \Re_A (V) + i\Im(V)$ can be used to represent any operator $V \in \mathcal{L}(\mathcal{H})$. Here,

$$
\mathfrak{R}_A\left(V\right)=\frac{V+V^{\sharp_A}}{2} \text{ and } \mathfrak{J}_A\left(V\right)=\frac{V-V^{\sharp_A}}{2i}.
$$

A-selfadjoint operators are also $\Im_A(V)$ and $\Re_A(V)$. We also obtain $\|\Re_A(V)\|_{A-\text{Ber}} \leq \ker_A(V)$ and $\|\Im_A(V)\|_{A-\text{Ber}} \leq$ ber*^A* (*V*). Moreover,

 $\max \{ \|\Re_A(V)\|_{A-\text{Ber}} , \|\Im_A(V)\|_{A-\text{Ber}} \} \le \text{ber}_A(V)$.

Huban [24] discovered the inequality mentioned above. For $V \in \mathcal{L}_A(\mathcal{H})$, the following inequality

$$
\frac{1}{2}||V||_{A-\text{Ber}} \le \text{ber}_A(V) \le ||V||_{A-\text{Ber}} \tag{2}
$$

was demonstrated by the same author. Also,

$$
||VR||_{A-\text{Ber}} \le ||VR||_A \le ||V||_A ||R||_A. \tag{3}
$$

The *A*-Crawford number of $V \in \mathcal{L}_A(\mathcal{H})$ is denoted by

$$
c_A(V) = \inf \{ |\langle Vx, x \rangle_A| : x \in \mathcal{H}, ||x||_A = 1 \}
$$

(see, [36]). The number $\widetilde{c}_A(V) = \inf_{\eta \in \Theta}$
here *(V)* Becombe references of *A* Bern $\left\langle \hat{Vk_\eta},\widehat{k_\eta}\right\rangle$ *A* is also shown. That recognizes that $c_A(V) \leq \widetilde{c}_A(V) \leq$ ber*^A* (*V*). Recently, refinements of *A*-Berezin radius inequalities are examined by [7, 20, 22, 24].

In this work, we introduce *A*-Berezin radius distance and *A*-Berezin norm distance. Also, we discover *A*-Berezin radius inequalities of the product and commutator of FHS operators using the concept of *A*-Berezin radius distance and *A*-Berezin norm distance. Furthermore, we generalize the *A*-Berezin radius distance. Finally, we prove the theorem related to the *A*-Berezin radius distance.

2. Preliminaries

We need the following lemmas in work. Let $V \in \mathcal{L}(\mathcal{H})$. An operator $Y \in \mathcal{L}(\mathcal{H})$ is called (A, Θ) -adjoint of *V* if for every τ , $\mu \in \Theta$, the identity $\left\langle V\widehat{k}_{\tau},\widehat{k}_{\mu }\right\rangle$ $A = \left\langle \widehat{k}_{\tau}, \widehat{Yk}_{\mu} \right\rangle$ *A* holds. We denote the set of all operators in $\cal L$ (H) admitting (A, Θ)-adjoints by $\cal L_{A,\Theta}$ (H) (see, [20]). We denote V^{\sharp_A} by (A, Θ)-adjoint operator of V.

Lemma 2.1 ([24]). *Let* $V \in \mathcal{L}_{A,\Theta}(\mathcal{H})$ *be an* (A,Θ) -selfadjoint operator. Then

$$
\text{ber}_A(V) = ||V||_{A-\text{Ber}}.
$$
\n⁽⁴⁾

Lemma 2.2 ([22]). *Let V, Y* \in $\mathcal{L}_A(\mathcal{H})$ *. Then*

$$
\text{ber}_{A}\left(VY^{\sharp_{A}} \mp YV\right) \le 2\|Y\|_{A-\text{Ber}}\,\text{ber}_{A}\left(V\right). \tag{5}
$$

Lemma 2.3 ([19]). *If z, t* $\in \mathcal{H}$ *with* $t \neq 0$ *, then*

$$
\inf_{\mu \in \mathbb{C}} ||z - \mu t||_A^2 = \frac{||z||_A^2 ||t||_A^2 - |\langle z, t \rangle_A|^2}{||t||_A^2}.
$$
\n(6)

Lemma 2.4 ([19]). *Let z, t,* $\gamma \in \mathcal{H}$ *with* $\mu, \zeta \in \mathbb{C}$ *. Then*

$$
\left| \langle z, \gamma \rangle_A \langle t, \gamma \rangle_A \right| \leq |\langle z, t \rangle_A| + \inf_{\mu \in \mathbb{C}} \left\| z - \mu \gamma \right\|_A \inf_{\zeta \in \mathbb{C}} \left\| t - \zeta \gamma \right\|_A.
$$
 (7)

3. Inequalities of *A***-Berezin norm distance and** *A***-Berezin radius distance**

The *A*-Berezin norm distance and *A*-Berezin radius distance are introduced in this section. Furthermore, we enhance and expand upon a few inequalities concerning the FHS's *A*-Berezin radius and *A*-Berezin norm distance.

For $V \in \mathcal{L}_A(\mathcal{H})$, its *A*-seminorm distance of *V* from scalar operator is defined by $D_A(V)$, denoted as

$$
D_A(V) = \inf_{\mu \in \mathbb{C}} \left\| V - \mu I \right\|_A.
$$

Also, let *d^A* (*V*) define the *A*-numerical radius of *V* from scalar operators, i.e.,

$$
d_{A}(V)=\inf_{\mu\in\mathbb{C}}w_{A}(V-\mu I).
$$

By using compactness, we can determine that there exists μ_0 such that $d_A(V) = w_A(V - \mu_0 I)$.

Definition 3.1. Let $H = H(\Theta)$ be a FHS. For $V \in L_A(H)$, the A-Berezin norm of distance denoted by $\widetilde{D}_A(V)$, is *defined by A-Berezin norm distance of V from the scalar operators, i.e.,*

$$
\widetilde{D}_A\left(V\right)=\inf_{\lambda\in\mathbb{C}}\|V-\lambda I\|_{A-\text{Ber}}.
$$

Definition 3.2. Let $H = H(\Theta)$ be a FHS. For $V \in L_A(H)$, the A-Berezin radius of distance denoted by $\widetilde{d}_A(V)$, is *defined by A-Berezin radius distance of V from the scalar operators, i.e.,*

$$
\widetilde{d}_A(V) = \inf_{\lambda \in \mathbb{C}} \text{ber}_A(V - \lambda I).
$$

Again, applying compactness we can see that there exists λ_0 *such that* $\widetilde{d}_A(V) = \text{ber}_A(V - \lambda_0 I)$ *.*

It is clear that $\widetilde{D}_A(V) \le D_A(V)$ and $\widetilde{d}_A(V) \le d_A(V)$. Let's now demonstrate the first theorem.

Theorem 3.3. *Let* $H = H(\Theta)$ *be a FHS and let* $V \in L_A(H)$ *. Then*

$$
\sqrt{\widetilde{D}_A^2(V) + \widetilde{c}_A^2(V)} \le ||V||_{A-\text{Ber}} \le \sqrt{\widetilde{D}_A^2(V) + \text{ber}_A^2(V)}.
$$
\n(8)

Proof. From (6), we can write that

$$
\inf_{\lambda \in \mathbb{C}} \|Vx - \lambda x\|_{A}^{2} = \frac{\|Vx\|_{A}^{2} \|\lambda x\|_{A}^{2} - |\langle Vx, \lambda x \rangle_{A}|^{2}}{\|\lambda x\|_{A}^{2}},
$$
\n(9)

where *x* \in *H*. Now, replacing *x* by \widehat{k}_η in (9), we reach

$$
\inf_{\lambda \in \mathbb{C}} \left\| \widehat{VR}_{\eta} - \widehat{AR}_{\eta} \right\|_{A}^{2} = \frac{\left\| \widehat{VR}_{\eta} \right\|_{A}^{2} \left\| \widehat{AR}_{\eta} \right\|_{A}^{2} - \left| \left\langle \widehat{VR}_{\eta}, \widehat{AR}_{\eta} \right\rangle_{A} \right|^{2}}{\left\| \widehat{AR}_{\eta} \right\|_{A}^{2}}
$$
\n
$$
= \left\| \widehat{VR}_{\eta} \right\|_{A}^{2} - \left| \left\langle \widehat{VR}_{\eta}, \widehat{R}_{\eta} \right\rangle_{A} \right|^{2}
$$
\n
$$
\leq \|V\|_{A-\text{Ber}}^{2} - \overline{c}_{A}^{2} (V).
$$

By taking the supremum over $\eta \in \Theta$, we obtain

$$
\widetilde{D}_A^2(V) + \widetilde{c}_A^2(V) \le ||V||_{A-\text{Ber}}^2\,,\tag{10}
$$

which has the first inequality at the theorem. Next, we prove the second inequality. From Lemma 2.3, we get

$$
||z||_{A}^{2}||t||_{A}^{2} - |\langle z, t\rangle_{A}|^{2} = ||t||_{A}^{2} \inf_{\lambda \in \mathbb{C}} ||z - \lambda t||_{A}^{2}.
$$
\n(11)

Replacing *z* by $V\widehat{k}_\eta$ and *t* by \widehat{k}_η in (11), we reach

$$
\left\|V\widehat{k}_{\eta}\right\|_{A}^{2}\left\|\widehat{k}_{\eta}\right\|_{A}^{2}-\left|\left\langle V\widehat{k}_{\eta},\widehat{k}_{\eta}\right\rangle_{A}\right|^{2}=\inf_{\lambda\in\mathbb{C}}\left\|V\widehat{k}_{\eta}-\lambda\widehat{k}_{\eta}\right\|_{A}^{2}.
$$

That is

$$
\left\| \widehat{V k_{\eta}} \right\|_{A}^{2} \left\| \widehat{k_{\eta}} \right\|_{A}^{2} = \inf_{\lambda \in \mathbb{C}} \left\| \widehat{V k_{\eta}} - \widehat{\lambda k_{\eta}} \right\|_{A}^{2} + \left| \left\langle \widehat{V k_{\eta}} , \widehat{k_{\eta}} \right\rangle_{A} \right|^{2}.
$$

Taking the supremum over $\eta \in \Theta$ in the above inequality, we have

$$
||V||_{A-\text{Ber}}^2 \le \inf_{\lambda \in \mathbb{C}} ||V - \lambda I||_{A-\text{Ber}}^2 + \text{ber}_A^2(V) = \widetilde{D}_A^2(V) + \text{ber}_A^2(V).
$$
\n(12)

By combining (10) and (12), we get

$$
\widetilde{D}_A^2(V) + \widetilde{c}_A^2(V) \le ||V||_{A-\text{Ber}}^2 \le \widetilde{D}_A^2(V) + \text{ber}_A^2(V).
$$

Consequently, we have

$$
\sqrt{\widetilde{D}_A^2(V) + \widetilde{c}_A^2(V)} \le ||V||_{A-\text{Ber}} \le \sqrt{\widetilde{D}_A^2(V) + \text{ber}_A^2(V)}.
$$

We completes the proof. \square

In [35], Yamancı and Karlı show that if $V \in \mathcal{L}_A(\mathcal{H})$, then

$$
\text{ber}^2(V) + \text{ber}\left(V^2\right) \le \inf_{\lambda \in \mathbb{C}} \left\|V - \lambda I\right\|^2. \tag{13}
$$

The inequality (13) is generalized by the following theorem.

Theorem 3.4. *If* $V \in \mathcal{L}_A(\mathcal{H})$ *, then we have*

$$
\operatorname{ber}_{A}^{2r}(V) \leq 2^{r-1} \left(\operatorname{ber}_{A}^{r}\left(V^{2}\right) + \widetilde{D}_{A}^{2r}\left(V\right) \right),
$$

for any $r \geq 1$ *.*

Proof. Let $\eta \in \Theta$ be an arbitrary. Replacing *z* by $V\hat{k}_{\eta}$, *t* by $V^{\sharp_A}\hat{k}_{\eta}$ and γ by \hat{k}_{η} in (7), we have

$$
\left|\left\langle\widehat{V}\widehat{k}_{\eta},\widehat{k}_{\eta}\right\rangle_{A}\left\langle V^{\sharp_A}\widehat{k}_{\eta},\widehat{k}_{\eta}\right\rangle_{A}\right|\leq\left|\left\langle\widehat{V}\widehat{k}_{\eta},V^{\sharp_A}\widehat{k}_{\eta}\right\rangle_{A}\right|+\inf_{\lambda\in\mathbb{C}}\left\|\widehat{V}\widehat{k}_{\eta}-\lambda\widehat{k}_{\eta}\right\|_{A}\inf_{\xi\in\mathbb{C}}\left\|V^{\sharp_A}\widehat{k}_{\eta}-\xi\widehat{k}_{\eta}\right\|_{A}.
$$

Hence,

$$
\left| \left\langle \widehat{V}\widehat{k}_{\eta}, \widehat{k}_{\eta} \right\rangle_{A} \right|^{2} \leq \left| \left\langle V^{2}\widehat{k}_{\eta}, \widehat{k}_{\eta} \right\rangle_{A} \right| + \inf_{\lambda \in \mathbb{C}} \left\| \widehat{V}\widehat{k}_{\eta} - \lambda \widehat{k}_{\eta} \right\|_{A} \inf_{\xi \in \mathbb{C}} \left\| V^{\sharp_{A}} \widehat{k}_{\eta} - \xi \widehat{k}_{\eta} \right\|_{A}.
$$

From the elementary inequality $\left(\frac{x+y}{2}\right)$ $\left(\frac{y}{2}\right)^r \leq \frac{x^r + y^r}{2}$ $\frac{y+y^r}{2}$, *x*, *y* > 0 and *r* \geq 1, we get

$$
\left|\left\langle V\widehat{k}_{\eta},\widehat{k}_{\eta}\right\rangle_{A}\right|^{2r}\leq2^{r-1}\left(\left|\left\langle V^{2}\widehat{k}_{\eta},\widehat{k}_{\eta}\right\rangle_{A}\right|^{r}+\inf_{\lambda\in\mathbb{C}}\left\Vert V\widehat{k}_{\eta}-\lambda\widehat{k}_{\eta}\right\Vert_{A}^{r}\inf_{\xi\in\mathbb{C}}\left\Vert V^{\sharp_{A}}\widehat{k}_{\eta}-\xi\widehat{k}_{\eta}\right\Vert_{A}^{r}\right).
$$

Taking the supremum in the inequality above over $\eta \in \Theta$, we have

$$
\mathrm{ber}_{A}^{2r}(V) \leq 2^{r-1} \left(\mathrm{ber}_{A}^{r}\left(V^{2}\right) + \inf_{\lambda \in \mathbb{C}} \left\| V - \lambda I \right\|_{A-\mathrm{Ber}}^{r} \inf_{\xi \in \mathbb{C}} \left\| V^{\sharp_{A}} - \xi I \right\|_{A-\mathrm{Ber}}^{r} \right).
$$

Finally, by taking the infimum λ , $\xi \in \mathbb{C}$, we reach

$$
\operatorname{ber}_{A}^{2r}(V) \leq 2^{r-1} \left(\operatorname{ber}_{A}^{r}\left(V^{2}\right) + \widetilde{D}_{A}^{r}\left(V\right) \widetilde{D}_{A}^{r}\left(V^{\sharp_{A}}\right) \right).
$$

Moreover, for every $V \in \mathcal{L}_A(\mathcal{H})$ and for every $\lambda \in \mathbb{C}$ one can see that

$$
||V - \lambda I||_{A-\text{Ber}} = ||(V - \lambda I)^{\sharp_A}||_{A-\text{Ber}}
$$

= $||V^{\sharp_A} - \overline{\lambda}P||_{A-\text{Ber}} = ||(V - \lambda P)^{\sharp_A}||_{A-\text{Ber}}$
= $||V - \lambda P||_{A-\text{Ber}}$.

Hence, we get

$$
\widetilde{D}_{A}\left(V^{\sharp_{A}}\right) = \inf_{\lambda \in \mathbb{C}}\left\|V^{\sharp_{A}} - \lambda I\right\|_{A-\text{Ber}} = \inf_{\lambda \in \mathbb{C}}\left\|V^{\sharp_{A}} - \lambda P\right\|_{A-\text{Ber}}
$$
\n
$$
= \inf_{\lambda \in \mathbb{C}}\left\|\left(V - \overline{\lambda}I\right)^{\sharp_{A}}\right\|_{A-\text{Ber}}
$$
\n
$$
= \inf_{\lambda \in \mathbb{C}}\left\|V - \overline{\lambda}I\right\|_{A-\text{Ber}}
$$
\n
$$
= \widetilde{D}_{A}\left(V\right).
$$

Thus,

$$
\operatorname{ber}^{2r}_{A}(V) \leq 2^{r-1} \left(\operatorname{ber}^r_{A}\left(V^2 \right) + \widetilde{D}_{A}^{2r}\left(V \right) \right).
$$

The evidence is now complete. $\quad \Box$

Specifically, taking into account that $r = 1$ in Theorem 3.4, we obtain the subsequent corollary.

Corollary 3.5. *If* $V \in \mathcal{L}_A(\mathcal{H})$ *, then*

$$
\operatorname{ber}_{A}(V) \leq \sqrt{\operatorname{ber}_{A}(V^{2}) + \widetilde{D}_{A}^{2}(V)}.
$$

Now, applying compactness argument can see that there exists $\lambda_0 \in \mathbb{C}$ such that $\widetilde{D}_A(V, R) = \inf_{\lambda_0 \in \mathbb{C}} ||V - \lambda_0 R||_{A-\text{Ber}}$. Utilizing this generalizing distance \widetilde{D}_A (*V*,*R*), and proceeding similarly as in Theorem 3.3, we get the subsequent consequence.

Corollary 3.6. *If* $V, Y \in L_A(\mathcal{H})$ *, then*

$$
\frac{\sqrt{\widetilde m_A^2\left(Y\right)\widetilde D_A^2\left(V,Y\right) +\widetilde c_A^2\left(Y^{\sharp_A}V\right)}}{\|Y\|_{A-\mathrm{Ber}}}\le \|V\|_{A-\mathrm{Ber}}\le \frac{\sqrt{\|Y\|_{A-\mathrm{Ber}}^2\widetilde D_A^2\left(V,Y\right) +\mathrm{ber}_A^2\left(Y^{\sharp_A}V\right)}}{\widetilde m_A\left(Y\right)},
$$
 where $\widetilde m_A\left(Y\right)=\mathrm{inf}_{\eta\in\Theta}\left\| \widehat {Y}\widehat k_\eta\right\|_A.$

We shall now demonstrate the subsequent theorem.

Theorem 3.7. *Let* $H = H(\Theta)$ *be an FHS and let* $V, Y \in L_{A,\Theta}(\mathcal{H})$ *. Then*

$$
\text{ber}_{A}(VY) \leq ||V||_{A-\text{Ber}} \text{ber}_{A}(Y) + \frac{1}{2} \min \left\{ \text{ber}_{A}\left(VY + YV^{\sharp_{A}}\right), \text{ber}_{A}\left(VY - YV^{\sharp_{A}}\right) \right\}.
$$
 (14)

Proof. Let $\theta \in \mathbb{R}$. It is clear that $\Re_A (e^{i\theta} VY)$ is an (A, Θ) -selfadjoint operator. Hence, we have

$$
\|\Re_A (e^{i\theta} VY)\|_{A-\text{Ber}} = \text{ber}_A \left(\Re_A (e^{i\theta} VY)\right) \text{ (by (4))}
$$
\n
$$
= \text{ber}_A \left(\frac{1}{2} \left(e^{i\theta} VY + e^{-i\theta} Y^{\sharp_A} V^{\sharp_A}\right)\right)
$$
\n
$$
= \text{ber}_A \left(\frac{1}{2} \left(e^{i\theta} VY + e^{-i\theta} VY^{\sharp_A} + e^{-i\theta} Y^{\sharp_A} V^{\sharp_A} - e^{-i\theta} VY^{\sharp_A}\right)\right)
$$
\n
$$
= \text{ber}_A \left(V\Re_A (e^{i\theta} Y) + \frac{1}{2} e^{-i\theta} \left(Y^{\sharp_A} V^{\sharp_A} - VY^{\sharp_A}\right)\right)
$$
\n
$$
= \text{ber}_A \left(V\Re_A (e^{i\theta} Y)\right) + \text{ber}_A \left(\frac{1}{2} e^{-i\theta} \left(Y^{\sharp_A} V^{\sharp_A} - VY^{\sharp_A}\right)\right)
$$
\n
$$
\leq \left\|V\Re_A (e^{i\theta} Y)\right\|_{A-\text{Ber}} + \frac{1}{2} \text{ber}_A \left(Y^{\sharp_A} V^{\sharp_A} - VY^{\sharp_A}\right)
$$
\n
$$
\leq \|V\|_{A-\text{Ber}} \left\| \Re_A (e^{i\theta} Y)\right\|_{A-\text{Ber}} + \frac{1}{2} \text{ber}_A \left(Y^{\sharp_A} V^{\sharp_A} - VY^{\sharp_A}\right)
$$
\n
$$
\leq \|V\|_{A-\text{Ber}} \text{ ber}_A (Y) + \frac{1}{2} \text{ber}_A \left(Y^{\sharp_A} V^{\sharp_A} - VY^{\sharp_A}\right).
$$

Therefore, by taking the supremum over all $\theta \in \mathbb{R}$, we have

$$
\text{ber}_{A}(VY) \leq ||V||_{A-\text{Ber}} \text{ber}_{A}(Y) + \frac{1}{2} \text{ber}_{A}\left(Y^{\sharp_{A}} V^{\sharp_{A}} - VY^{\sharp_{A}}\right).
$$
\n(15)

.

On the other hand, for $\eta \in \Theta$ we observe that

$$
\left| \left\langle \left(Y^{\sharp_A} V^{\sharp_A} - V Y^{\sharp_A} \right) \widehat{k}_{\eta}, \widehat{k}_{\eta} \right\rangle_A \right| = \left| \left\langle Y^{\sharp_A} V^{\sharp_A} \widehat{k}_{\eta}, \widehat{k}_{\eta} \right\rangle_A - \left\langle V Y^{\sharp_A} \widehat{k}_{\eta}, \widehat{k}_{\eta} \right\rangle_A \right|
$$

=
$$
\left| \left\langle Y^{\sharp_A} V^{\sharp_A} \widehat{k}_{\eta}, \widehat{k}_{\eta} \right\rangle_A - \left\langle P_{\overline{\mathcal{R}(A)}} V P_{\overline{\mathcal{R}(A)}} Y^{\sharp_A} \widehat{k}_{\eta}, \widehat{k}_{\eta} \right\rangle_A \right|
$$

Hence, we have

$$
\left| \left\langle \left(Y^{\sharp_A} V^{\sharp_A} - V Y^{\sharp_A} \right) \widehat{k}_{\eta}, \widehat{k}_{\eta} \right\rangle_A \right| = \left| \left\langle Y^{\sharp_A} V^{\sharp_A} \widehat{k}_{\eta}, \widehat{k}_{\eta} \right\rangle_A - \left\langle \left(V^{\sharp_A} \right)^{\sharp_A} Y^{\sharp_A} \widehat{k}_{\eta}, \widehat{k}_{\eta} \right\rangle_A \right|
$$

$$
= \left| \left\langle \left(VY - YV^{\sharp_A} \right)^{\sharp_A} \widehat{k}_{\eta}, \widehat{k}_{\eta} \right\rangle_A \right|
$$

$$
= \left| \left\langle \left(VY - YV^{\sharp_A} \right) \widehat{k}_{\eta}, \widehat{k}_{\eta} \right\rangle_A \right|.
$$

It follows that ber_A $(Y^{\sharp_A} V^{\sharp_A} - VY^{\sharp_A})$ = ber_A $(VY - YV^{\sharp_A})$. So, the following inequality have been by (15):

$$
\text{ber}_{A}(VY) \leq ||V||_{A-\text{Ber}} \text{ber}_{A}(Y) + \frac{1}{2} \text{ber}_{A}\left(VY - YV^{\sharp_{A}}\right). \tag{16}
$$

Also, by replacing *V* by *iV* in (15), we obtain

$$
\text{ber}_{A}(VY) \leq ||V||_{A-\text{Ber}} \text{ber}_{A}(Y) + \frac{1}{2} \text{ber}_{A}\left(VY + YV^{\sharp_{A}}\right). \tag{17}
$$

Thus, the proof is completed by combining (16) together with (17). \square

We are now prepared to demonstrate the subsequent theorem.

Theorem 3.8. *If* $V, Y \in \mathcal{L}_A(\mathcal{H})$ *, then we have*

$$
\text{ber}_{A}(VY) \leq \min\left\{ \left(\|V\|_{A-\text{Ber}} + \widetilde{D}_{A}(V) \right) \text{ber}_{A}(Y), \left(\|Y\|_{A-\text{Ber}} + \widetilde{D}_{A}(Y) \right) \text{ber}_{A}(V) \right\}.
$$
\n(18)

Proof. Let $\eta \in \Theta$ be an arbitrary. There exists $\lambda_0 \in \mathbb{C}$ such that $\widetilde{D}_A(V) = \inf_{\lambda_0 \in \mathbb{C}} ||V - \lambda_0 I||_{A-\text{Ber}}$. If $\lambda_0 = 0$, then by the inequalities in (2), we have

$$
\mathrm{ber}_{A}(VY) \leq ||VY||_{A-\mathrm{Ber}} \leq ||V||_{A-\mathrm{Ber}}||Y||_{A-\mathrm{Ber}} \leq 2||V||_{A-\mathrm{Ber}}||Y||_{A-\mathrm{Ber}} = (||V||_{A-\mathrm{Ber}} + \widetilde{D}_{A}(V))\mathrm{ber}_{A}(Y).
$$

Next, we choose $\lambda_0 \neq 0$ and $\xi = \frac{\lambda_0}{|\lambda_0|}$. Then, from the inequality (14), we have

$$
\begin{split} \n\text{ber}_{A} \left(VY \right) &\leq \text{ber}_{A} \left(\xi VY \right) \leq ||V||_{A-\text{Ber}} \text{ ber}_{A} \left(Y \right) + \frac{1}{2} \text{ber}_{A} \left(\xi VY - \overline{\xi} Y^{^{\sharp_A}} \right) \\ \n&= ||V||_{A-\text{Ber}} \text{ber}_{A} \left(Y \right) + \frac{1}{2} \text{ber}_{A} \left(\overline{\xi} Y^{\sharp_A} V^{\sharp_A} - \xi \left(V^{\sharp_A} \right)^{\sharp_A} Y^{\sharp_A} \right) \\ \n&= ||V||_{A-\text{Ber}} \text{ber}_{A} \left(Y \right) + \frac{1}{2} \text{ber}_{A} \left(\xi \left(V^{\sharp_A} \right)^{\sharp_A} \left(Y^{\sharp_A} \right)^{\sharp_A} - \overline{\xi} \left(Y^{\sharp_A} \right)^{\sharp_A} V^{\sharp_A} \right) \\ \n&= ||V||_{A-\text{Ber}} \text{ber}_{A} \left(Y \right) + \frac{1}{2} \text{ber}_{A} \left(\xi \left(V^{\sharp_A} \right)^{\sharp_A} - \lambda_0 I \right) \left(Y^{\sharp_A} \right)^{\sharp_A} - \overline{\xi} \left(Y^{\sharp_A} \right)^{\sharp_A} \left((V^{\sharp_A})^{\sharp_A} - \lambda_0 I \right)^{\sharp_A} \right) \\ \n&\leq ||V||_{A-\text{Ber}} \text{ber}_{A} \left(Y \right) + \left\| \left(V^{\sharp_A} \right)^{\sharp_A} - \lambda_0 I \right\|_{A-\text{Ber}} \text{ber}_{A} \left(\left(Y^{\sharp_A} \right)^{\sharp_A} \right) \left(\text{by (5)} \right) \\ \n&\leq ||V||_{A-\text{Ber}} \text{ber}_{A} \left(Y \right) + \left\| \left(V^{\sharp_A} \right)^{\sharp_A} - \lambda_0 I \right\|_{A-\text{Ber}} \text{ber}_{A} \left(Y \right) . \n\end{split}
$$

Next, by using the $\left\|Y^{\sharp_A}\right\|_{A-\mathrm{Ber}} = \|Y\|_{A-\mathrm{Ber}}$, for all $Y \in \mathcal{L}_A(\mathcal{H})$ we can see that

$$
\left\| \left(V^{\sharp_A} \right)^{\sharp_A} - \lambda_0 I \right\|_{A-\text{Ber}} = \left\| V^{\sharp_A} - \lambda_0 P \right\|_{A-\text{Ber}} = \left\| \left(V - \lambda_0 I \right)^{\sharp_A} \right\|_{A-\text{Ber}} = \left\| V - \lambda_0 I \right\|_{A-\text{Ber}}.
$$

Hence,

$$
\text{ber}_{A}(VY) \leq ||V||_{A-\text{Ber}} \text{ber}_{A}(Y) + ||V - \lambda_{0}I||_{A-\text{Ber}} \text{ber}_{A}(Y) = (||V||_{A-\text{Ber}} + \widetilde{D}_{A}(V)) \text{ber}_{A}(Y) \tag{19}
$$

Replacing *V* by Y^{\sharp_A} and *Y* by V^{\sharp_A} in the above inequality and since $\widetilde{D}_A(Y^{\sharp_A}) = \widetilde{D}_A(Y)$, we have

$$
\text{ber}_{A}(VY) \leq (||Y||_{A-\text{Ber}} + \widetilde{D}_{A}(Y))\text{ber}_{A}(V). \tag{20}
$$

Combining the inequalities in (19) and (20), we reach the inequality

$$
\operatorname{ber}_{A}(VY) \leq \min \left\{ \left(\|V\|_{A-\text{Ber}} + \widetilde{D}_{A}(V) \right) \operatorname{ber}_{A}(Y), \left(\|Y\|_{A-\text{Ber}} + \widetilde{D}_{A}(Y) \right) \operatorname{ber}_{A}(V) \right\}.
$$

 \Box

Corollary 3.9. *If V, Y* \in \mathcal{L}_A (*H*)*, then we have*

 $\widetilde{D}_A(V) \leq ||V||_{A-\mathrm{Ber}}$ *and* $\widetilde{D}_A(Y) \leq ||Y||_{A-\mathrm{Ber}}$,

$$
\left(\left\| V \right\|_{A-\text{Ber}} + \widetilde{D}_A \left(V \right) \right) \text{ber}_A \left(Y \right) \leq 2 \left\| V \right\|_{A-\text{Ber}} \text{ber}_A \left(Y \right),\,
$$

and

 $(|Y||_{A-\text{Ber}} + \widetilde{D}_A(Y)|\text{ber}_A(V) \leq 2 ||Y||_{A-\text{Ber}} \text{ber}_A(V).$

Now, we obtain the following inequalities, which is *A*-Berezin distance $\widetilde{d}_A(V)$.

Theorem 3.10. *Let* $H = H(\Theta)$ *be a FHS and let* $V \in L_A(H)$ *. Then*

$$
||V||_{A-\text{Ber}} \le \text{ber}_A(V) + \overline{d}_A(V) \le 2\text{ber}_A(V). \tag{21}
$$

Proof. There exists $\lambda_0 \in \mathbb{C}$ such that $\widetilde{d}_A(V) = \inf_{\lambda_0 \in \mathbb{C}} \text{ber}_A(V - \lambda_0 I)$. If $\lambda_0 = 0$, then $||V||_{A-\text{Ber}} \leq 2\text{ber}_A(V) =$ $\text{ber}_{A}(V) + \text{ber}_{A}(V - \lambda_{0}I) = \text{ber}_{A}(V) + \tilde{d}_{A}(V).$

Next, we choose $\lambda_0 \neq 0$ and $\xi = \frac{\lambda_0}{|\lambda_0|}$. Hence,

∥*V*∥*A*−Ber = ∥ξ*V*∥*A*−Ber = ∥R*^A* (ξ*V*) + *i*J*^A* (ξ*V*)∥*A*−Ber [≤] [∥]R*^A* (ξ*V*)∥*A*−Ber ⁺ [∥]J*^A* (ξ*V*)∥*A*−Ber $= ||\Re_A (\xi V)||_{A-\text{Bor}} + ||\Im_A (\xi (V - \lambda_0 I))||_{A-\text{Bor}}$ \leq ber_{*A*} (*V*) + ber_{*A*} (*V* – $\lambda_0 I$).

Therefore, $||V||_{A-\text{Ber}} \leq \text{ber}_A(V) + \widetilde{d}_A(V)$. The second inequality follows from the fact that $\widetilde{d}_A(V) \leq$ $ber_A(V). \square$

Corollary 3.11. *Let* $V, Y \in \mathcal{L}_A(\mathcal{H})$ *. Then*

$$
||VY||_{A-\text{Ber}} \leq (\text{ber}_A(V) + \widetilde{d}_A(V)) (\text{ber}_A(Y) + \widetilde{d}_A(Y)) \leq 4\text{ber}_A(V)\text{ ber}_A(Y).
$$

Proof. There exists $\lambda_0 \in \mathbb{C}$ such that $\widetilde{d}_A(V) = \inf_{\lambda_0 \in \mathbb{C}} \text{ber}_A(V - \lambda_0 I)$. If $\lambda_0 = 0$, then $||V||_{A-\text{Ber}} \leq 2\text{ber}_A(V) =$ $\text{ber}_{A}(V) + \text{ber}_{A}(V - \lambda I) = \text{ber}_{A}(V) + \widetilde{d}_{A}(V).$

Next, we choose $\lambda_0 \neq 0$ and $\xi = \frac{\lambda_0}{|\lambda_0|}$. Hence,

$$
||VY||_{A-\text{Ber}} \le ||V||_{A-\text{Ber}} ||Y||_{A-\text{Ber}} \le (\text{ber}_A(V) + \widetilde{d}_A(V)) (\text{ber}_A(Y) + \widetilde{d}_A(Y)) (\text{by (21)})
$$

\$\leq\$ 4\text{ber}_A(V) $\text{ber}_A(Y)$ (by $\text{ber}_A(V) \ge \widetilde{d}_A(V)$).

 \Box

Assuming *V* to be *A*-positive, we then obtain the following inequalities.

Theorem 3.12. *Let* $H = H(\Theta)$ *be a FHS and V, Y* \in $\mathcal{L}_{A^{1/2}}(\mathcal{H})$ *. If V is A-positive, then*

 $\text{ber}_A(VY) \leq ||V||_{A-\text{Ber}} \text{ber}_A(Y)$ *and* $\text{ber}_A(YV) \leq ||Y||_{A-\text{Ber}} \text{ber}_A(V)$.

Proof. For all $\beta \in [0, 1]$, we get

$$
\begin{split} \text{ber}_{A} \left(VY \right) &= \text{ber}_{A} \left(\left(V - \beta \, \| V \|_{A - \text{Ber}} \, I \right) Y + \beta \, \| V \|_{A - \text{Ber}} \, Y \right) \\ &\leq \text{ber}_{A} \left(\left(V - \beta \, \| V \|_{A - \text{Ber}} \, I \right) Y \right) + \beta \, \| V \|_{A - \text{Ber}} \, \text{ber}_{A} \left(Y \right) \\ &\leq \left\| \left(V - \beta \, \| V \|_{A - \text{Ber}} \, I \right) Y \right\|_{A - \text{Ber}} + \beta \, \| V \|_{A - \text{Ber}} \, \text{ber}_{A} \left(Y \right) \\ &\leq \left\| V - \beta \, \| V \|_{A - \text{Ber}} \, I \right\|_{A - \text{Ber}} \| Y \|_{A - \text{Ber}} + \beta \, \| V \|_{A - \text{Ber}} \, \text{ber}_{A} \left(Y \right) . \end{split}
$$

Since *V* is *A*-positive, we can see that $||V - \beta||V||_{A-\text{Ber}} I||_{A-\text{Ber}} = (1 - \beta)||V||_{A-\text{Ber}}$ for all $\beta \in [0, 1]$. Hence

$$
\text{ber}_{A}(VY) \leq ||V||_{A-\text{Ber}} (1 - \beta I ||Y||_{A-\text{Ber}} + \beta \text{ber}_{A}(Y))
$$

(22)

Therefore, by considering $\beta = 1$ in (22), we have

 $\text{ber}_{A}(VY) \leq ||V||_{A-\text{Ber}} \text{ber}_{A}(Y).$

Similarly,

 $\text{ber}_A(YV) \leq ||Y||_{A-\text{Ber}} \text{ber}_A(V)$.

This completes the proof. \square

The following Berezin radius inequalities for the product of FHS operators are obtained by taking $A = I$ in Theorem 3.12.

Corollary 3.13. *If* $V, Y \in \mathcal{L}(\mathcal{H})$, $V \geq 0$, *then we have*

 $\text{ber}(VY) \leq ||V||_{\text{Ber}} \text{ber}(Y)$ *and* $\text{ber}(YV) \leq ||Y||_{\text{Ber}} \text{ber}(V)$.

We shall now demonstrate the next theorem.

Theorem 3.14. *If* $V, Y \in L_A(\mathcal{H})$ *, then we have*

 $\text{ber}_{A}(VY \mp YV) \leq 4\text{ber}_{A}(V)\text{ber}_{A}(Y).$ (23)

Proof. (2) and (3) imply that

 $\text{ber}_{A}(VY + YV) \leq \text{ber}_{A}(VY) + \text{ber}_{A}(YV)$ ≤ ∥*V*∥*A*−Ber ber*^A* (*Y*) + ∥*Y*∥*A*−Ber ber*^A* (*V*) (by Theorem 3.12) ≤ 2ber*^A* (*V*) ber*^A* (*Y*) + 2ber*^A* (*V*) ber*^A* (*Y*) $=$ 4ber_{*A*} (*V*) ber_{*A*} (*Y*).

This completes the evidence. \square

We derive the following theorem from Theorem 3.14,

Theorem 3.15. *Let* $H = H(\Theta)$ *be a FHS and V, Y* \in $\mathcal{L}_A(\mathcal{H})$ *. Then*

 $\text{ber}_{A}(VY - YV) \leq 4\widetilde{d}_{A}(V)\widetilde{d}_{A}(Y) \leq 4\text{ber}_{A}(V)\text{ber}_{A}(Y).$

Proof. Let $\lambda_0, \xi_0 \in \mathbb{C}$ such that $\widetilde{d}_A(V) = \inf_{\lambda_0 \in \mathbb{C}} \text{ber}_A(V - \lambda_0 I)$ and $\widetilde{d}_A(Y) = \inf_{\xi_0 \in \mathbb{C}} \text{ber}_A(Y - \xi_0 I)$. Then, we get

$$
\begin{aligned} \text{ber}_{A} \left(VY - YV \right) &= \text{ber}_{A} \left(\left(V - \lambda_{0} I \right) \left(Y - \xi_{0} I \right) - \left(Y - \xi_{0} I \right) \left(V - \lambda_{0} I \right) \right) \\ &\leq 4 \text{ber}_{A} \left(V - \lambda_{0} I \right) \text{ber}_{A} \left(Y - \xi_{0} I \right) \text{ (by (23))} \\ &\leq 4 \widetilde{d}_{A} \left(V \right) \widetilde{d}_{A} \left(Y \right). \end{aligned}
$$

Thus,

 $\text{ber}_{A}(VY - YV) \leq 4\widetilde{d}_{A}(V)\widetilde{d}_{A}(Y).$

The second desired inequality follows from the fact that $\widetilde{d}_A(V) \leq \text{ber}_A(V)$ and $\widetilde{d}_A(Y) \leq \text{ber}_A(Y)$. \Box

We need the following theorem to prove the next corollary.

Theorem 3.16. *Let* $H = H(\Theta)$ *be a FHS and let* V_1 , V_2 , Y_1 , $Y_2 \in L_A(H)$ *. Then*

$$
\text{ber}_{A}(V_{1}Y_{1} \pm Y_{2}V_{2}) \leq \sqrt{\left\|V_{1}^{\sharp_{A}}V_{1} + V_{2}V_{2}^{\sharp_{A}}\right\|_{A-\text{Ber}}}\sqrt{\left\|Y_{1}Y_{1}^{\sharp_{A}} + Y_{2}^{\sharp_{A}}Y_{2}\right\|_{A-\text{Ber}}}.
$$

Proof. Let $\eta \in \Theta$ be an arbitrary. An application of Cauchy-Schwarz inequality obtains

$$
\left| \left\langle (V_1 Y_1 \pm Y_2 V_2) \widehat{k}_{\eta}, \widehat{k}_{\eta} \right\rangle_A \right| \leq \left| \left\langle V_1 Y_1 \widehat{k}_{\eta}, \widehat{k}_{\eta} \right\rangle_A + \left\langle Y_2 V_2 \widehat{k}_{\eta}, \widehat{k}_{\eta} \right\rangle_A \right|
$$
\n
$$
= \left| \left\langle Y_1 \widehat{k}_{\eta}, V_1^{*_{A}} \widehat{k}_{\eta} \right\rangle_A + \left\langle V_2 \widehat{k}_{\eta}, Y_2^{*_{A}} \widehat{k}_{\eta} \right\rangle_A \right|
$$
\n
$$
\leq \left(\left\| Y_1 \widehat{k}_{\eta} \right\|_A \left\| V_1^{*_{A}} \widehat{k}_{\eta} \right\|_A + \left\| V_2 \widehat{k}_{\eta} \right\|_A \left\| Y_2^{*_{A}} \widehat{k}_{\eta} \right\|_A \right)
$$
\n
$$
\leq \left(\left\| V_1^{*_{A}} \widehat{k}_{\eta} \right\|_A^2 + \left\| V_2 \widehat{k}_{\eta} \right\|_A^2 \right) \left(\left\| Y_1 \widehat{k}_{\eta} \right\|_A^2 + \left\| Y_2^{*_{A}} \widehat{k}_{\eta} \right\|_A^2 \right)
$$
\n
$$
= \sqrt{\left(\left(V_2^{*_{A}} V_2 + V_1 V_1^{*_{A}} \right) \widehat{k}_{\eta}, \widehat{k}_{\eta} \right\rangle_A} \sqrt{\left(\left(Y_1^{*_{A}} Y_1 + Y_2 Y_2^{*_{A}} \right) \widehat{k}_{\eta}, \widehat{k}_{\eta} \right\rangle_A}
$$
\n
$$
\leq \sqrt{\left\| V_1^{*_{A}} V_1 + V_2 V_2^{*_{A}} \right\|_{A-\text{Ber}}} \sqrt{\left\| Y_1 Y_1^{*_{A}} + Y_2^{*_{A}} Y_2 \right\|_{A-\text{Ber}}}.
$$

Hence,

$$
\left|\left\langle \left(V_1Y_1\pm Y_2V_2\right)\widehat{k}_{\eta},\widehat{k}_{\eta}\right\rangle_A\right|\leq \sqrt{\left\|V_1^{\sharp_A}V_1+V_2V_2^{\sharp_A}\right\|_{A-\mathrm{Ber}}}\sqrt{\left\|Y_1Y_1^{\sharp_A}+Y_2^{\sharp_A}Y_2\right\|_{A-\mathrm{Ber}}}.
$$

By taking the supremum over $\eta \in \Theta$ in the above inequality, we get

$$
\mathrm{ber}_{A}(V_{1}Y_{1} \pm Y_{2}V_{2}) \leq \sqrt{\left\|V_{1}^{\sharp_{A}}V_{1} + V_{2}V_{2}^{\sharp_{A}}\right\|_{A-\mathrm{Ber}}}\sqrt{\left\|Y_{1}Y_{1}^{\sharp_{A}} + Y_{2}^{\sharp_{A}}Y_{2}\right\|_{A-\mathrm{Ber}}}.
$$

The proof is now complete. \square

Corollary 3.17. *If* $V, Y \in L_A(\mathcal{H})$ *, then we have*

$$
\text{ber}_{A}(VY \mp YV) \le 2\sqrt{2}||V||_{A-\text{Ber}}\text{ber}_{A}(Y). \tag{24}
$$

Proof. By putting $V_1 = V_2 = V$ and $Y_1 = Y_2 = Y$ in Theorem 3.16 and then using the inequality in [22, Corollary 1] we have

$$
\begin{aligned} \text{ber}_{A} \left(VY \pm YV \right) &\leq \sqrt{\left\| VV^{\sharp_A} + V^{\sharp_A}V \right\|_{A-\text{Ber}}} \sqrt{\left\| YY^{\sharp_A} + Y^{\sharp_A}Y \right\|_{A-\text{Ber}}} \\ &\leq 2 \sqrt{\left\| VV^{\sharp_A} + V^{\sharp_A}V \right\|_{A-\text{Ber}}} \text{ber}_{A} \left(Y \right) \\ &\leq 2 \sqrt{2} \left\| V \right\|_{A-\text{Ber}} \text{ber}_{A} \left(Y \right) \text{ (by (1))}. \end{aligned}
$$

The proof is now complete. \square

Corollary 3.17 may be generalized to provide the following conclusion.

Corollary 3.18. *Let* $V, Y \in \mathcal{L}_A(\mathcal{H})$ *. Then*

$$
\text{ber}_{A}(VY \mp YV) \le 2\sqrt{2}\min\left\{||V||_{A-\text{Ber}}\text{ber}_{A}(Y), ||Y||_{A-\text{Ber}}\text{ber}_{A}(V)\right\}.
$$
\n
$$
(25)
$$

Proof. By replacing *V* by *Y* and *Y* by *V* respectively in (24), we have the desired result. □

It is clear that (25) provides an upper bound for the *A*-Berezin radius of the commutator *VY* − *YV*. We can now demonstrate the following theorem.

Theorem 3.19. *Let* $H = H(\Theta)$ *be a FHS and V, Y* $\in L_A(H)$ *. Then*

$$
\mathrm{ber}_{A}(VY - YV) \leq 2\sqrt{2}\min\left\{\widetilde{D}_{A}(V)\widetilde{d}_{A}(Y), \widetilde{D}_{A}(Y)\widetilde{d}_{A}(V)\right\} \leq 2\sqrt{2}||V||_{A-\mathrm{Ber}}\,\mathrm{ber}_{A}(Y).
$$

Proof. Let $\lambda_0, \xi_0 \in \mathbb{C}$ such that $\widetilde{D}_A(V) = \inf_{\lambda_0 \in \mathbb{C}} ||V - \lambda_0 I||_{A-\text{Ber}}$ and $\widetilde{d}_A(Y) = \inf_{\xi_0 \in \mathbb{C}} \text{ber}_A(Y - \xi_0 I)$. Then, we get

$$
\begin{aligned} \text{ber}_{A} \left(VY - YV \right) &= \text{ber}_{A} \left(\left(V - \lambda_{0} I \right) \left(Y - \xi_{0} I \right) - \left(Y - \xi_{0} I \right) \left(V - \lambda_{0} I \right) \right) \\ &\leq 2 \sqrt{2} \left\| V - \lambda_{0} I \right\|_{A - \text{Ber}} \text{ber}_{A} \left(Y - \xi_{0} I \right) \\ &= 2 \sqrt{2} \widetilde{D}_{A} \left(V \right) \widetilde{d}_{A} \left(Y \right). \end{aligned}
$$

Thus, $\text{ber}_A (VY - YV) \leq 2$ $2D_A (V) d_A (Y).$

Replacing *V* by *Y* and *Y* by *V* in the above inequality, we get

 $ber_A (YV - VY) \leq 2$ $2D_A(Y) d_A(V)$.

The first inequality is obtained by combining the two above inequality. Since $\widetilde{D}_A(V) \leq ||V||_{A-\text{Ber}}$ and $\widetilde{d}_A(Y) \leq \text{ber}_A(Y)$, the second inequality is inferred. \square

Next, we generalize the *A*-Berezin distance $\tilde{d}_A(V, Y)$ as following from: For $V, Y \in \mathcal{L}_A(\mathcal{H})$

$$
\widetilde{d}_A(V,Y)=\operatorname{ber}_A(V-\xi_0Y).
$$

Utilizing this generalized *A*-Berezin distance $\tilde{d}_A(V, Y)$, we get the following inequalities.

Theorem 3.20. *Let* $H = H(\Theta)$ *be a FHS and let V, Y, W* \in $\mathcal{L}_A(H)$ *be such that W commutes with both V and W. Then*

$$
\operatorname{ber}_{A}(VY - YV) \leq 4\widetilde{d}_{A}(V, W)\widetilde{d}_{A}(Y, W) \leq 4\operatorname{ber}_{A}(V)\operatorname{ber}_{A}(Y).
$$

Proof. Let $\lambda_0, \xi_0 \in \mathbb{C}$ such that $\widetilde{d}_A(V, W) = \inf_{\lambda_0 \in \mathbb{C}} \text{ber}_A(V - \lambda_0 W)$ and $\widetilde{d}_A(Y, W) = \inf_{\xi_0 \in \mathbb{C}} \text{ber}_A(Y - \xi_0 W)$. Then, we get

$$
\begin{aligned} \text{ber}_{A} \left(VY - YV \right) &= \text{ber}_{A} \left(\left(V - \lambda_{0} W \right) \left(Y - \xi_{0} W \right) - \left(Y - \xi_{0} W \right) \left(V - \lambda_{0} W \right) \right) \\ &\leq 4 \text{ber}_{A} \left(V - \lambda_{0} W \right) \text{ber}_{A} \left(Y - \xi_{0} W \right) \\ &= 4 \widetilde{d}_{A} \left(V, W \right) \widetilde{d}_{A} \left(Y, W \right). \end{aligned}
$$

Thus, $\text{ber}_{A}(VY - YV) \leq 4\widetilde{d}_{A}(V, W)\widetilde{d}_{A}(Y, W).$

The second desired inequality follows from fact that $\tilde{d}_A(V, W) \leq \text{ber}_A(V)$ and $\tilde{d}_A(Y, W) \leq \text{ber}_A(Y)$. \Box

Theorem 3.21. *Let* $H = H(\Theta)$ *be a FHS and let V, Y, W* \in $\mathcal{L}_A(H)$ *be such that W commutes with both V and W. Then*

 $ber_A (VY - YV) \leq 2$ $\left\{ \widetilde{D}_{A}\left(V,W\right)\widetilde{d}_{A}\left(Y,W\right)$, $\widetilde{D}_{A}\left(Y,W\right)\widetilde{d}_{A}\left(V,W\right)\right\} .$

Proof. Let $\lambda_0, \xi_0 \in \mathbb{C}$ such that $\widetilde{D}_A(V, W) = \inf_{\lambda_0 \in \mathbb{C}} ||V - \lambda_0 W||_{A-\text{Ber}}$ and $\widetilde{d}_A(Y, W) = \inf_{\xi_0 \in \mathbb{C}} \text{ber}_A(Y - \xi_0 W)$. Then, we get

$$
\begin{aligned} \text{ber}_{A} \left(VY - YV \right) &= \text{ber}_{A} \left(\left(V - \lambda_{0} W \right) \left(Y - \xi_{0} W \right) - \left(Y - \xi_{0} W \right) \left(V - \lambda_{0} W \right) \right) \\ &\leq 2 \sqrt{2} \left\| V - \lambda_{0} W \right\|_{A - \text{Ber}} \text{ber}_{A} \left(Y - \xi_{0} W \right) \text{ (by (24))} \\ &\leq 2 \sqrt{2} \widetilde{D}_{A} \left(V, W \right) \widetilde{d}_{A} \left(Y, W \right). \end{aligned}
$$

Thus, $\text{ber}_A (VY - YV) \leq 2$ 2*D*e*^A* (*V*, *W*) *d*e*^A* (*Y*, *W*).

In the inequality above, if we replace *V* by *Y* and *Y* by *V*, we obtain

 $ber_A (YV - VY) \leq 2$ $2D_A(Y, W) d_A(V, W)$.

Combining the above two inequalities we obtain the first inequality. Since $\widetilde{D}_A(V,W) \leq ||V||_{A-\text{Ber}}$ and $\widetilde{d}_A(Y, W) \leq \text{ber}_A(Y)$, the second inequality is inferred. \square

Finally, we will prove the theorem related to the *A*-Berezin distance.

Theorem 3.22. *Let* $H = H(\Theta)$ *be a FHS and V, Y* \in $\mathcal{L}_A(H)$ *. Then*

$$
\begin{aligned} \text{ber}_{A} \left(VY + YV \right) &\leq 2 \min \left\{ \text{ber}_{A} \left(V \right) \left(\text{ber}_{A} \left(Y \right) + \widetilde{d}_{A} \left(Y \right) \right), \text{ber}_{A} \left(Y \right) \left(\text{ber}_{A} \left(V \right) + \widetilde{d}_{A} \left(V \right) \right) \right\} \\ &\leq 4 \text{ber}_{A} \left(V \right) \text{ber}_{A} \left(Y \right). \end{aligned}
$$

Proof. Let $\lambda_0, \xi_0 \in \mathbb{C}$ such that $\widetilde{d}_A(V) = \inf_{\lambda_0 \in \mathbb{C}} \text{ber}_A(V - \lambda_0 I)$. If $\lambda_0 = 0$, then we have

$$
ber_A (VY + YV) \leq 2ber_A (V) (ber_A (Y) + \widetilde{d}_A (Y))
$$

= 4ber_A (V) ber_A (Y).

As in the Theorem 3.8 proof, we may take $\lambda_0 \neq 0$ and $\xi = \frac{\lambda_0}{|\lambda_0|}$ for granted. Then, we have

$$
\begin{aligned} \text{ber}_{A} \left(VY + YV \right) &= \text{ber}_{A} \left(V \left(\xi Y \right) + \left(\xi Y \right) V \right) \\ &\leq \text{ber}_{A} \left(V \Re_{A} \left(\xi Y \right) + iV \Im_{A} \left(\xi Y \right) + \Re_{A} \left(\xi Y \right) V + + i \Im_{A} \left(\xi Y \right) V \right) \\ &\leq \text{ber}_{A} \left(V \Re_{A} \left(\xi Y \right) + \Re_{A} \left(\xi Y \right) V \right) + \text{ber}_{A} \left(V \Im_{A} \left(\xi Y \right) + \Im_{A} \left(\xi Y \right) V \right). \end{aligned}
$$

It is simple to verify that

$$
\mathfrak{R}_A^{\sharp_A}(\xi\Upsilon) = \left(\mathfrak{R}_A^{\sharp_A}\right)^{\sharp_A}(\xi\Upsilon) \text{ and } \mathfrak{J}_A^{\sharp_A}(\xi\Upsilon) = \left(\mathfrak{J}_A^{\sharp_A}\right)^{\sharp_A}(\xi\Upsilon).
$$

Hence, from (5),

$$
\begin{split} \operatorname{ber}_{A} \left(V \Re_{A} \left(\xi Y \right) + V \Re_{A} \left(\xi Y \right) \right) &= \operatorname{ber}_{A} \left(\Re_{A}^{\sharp_{A}} \left(\xi Y \right) V^{\sharp_{A}} + V^{\sharp_{A}} \Re_{A}^{\sharp_{A}} \left(\xi Y \right) \right) \\ &= \operatorname{ber}_{A} \left(V^{\sharp_{A}} \left(\Re_{A}^{\sharp_{A}} \right)^{\sharp_{A}} \left(\xi Y \right) + \Re_{A}^{\sharp_{A}} \left(\xi Y \right) V^{\sharp_{A}} \right) \\ &\leq 2 \left\| \Re_{A}^{\sharp_{A}} \left(\xi Y \right) \right\|_{A-\operatorname{Ber}} \operatorname{ber}_{A} \left(V^{\sharp_{A}} \right) \\ &\leq 2 \left\| \Re_{A} \left(\xi Y \right) \right\|_{A-\operatorname{Ber}} \operatorname{ber}_{A} \left(V \right). \end{split}
$$

Similarly,

$$
\mathrm{ber}_{A}(V\mathfrak{J}_{A}(\xi Y)+\mathfrak{J}_{A}(\xi Y)V)\leq 2\|\mathfrak{J}_{A}(\xi Y)\|_{A-\mathrm{Ber}}\,\mathrm{ber}_{A}(V).
$$

Therefore,

$$
\begin{aligned} \textup{ber}_{A}\left(VY+YV\right) &\leq 2\textup{ber}_{A}\left(V\right)(\|\Re_{A}\left(\xi Y\right)\|_{A-\textup{Ber}}+\|\Im_{A}\left(\xi Y\right)\|_{A-\textup{Ber}}) \\ &=2\textup{ber}_{A}\left(V\right)(\|\Re_{A}\left(\xi Y\right)\|_{A-\textup{Ber}}+\|\Im_{A}\left(\xi\left(Y-\lambda_{0} I\right)\right)\|_{A-\textup{Ber}}). \end{aligned}
$$

Since $||\Re$ *A* (ξ*Y*)∥_{*A*−Ber} ≤ ber_{*A*} (ξ*Y*) and $||\Im$ *A* (ξ (*Y* − *λ*₀*I*))∥_{*A*−Ber} ≤ ber_{*A*} (ξ (*Y* − *λ*₀*I*)), we have

$$
\operatorname{ber}_{A}(VY+YV)\leq 2\operatorname{ber}_{A}(V)\left(\operatorname{ber}_{A}(Y)+\operatorname{ber}_{A}(\xi(Y-\lambda_{0}I))\right)\leq 2\operatorname{ber}_{A}(V)\left(\operatorname{ber}_{A}(Y)+\widetilde{d}_{A}(Y)\right).
$$

Now, replacing *V* by *Y* and *Y* by *V* in the above inequality, we obtain

 $\text{ber}_{A}(VY + YV) \leq 2\text{ber}_{A}(Y)\left(\text{ber}_{A}(V) + \widetilde{d}_{A}(V)\right).$

Combining the above inequalities we reach the first theorem. For second inequality, since $\tilde{d}_A(V) \leq 2\text{ber}_A(V)$ and $\widetilde{d}_A(Y) \leq 2\text{ber}_A(Y)$, we have

$$
\begin{aligned} \text{ber}_{A} \left(VY + YV \right) &\leq 2 \min \left\{ \text{ber}_{A} \left(V \right) \left(\text{ber}_{A} \left(Y \right) + \widetilde{d}_{A} \left(Y \right) \right), \text{ber}_{A} \left(Y \right) \left(\text{ber}_{A} \left(V \right) + \widetilde{d}_{A} \left(V \right) \right) \right\} \\ &\leq 2 \text{ber}_{A} \left(V \right) \left(\text{ber}_{A} \left(Y \right) + \widetilde{d}_{A} \left(Y \right) \right) \\ &\leq 4 \text{ber}_{A} \left(V \right) \text{ber}_{A} \left(Y \right). \end{aligned}
$$

 \overline{a}

 \Box

References

- [1] M. L. Arias, G. Corach, M. C. Gonzalez, *Partial isometries in semi-Hilbertian spaces*, Linear Algebra Appl. **428**(7) (2008), 1460–1475.
- [2] M. L. Arias, G. Corach, M. C. Gonzalez, *Lifting properties in operator ranges*, Acta Sci. Math. (Szeged) **75**(3-4) (2009), 635–657.
- [3] N. Aronzjan, *Theory of reproducing kernel*, Trans. Amer. Math. Soc. **68** (1950), 337–404.
- [4] M. Bakherad, *Some Berezin number inequalities for operator matrices*, Czechoslovak Math. J. **68**(2018), 997–1009.
- [5] H. Başaran, M. Gürdal, Berezin number inequalities via inequality, Honam Math. J. 43(3) (2021,) 523-537.
- [6] H. Başaran, M. Gürdal, A. N. Güncan, Some operator inequalities associated with Kantorovich and Hölder-McCarthy inequalities and *their applications*, Turkish J. Math. **43**(1) (2019), 523–532.
- [7] H. Başaran, M. Gürdal, Some upper bounds of A-Berezin number inequalities, International online Conference on Mathematical Advances and Applications (ICOMAA-2022), Conference Proceeding Science and Technology, **5**(1) (2022), 21–29.
- [8] F. A. Berezin, *Covariant and contravariant symbols for operators*, Math. USSR-Izvestiya **6** (1972), 1117–1151.
- [9] P. Bhunia, K. Feki, K. Paul, *Numerical radius parallelism and orthogonality of semi-Hilbertian space operators and its applications*, Bull. Iranian Math Soc. **47**(1) (2021), 435–457.
- [10] L. de Branges, J. Rovnyak, *Square Summable Power Series*, Holt, Rinehert and Winston, New York, (1966).
- [11] I. Chalendar, E. Fricain, M. Gürdal, M. Karaev, Compactness and Berezin symbols, Acta Sci. Math. (Sezeged) 78(1-2) (2012), 315-329.
- [12] R. G. Douglas, *On majorization, factorization, and range inclusion of operators on Hilbert space*, Proc. Amer. Math. Soc. **17**(2) (1966), 413–416.
- [13] K. Feki, *Spectral radius of semi-Hilbertian space operators and its applications*, Ann Funct Anal. **11**(1) (2020), 929–946.
- [14] K. Feki, *Generalized numerical radius inequalities of operators in Hilbert spaces*, Adv. Oper. Theor. **6**(1) (2020), 1–19.
- [15] M. Garayev, F. Bouzeffour, M. Gürdal, C. M. Yangöz, Refinements of Kantorovich type, Schwarz and Berezin number inequalities, Extracta Math. **35** (2020), 1–20.
- [16] M. T. Garayev, M. Gürdal, A. Okudan, Hardy-Hilbert's inequality and a power inequality for Berezin numbers for operators, Math. Inequal. Appl. **19** (2016), 883–891.
- [17] M. T. Garayev, M. Gürdal, S. Saltan, *Hardy type inequaltiy for reproducing kernel Hilbert space operators and related problems*, Positivity **21** (2017), 1615–1623.
- [18] M. T. Garayev, H. Guedri, M. Gürdal, G. M. Alsahli, On some problems for operators on the reproducing kernel Hilbert space, Linear Multilinear Algebra **69**(11) (2021), 2059–2077.
- [19] M. Guesba, P. Bhunia, K. Paul, *A-numerical radius inequalities and A-translatable radii of semi-Hilbert space operators*, Filomat **37**(11) (2023), 3443–3456.
- [20] M. Gürdal, H. Başaran, A-Berezin number of operators, Proc. Inst. Math. Mech. 48(1) (2022), 77-87.
- [21] V. Gürdal, H. Başaran, M. B. Huban, *Further Berezin radius inequalities*, Palestine J. Math. 12(1) (2023), 757-767.
- [22] M. Gürdal, H. Başaran, *On inequalities for A-Berezin radius of operators*, Afr. Mat., 35, 44, 2024.
- [23] V. Gürdal, H. Başaran, On Berezin radius inequalities via Cauchy-Schwarz type inequalities, Malaya J. Mat. 11(2) (2023), 127-141.
- [24] M. B. Huban, *Upper and lower bounds of the A-Berezin number of operators*, Turkish J. Math. **46**(1) (2022), 189–206.
- [25] M. B. Huban, H. Başaran, M. Gürdal, New upper bounds related to the Berezin number inequalities, J. Inequal. Spec. Funct. 12(3) (2021), 1–12.
- [26] M. B. Huban, H. Başaran, M. Gürdal, Some new inequalities via Berezin numbers, Turk. J. Math. Comput. Sci. 14(1) (2022), 129-137.
- [27] M. T. Karaev, *Reproducing kernels and Berezin symbols techniques in various questions of operator theory*, Complex Anal. Oper. Theory **7** (2013), 983–1018.
- [28] M. T. Karaev, R. Tapdigoglu, *On some problems for reproducing kernel Hilbert space operators via the Berezin transform*, Mediterr. J. Math. **19** (2022), 1–16.
- [29] H. Qiao, G. Hai, E. Bai, *A-numerical radius and A-norm inequalities for semi-Hilbertian space operators*, Linear Multilinear Algebra, **70**(21) (2022), 6891–6907.
- [30] Q. Xu, Z. Ye, A. Zamani, *Some upper bounds for the A-numerical radius of* 2 × 2 *block matrices*, Adv. Oper. Theor. **6**(1) (2021), 1–13.
- [31] A. Saddi, *A-normal operators in semi-Hilbertian spaces*, Australian J. Math. Anal. Appl. **9**(1) (2012), 1–12.
- [32] S. Saltan, R. Tapdigoglu, I. Calisir, *Some new relations between the Berezin number and the Berezin norm of operators*, Rocky Mt. J. Math. **52**(5) (2022), 1767–1774.
- [33] T. Tapdigoglu, M. Gürdal, N. Altwaijry, N. Sarı, Davis-Wielandt-Berezin radius inequalities via Dragomir inequalities, Oper. Matrices **15**(4) (2021), 1445–1460.
- [34] U. Yamancı, M. Gürdal, On numerical radius and Berezin number inequalities for reproducing kernel Hilbert space, New York J. Math. **23** (2017), 1531-1537.
- [35] U. Yamancı, ˙I. M. Karlı, *Further refinements of the Berezin number inequalities on operators*, Linear Multilinear Algebra **70**(20) (2022), 5237–5246.
- [36] A. Zamani, *A-numerical radius inequalities for semi-Hilbertian space operators*, Linear Algebra Appl. **578**(1) (2019), 159–183.