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1. Introduction, Motivation and Preliminaries

Throughout this article,ℜ
(
µ
)

denotes the real part of the complex number µ ∈ C and
[
ℜ

(
µ
)]

means the
greatest integer inℜ

(
µ
)
, and Γ(z) denotes the classical (Euler’s) Gamma function defined by

Γ(z) :=



∫
∞

0
e−t tz−1 dt

(
ℜ(z) > 0

)
Γ(z + n)

n−1∏
j=0

(z + j)

(
z ∈ C \Z−0 ; n ∈N

)
,

(1)

which happens to be one of the most fundamental and the most useful special functions of mathematical
analysis and applied mathematics, N, N0 and Z−0 being the sets of positive, non-negative and non-positive
integers, respectively. Moreover, as usual, we denote by C and R the sets of complex and real numbers,
respectively.

Remark 1. It is regrettable to see that, in many seemingly amateurish-type publications, the so-called k-
Gamma function Γk(z) is being used to claim “generalization” of the known results which are based upon
the classical (Euler’s) Gamma function Γ(z). As a matter of fact, the trivially forced-in redundant (or
superfluous) parameter k in the k-Gamma function Γk(z) appears by an obvious change of the variable t of
integration in (1) (see, for details, [75, Section 3, pp. 1505–1506]; see also [79] and [80]).

The classical Mittag-Leffler function Eα(z) and its two-parameter version Eα,β(z) are defined by (see [43],
[99] and [100])

Eα(z) :=
∞∑

k=0

zk

Γ(αk + 1)

(
z, α ∈ C; ℜ(α) > 0

)
(2)

and

Eα,β (z) :=
∞∑

k=0

zk

Γ(αk + β)

(
z, α, β ∈ C; ℜ(α) > 0

)
, (3)

respectively. The one-parameter function Eα(z) was first considered by Magnus Gustaf (Gösta) Mittag-
Leffler (1846–1927) in 1903 and its two-parameter version Eα,β(z) was introduced by Anders Wiman (1865–
1959) in 1905 (see also [68] and [40]).

The Mittag-Leffler function Eα(z) and its two-parameter version Eα,β(z) have gained importance and
popularity through their applications in a wide variety of problems in the mathematical, physical and
engineering sciences. For example, these functions appear as solutions of fractional differential equations
and integro-differential equations which model applied problems. They do play an important role in
various fields of applied mathematics and engineering sciences, such as chemistry, biology, statistics,
thermodynamics, mechanics, quantum physics, computer science, and signal processing (see, for details,
[19]). In addition, the Mittag-Leffler-type functions of several variables arise in solving some boundary-
value problems involving fractional-order Volterra type integro-differential equations (see [59]), initial-
boundary value problems for a generalized polynomial diffusion equation involving the time-fractional
derivatives (see [36]), fractional-order modeling of the relaxation-oscillation and diffusion equations (see
[20]), and initial-boundary value problems for time-fractional diffusion equations with positive constant
coefficients (see [34]).

Remark 2. Various claimed one-variable and multi-parameter (or multi-index) “generalizations” of the
familiar Mittag-Leffler functions Eα(z) and Eα,β(z) (see, for example, [52], [57], [58], [61], [62], [63], [75],
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[81], [95], [96] and [97]) are no more than fairly obvious special or limit cases of the substantially much
more general Fox-Wright function pΨq (p, q ∈ N0) or pΨ

∗
q (p, q ∈ N0). In fact, the familiar and widely-

investigated Fox-Wright function pΨq (p, q ∈ N0) or pΨ
∗
q (p, q ∈ N0) happens to be the Fox-Wright

generalization of the relatively more familiar hypergeometric function pFq (p, q ∈ N0), with p numerator
parameters a1, · · · , ap and q denominator parameters b1, · · · , bq such that

a j ∈ C ( j = 1, · · · , p) and b j ∈ C \Z
−

0 ( j = 1, · · · , q).

The general Fox-Wright functions pΨq (p, q ∈ N0) and pΨ
∗
q (p, q ∈ N0) are indeed defined by (see, for

details, [14, p. 183] and [89, p. 21]; see also [26, p. 65], [27, p. 56] and [69])

pΨ
∗

q


(a1,A1) , · · · ,

(
ap,Ap

)
;

(b1,B1) , · · · ,
(
bq,Bq

)
;

z


:=

∞∑
n=0

(a1)A1n · · ·
(
ap

)
Apn

(b1)B1n · · ·
(
bq

)
Bqn

zn

n!

=
Γ (b1) · · · Γ

(
bq

)
Γ (a1) · · · Γ

(
ap

) pΨq


(a1,A1) , · · · ,

(
ap,Ap

)
;

(b1,B1) , · · · ,
(
bq,Bq

)
;

z

 (4)

(
ℜ(A j) > 0

(
j = 1, · · · , p

)
; ℜ(B j) > 0

(
j = 1, · · · , q

)
; 1 +ℜ

( q∑
j=1

B j −

p∑
j=1

A j

)
≧ 0

)
,

where, and elsewhere in this article, (λ)ν denotes the general Pochhammer symbol or the shifted factorial,
since

(1)n = n! (n ∈N0 :=N ∪ {0}; N := {1, 2, 3, · · · }),

which is defined
(
for λ, ν ∈ C and in terms of the familiar Gamma function Γ(z) in the equation (1)

)
by

(λ)ν :=
Γ (λ + ν)
Γ (λ)

=


1 (ν = 0;λ ∈ C \ {0})

λ (λ + 1) · · · (λ + n − 1) (ν = n ∈N;λ ∈ C) ,
(5)

in which it is assumed conventionally that (0)0 := 1 and understood tacitly that the Γ-quotient exists. In
general, we suppose that

a j,A j ∈ C
(
j = 1, · · · , p

)
and b j,B j ∈ C

(
j = 1, · · · , q

)
and that the equality in the convergence condition in the definition (4) holds true only for suitably-bounded
values of |z| given by

|z| < ∇ :=

 p∏
j=1

A−A j

j

 ·
 q∏

j=1

BB j

j

 .
The above-mentioned generalized hypergeoemtric function pFq (p, q ∈ N0), with p numerator pa-

rameters a1, · · · , ap and q denominator parameters b1, · · · , bq, is a widely- and extensively-investigated and
potentially useful special case of the general Fox-Wright function pΨq (p, q ∈N0) when

A j = 1 ( j = 1, · · · , p) and B j = 1 ( j = 1, · · · , q).
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We now to turn to a series of monumental works (see, for example, [101], [102] and [103]) by Sir
Edward Maitland Wright (1906–2005). Fortunately, I had the privilege to have met and discussed with
Sir Wright researches emerging from his publications on hypergeometric and related functions during my
visit to the University of Aberdeen in the year 1976. In fact, as long ago as 1940, Sir Wright introduced
and systematically studied the asymptotic expansion of the following Taylor-Maclaurin series (see [101, p.
424]):

Eα,β(ϕ; z) :=
∞∑

n=0

ϕ(n)
Γ(αn + β)

zn
(
α, β ∈ C; ℜ(α) > 0

)
, (6)

where ϕ(t) is a function satisfying suitable conditions. In fact, it was my proud privilege to have also met
many times and discussed mathematical researches, especially on various families of higher transcendental
functions and related topics, with my Canadian colleague, Charles Fox (1897–1977) of birth and education
in England, both at McGill University and Sir George Williams University (now Concordia University) in
Montréal, mainly during the 1970s (see, for details, [69]).

The above-cited contributions by Sir Wright were motivated essentially by the earlier developments
reported for simpler cases by Magnus Gustaf (Gösta) Mittag-Leffler (1846–1927) in 1905, Anders Wiman
(1865–1959) in 1905, Ernest William Barnes (1874–1953) in 1906, Godfrey Harold Hardy (1877–1947) in
1905, George Neville Watson (1886–1965) in 1913, Charles Fox (1897–1977) in 1928, and other authors.
In particular, the aforementioned work [3] by Bishop Ernest William Barnes (1874–1953) of the Church of
England in Birmingham considered the asymptotic expansions of functions in the class which is defined
below:

E(κ)
α,β(s; z) :=

∞∑
n=0

zn

(n + κ)s Γ(αn + β)

(
α, β ∈ C; ℜ(α) > 0

)
(7)

for suitably-restricted parameters κ and s. Clearly, we have the following relationship:

lim
α→0

{
E(κ)
α,β(s; z)

}
=

1
Γ(β)

Φ(z, s, κ)

with the classical Lerch transcendent (or the Hurwitz-Lerch zeta function) Φ(z, s, κ) defined by (see, for
example, [14, p. 27, Eq. 1.11 (1)]; see also [86] and [87])

Φ(z, s, κ) :=
∞∑

n=0

zn

(n + κ)s (8)

(
κ ∈ C \Z−0 ; s ∈ Cwhen |z| < 1; ℜ(s) > 1 when |z| = 1

)
.

The reader is referred to a series of recent works by Srivastava (see, for example, [74], [75] and [76]) for
detailed systematic study of the following interesting unification of the definitions in (6), (7), and other
earlier developments in the literature, for a suitably-restricted function φ(τ) given by

Eα,β(φ; z, s, κ) :=
∞∑

n=0

φ(n)
(n + κ)s Γ(αn + β)

zn
(
α, β ∈ C; ℜ(α) > 0

)
, (9)

where the parameters α, β, s and κ are appropriately constrained as above. Furthermore, in the aforemen-
tioned works, some general families of Riemann-Liouville-type operators of fractional calculus involving
the functions Eα,β(ϕ; z) and Eα,β(φ; z, s, κ) in their kernel were investigated (see also [78] and [80]).

An interesting multiple-series generalization of the Mittag-Leffler function Eα(z) involving several vari-
ables was proposed by Luchko and Gorenflo [37], who applied an operational method to solve a boundary-
value problem for linear fractional differential equations with constant coefficients. The solution of the
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boundary-value problem was expressed by then in terms of the following Mittag-Leffler-type function in
m variables z1, · · · , zm:

E(α1,··· ,αm),β (z1, · · · , zm) :=
∞∑

k=0

∞∑
l1 ≧ 0, · · · , lm ≧ 0
(l1 + · · · + lm = k)

k!

Γ

β + m∑
j=1
α jl j


zl1

1

l1!
· · ·

zlm
m

lm!
, (10)

which, in the special case when m = 2, was studied by Bin-Saad et al. [4].

Motivated essentially by some of the above-mentioned and other developments in the theory and
applications of the Mittag-Leffler-type functions in one and more variables, we propose in this article to
study the Mittag-Leffler-type functions F̃(3)

A , F̃(3)
B , F̃(3)

C and F̃(3)
D , which are associated with the familiar three-

variable Lauricella hypergeometric functions F(3)
A , F(3)

B , F(3)
C and F(3)

D , respectively. We investigate and establish
several properties and characteristics of these three-variable Mittag-Leffler-type functions. The results for
the Mittag-Leffler-type functions F̃(3)

A , F̃(3)
B , F̃(3)

C and F̃(3)
D , which we investigate in this article, include their

relationships with other extensions and generalizations of the classical Mittag-Leffler functions, their three-
dimensional convergence regions, the systems of partial differential equations which are are satisfied by
them, their Euler-type integral representations, their one- as well as three-dimensional Laplace transforms,
and their connections with the Riemann-Liouville operators of fractional calculus.

2. Multivariable Hypergeometric Functions and Associated Mittag-Leffler-Type Functions

In the year 1969, Srivastava and Daoust [82] extended the Fox-Wright function pΨq, which is defined
by (4), to two variables in the following form:

SA:B;B′

C:D;D′

 x

y

 = SA:B;B′

C:D;D′


[
(a) : θ, ϕ

]
:
[
(b) : ψ

]
;
[
(b′) : ψ′

]
;

[(c) : δ, ε] :
[
(d) : η

]
;
[
(d′) : η′

]
;

x, y



:=
∞∑

m,n=0

A∏
j=1

Γ
(
a j +mθ j + nϕ j

) B∏
j=1

Γ
(
b j +mψ j

) B′∏
j=1

Γ
(
b′j + nψ′j

)
C∏

j=1

Γ
(
c j +mδ j + nε j

) D∏
j=1

Γ
(
d j +mη j

) D′∏
j=1

Γ
(
d′j + nη′j

) xm

m!
yn

n!

=:

A∏
j=1

Γ
(
a j

) B∏
j=1

Γ
(
b j

) B′∏
j=1

Γ
(
b′j
)

C∏
j=1

Γ
(
c j

) D∏
j=1

Γ
(
d j

) D′∏
j=1

Γ
(
d′j

) FA:B;B′

C:D;D′


[
(a) : θ, ϕ

]
:
[
(b) : ψ

]
;
[
(b′) : ψ′

]
;

[(c) : δ, ε] :
[
(d) : η

]
;
[
(d′) : η′

]
;

x, y

 , (11)

which also includes, as a very specialized case, the general Kampé de Fériet function FA:B;B′

C:D;D′

(
x, y

)
in the

modified notation introduced by Srivastava and Panda
(
see, for details, [92, pp. 423–424, Eqs. (26) and (27)]

)
when we set each of the parameters θ j, ϕ j, ψ j, ψ′j, δ j, ϵ j, η j and η′j equal to 1.

Here, and elsewhere in this paper, we find it to be convenient to use the abbreviation (a) to represent the
array of A (real or complex) parameters a1, a2, · · · , aA, with similar interpretations for (b), (b′), (c), (d) and
(d′). We tacitly assume the following conditions on the coefficients and the parameters involved:

θ j, ϕ j ∈ R
+ (

j = 1, 2, · · · ,A
)

; ψ j, ψ
′

k ∈ R
+

(
j = 1, 2, · · · ,B; k = 1, 2, · · · ,B

′
)
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and
δ j, ϵ j ∈ R

+ (
j = 1, 2, · · · ,C

)
; η j, η

′

k ∈ R
+

(
j = 1, 2, · · · ,D; k = 1, 2, · · · ,D

′
)
.

Each of the following two-variable Mittag-Leffler-type functions E1 and E2, which were considered by
Garg et al. [17], happens to be a special or limit case of the Srivastava-Daoust function

SA:B;B′

C:D;D′

 x

y


defined by (11):

E1

 γ1, α1;γ2, β1;

δ1, α2, β2; δ2, α3; δ3, β3;

x

y

 :=
∞∑

m,n=0

(
γ1

)
α1m

(
γ2

)
β1n

Γ
(
δ1 + α2m + β2n

) xm

Γ (δ2 + α3m)
yn

Γ
(
δ3 + β3n

) (12)

(
γ1, γ2, δ1, δ2, δ3, x, y ∈ C; min

{
α1, α2, α3, β1, β2, β3

}
> 0

)
and

E2

 γ1, α1, β1;γ2, α2;

δ1, α3, β2; δ2, α4; δ3, β3;

x

y

 :=
∞∑

m,n=0

(
γ1

)
α1m+β1n

(
γ2

)
α2m

Γ
(
δ1 + α3m + β2n

) xm

Γ (δ2 + α4m)
yn

Γ
(
δ3 + β3n

) (13)

(
γ1, γ2, δ1, δ2, δ3, x, y ∈ C; min

{
α1, α2, α3, α4, β1, β2, β3

}
> 0

)
.

We refer here to two related sequels (see [23] and [24]) in which boundary-value problems involving some
time-fractional derivatives were solved in terms of E1 in [23].

In the case of hypergeometric functions of three variables, we recall that a general triple hypergeometric
series F(3)[x, y, z], which was introduced in the year 1967 by Srivastava (see [66, p. 428]; see also [89,
pp. 44–45] and [91, pp. 69–71]) is a unification and generalization of Lauricella’s fourteen hypergeometric
functions F1, · · · ,F14 (see [32]) including the ten hypergeometric functions studied, in recent years, by
Shanti Saran (1928–1983) (see [60]), as well as Srivastava’s three additional functions HA, HB and HC (see,
for details, [65] and [67]; see also [55]).

F(3)

 (aA) :: (bB); (b′B′ ); (b′′B′′ ) : (cC); (c′C′ ); (c′′C′′ );

(eE) :: (1G); (1′G′ ); (1′′G′′ ) : (hH); (h′H′ ); (h′′H′′ );
x, y, z


=

∞∑
m,n,p=0

Λ(m,n, p)
xm

m!
yn

n!
zp

p!
, (14)

where

Λ(m,n, p) =

A∏
j=1

(a j)m+n+p

B∏
j=1

(b j)m+n

B′∏
j=1

(b′j)n+p

B′′∏
j=1

(b′′j )p+m

E∏
j=1

(e j)m+n+p

G∏
j=1

(1 j)m+n

G′∏
j=1

(1′j)n+p

G′′∏
j=1

(1′′j )p+m

·

C∏
j=1

(c j)m

C′∏
j=1

(c′j)n

C′′∏
j=1

(c′′j )p

H∏
j=1

(h j)m

H′∏
j=1

(h′j)n

H′′∏
j=1

(h′′j )p

(15)

and (aA) abbreviates the array of the A parameters a1, · · · , aA, with similar interpretations for other abbrevi-
ations used above.. The triple hypergeometric series in (14) converges absolutely when

1 + E + G + G′′ +H − A − B − B′′ − C ≧ 0

1 + E + G + G′ +H′ − A − B − B′ − C′ ≧ 0

1 + E + G′ + G′′ +H′′ − A − B′ − B′′ − C′′ ≧ 0,

(16)
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in which the equalities hold true for appropriately restricted values of |x|, |y| and |z|.

As long ago as in the year 1893, in his above-mentioned work [32], Giuseppe Lauricella (1867–1913)
extended the four Appell functions to the corresponding hypergeometric functions F(n)

A , F(n)
B , F(n)

C and F(n)
D of n

variables. Furthermore, in the particular case when n = 3, Lauricella listed a set of 14 triple hypergeometric
functions F1, · · · ,F14, for which we have

F(2)
A =: F2 = F1:1;1

0:1;1 and F(2)
B =: F3 = F0:2;2

1:0;0,

and
F(2)

C =: F4 = F2:0;0
0:1;1 and F(2)

D =: F1 = F1:1;1
1:0;0

in terms of the four Appell functions F1, F2, F3 and F4 of two variables (see [1] and [2]).

In a sequel to their paper [82], which was also published in the year 1969, Srivastava and Daoust
introduced and studies the following general family of hypergeometric functions n variables (see, for
details, [83]; see also [89] and [91]):

F
A : B(1); · · · ; B(n)

C : D(1); · · · ; D(n) (z1, · · · , zn)

= F
A : B(1); · · · ; B(n)

C : D(1); · · · ; D(n)


[
(a) : θ(1), · · · , θ(n)

]
:
[(

b(1)
)

: ψ(1)
]

; · · · ;
[(

b(n)
)

: ψ(n)
]

;[
(c) : δ(1), · · · , δ(n)

]
:
[(

d(1)
)

: ϕ(1)
]

; · · · ;
[(

d(n)
)

: ϕ(n)
]

;
z1, · · · , zn


:=

∞∑
m1,··· ,mn=0

K
A : B(1); · · · ; B(n)

C : D(1); · · · ; D(n) (m1, · · · ,mn)
zm1

1

m1!
· · ·

zmn
n

mn!
, (17)

where, for convenience,

K
A : B(1); · · · ; B(n)

C : D(1); · · · ; D(n) (m1, · · · ,mn)

:=

A∏
j=1

(
a j

)
θ(1)

j m1+···+θ
(n)
j mn

C∏
j=1

(
a j

)
δ(1)

j m1+···+δ
(n)
j mn

B(1)∏
j=1

(
b(1)

j

)
ψ(1)

j m1

D(1)∏
j=1

(
d(1)

j

)
ϕ(1)

j m1

· · ·

B(n)∏
j=1

(
b(n)

j

)
ψ(n)

j mn

D(n)∏
j=1

(
d(n)

j

)
ϕ(n)

j mn

. (18)

The multiple hypergeometric series in (17) converges for

|z1| < 1, · · · , |zn| < 1,

provided that (see, for details, [21] and [84])

C∑
j=1

δ(ℓ)
j +

D(ℓ)∑
j=1

ϕ(ℓ)
j −

A∑
j=1

θ(ℓ)
j −

B(ℓ)∑
j=1

ψ(ℓ)
j + 1 = 0 (∀ ℓ = 1, · · · ,n). (19)

Various special cases of the above-defined Srivastava-Daoust hypergeometric function of n variables,
especially when we set the parameters θ j, ϕ j,ψ j and δ j equal to 1, have found applications in many different
contexts in the mathematical and physical contexts (see, for example, [6] to [10], [15], [16], [25], [31], [35],
[38], [44], [45] to [48], [50], [54], [56], [70] to [73], [85], [93] and [98]). In particular, for the Lauricella functions
F(n)

A , F(n)
B , F(n)

C and F(n)
D of n variables, we record the following correspondence with the Srivastava-Daoust

function defined by (17) with, of course, the parameters θ j, ϕ j, ψ j and δ j equal to 1:
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F(n)
A =: F1:1;··· ;1

0:1;··· ;1 and F(n)
B =: F3 = F0:2;··· ;2

1:0;··· ;0,

and
F(n)

C =: F2:0;··· ;0
0:1;··· ;1 and F(n)

D =: F1 = F1:1;··· ;1
1:0;··· ;0.

In particular, the triple hypergeometric functions F(3)
A , F(3)

B , F(3)
C and F(3)

D correspond, respectively, to the func-
tions F1, F2, F5 and F9 of the above-mentioned Lauricella’s set of 14 hypergeometric functions F1, · · · ,F14
of three variables.

We conclude this section by remarking that special (or higher transcendental) functions including (for
example) the Mittag-Leffler-type functions are closely related to the operators of fractional calculus (see
[22], [27], [28], [33], [42], [49], [51], [59] and [64]), as well as to the operators of generalized fractional
calculi (see, for example, [28], [29], [30] and [94]). Many special functions can be represented as fractional-
order integrals or fractional-order derivatives of some elementary functions and such representations can
potentially lead to some alternative definitions for special functions (see, for details, [28, Chapter 4], [29]
and [30]). Many recent works on special functions and their applications in solving problems from control
theory, mechanics, physics, engineering, economics, and so on, can be found in (for example) [18], [22],
[30], [41], [53], [88] and [90].

3. The Three-Variable Mittag-Leffler-Type Functions

In the preceding section, we systematically investigated the definitions and mutual relations of various
families of generalized hypergeometric functions in one, two, three and n variables (n ∈N \ {1, 2, 3}). Here,
in this section, we introduce the Mittag-Leffler-type functions F̃(3)

A , F̃(3)
B , F̃(3)

C and F̃(3)
D in three variables, which

are motivated by (and associated with) Lauricella’s triple hypergeometric functions F(3)
A , F(3)

B , F(3)
C and F(3)

D ,
respectively, as follows:

F̃(3)
A = F̃(3)

A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
x, y, z


:=

∞∑
m,n,p=0

(a)α1m+β1n+γ1p (b1)α2m (b2)β2n (b3)γ2p

Γ (c1 + α3m)Γ
(
c2 + β3n

)
Γ
(
c3 + γ3p

) xm

Γ (c4 + α4m)
yn

Γ
(
c5 + β4n

) zp

Γ
(
c6 + γ4p

) (20)

(
a, bi, c j, x, y, z ∈ C; αk, βk, γk ∈ R; min

{
αk, βk, γk

}
> 0

(i = {1, 2, 3}, j = {1, · · · , 6} and k = {1, · · · , 4})
)
,

in which the triple series converges for x, y, z ∈ C if min{∆1,∆2,∆3} > 0, where

∆1 = α3 + α4 − α1 − α2, ∆2 = β3 + β4 − β1 − β2 and ∆3 = γ3 + γ4 − γ1 − γ2.

The triple series in (20) converges absolutely for |x| < ρ1,
∣∣∣y∣∣∣ < ρ2 and |z| < ρ3 if ∆1 = ∆2 = ∆3 = 0, where

ρ1 = min
µ,ν,θ>0

(K1), ρ2 = min
µ,ν,θ>0

(K2) and ρ3 = min
µ,ν,θ>0

(K3) (µ, ν, θ > 0)

and

K1 = µ
α4+α3−α2

(α3)α3 (α4)α4(
α1µ + β1ν + γ1θ

)α1 (α2)α2
,

K2 = ν
β4+β3−β2

(
β3

)β3
(
β4

)β4(
α1µ + β1ν + γ1θ

)β1
(
β2

)β2
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and

K3 = θ
γ4+γ3−γ2

(
γ3

)γ3
(
γ4

)γ4(
α1µ + β1ν + γ1θ

)γ1
(
γ2

)γ2
.

In a similar manner, we define below the other two Mittag-Leffler-type functions F̃(3)
B , F̃(3)

C and F̃(3)
D in

three variables:

F̃(3)
B = F̃(3)

B

 a1, α1; a2β1; a3γ1; b1, α2; b2, β2; b3, γ2;

c, α3, β3, γ3; c1, α4; c2, β4; c3, γ4;
x, y, z


:=

∞∑
m,n,p=0

(a1)α1m (a2)β1n (a3)γ1p (b1)α2m (b2)β2n (b3)γ2p

(c)α3m+β3n+γ3p

·
xm

Γ (c1 + α4m)
yn

Γ
(
c2 + β4n

) zp

Γ
(
c3 + γ4p

) (21)

(
c, ai, bi, ci, x, y, z ∈ C; αk, βk, γk ∈ R; min

{
αk, βk, γk

}
> 0

(i = {1, 2, 3} and k = {1, · · · , 4})
)
,

F̃(3)
C = F̃(3)

C

 a, α1, β1, γ1; b, α2, β2, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
x, y, z


=

∞∑
m,n,p=0

(a)α1m+β1n+γ1p (b)α2m+β2n+γ2p

Γ (c1 + α3m)Γ
(
c2 + β3n

)
Γ
(
c3 + γ3p

) xm

Γ (c4 + α4m)
yn

Γ
(
c5 + β4n

) zp

Γ
(
c6 + γ4p

) (22)

(
a, b, ci, x, y, z ∈ C; αk, βk, γk ∈ R; min

{
αk, βk, γk

}
> 0

(i = {1, · · · , 6} and k = {1, · · · , 4})
)

and

F̃(3)
D = F̃(3)

D

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c, α3, β3, γ3; c1, α4; c2, β4; c3, γ4;
x, y, z


=

∞∑
m,n,p=0

(a)α1m+β1n+γ1p (b1)α2m (b2)β2n (b3)γ2p

(c)α3m+β3n+γ3p

xm

Γ (c1 + α4m)
yn

Γ
(
c2 + β4n

) zp

Γ
(
c3 + γ4p

) (23)

(
a, c, bi, ci, x, y, z ∈ C; αk, βk, γk ∈ R; min

{
αk, βk, γk

}
> 0

(i = {1, 2, 3} and k = {1, · · · , 4})
)
,

respectively.
It is not difficult to observe that each of the generalized Mittag-Leffler-type functions F̃(3)

A , F̃(3)
B , F̃(3)

C and
F̃(3)

D in three variables, which we have defined by means of the equations (20) to (23), is itself a special or limit
case of the n-variable Srivastava-Daoust hypergeometric function defined by the equation (17) with n = 3.
Several further special or limit cases of these three-variable generalized Mittag-Leffler-type functions F̃(3)

A ,
F̃(3)

B , F̃(3)
C and F̃(3)

D , including (for example) the two-variable Mittag-leffler-type functions E1 and E2 defined
by (12) and (13), when we first set z = 0. These fairly straightforward details are being omitted here.
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4. An Associated System of Partial Differential Equations

We begin this section by presenting Lemma 1 and Lemma 2 below.

Lemma 1. If c ∈ C and α, β, γ ∈N, then the following equalities hold true:

Γ
(
c + α + αm + βn + γp

)
Γ
(
c + αm + βn + γp

) =

α∏
i=1

(
c − i + α (m + 1) + βn + γp

)
, (24)

Γ
(
c + β + αm + βn + γp

)
Γ
(
c + αm + βn + γp

) =

β∏
i=1

(
c − i + αm + β (n + 1) + γp

)
(25)

and

Γ
(
c + γ + αm + βn + γp

)
Γ
(
c + αm + βn + γp

) =

γ∏
i=1

(
c − i + αm + βn + γ

(
p + 1

) )
. (26)

Proof. The demonstration of Lemma 1 would make use of the recurrence relation in the definition (1) of the
classical Gamma function Γ(z). We choose to skip the details as an exercise for the interested reader.

Lemma 2. Let

θ = x
∂
∂x
, ϕ = y

∂
∂y

and σ = z
∂
∂z
.

If c ∈ C and α, β, γ ∈N, then the following equalities hold true:

Γ (c + αm)
α∏

i=1

(c + α − i + α θ) xm = Γ
(
c + α (m + 1)

)
xm, (27)

Γ
(
γ + αm + βn

) α∏
i=1

(
γ + α − i + α θ + βϕ

)
xmyn = Γ

(
γ + α (m + 1) + βn

)
xmyn (28)

and

Γ
(
c + αm + βn + γp

) α∏
i=1

(
c + α − i + α θ + βϕ + γσ

)
xmynzp

= Γ
(
c + α (m + 1) + βn + γp

)
xmynzp. (29)

Proof. The proof of Lemma 2 is based upon some Gamma-function properties and elementatary derivative
formulas followed by straightforward simplification. We, therefore, omit the details involved.

The following result (Theorem 1) provides the system of partial differential equations which are satisfied
by the three-variable Mittag-Leffler-type function F̃(3)

A .

Theorem 1. Let αk, βk, γk ∈ N (k = {1, · · · , 4}) and a, bi, c j, x, y, z ∈ C (i = {1, 2, 3}; j = {1, · · · , 6}). Then the
function F̃(3)

A satisfies the following system of partial differential equations:

 α3∏
i=1

(
c1 + α3 − i + α3x

∂
∂x

) α4∏
i=1

(
c4 + α4 − i + α4x

∂
∂x

)
x−1
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−

α1∏
i=1

(
a + α1 − i + α1x

∂
∂x
+ β1y

∂
∂y
+ γ1z

∂
∂z

) α2∏
i=1

(
b1 + α2 − i + α2x

∂
∂x

) F̃(3)
A = 0, (30)

 β3∏
i=1

(
c2 + β3 − i + β3y

∂
∂y

) β4∏
i=1

(
c5 + β4 − i + β4y

∂
∂y

)
y−1

−

β1∏
i=1

(
a + β1 − i + α1x

∂
∂x
+ β1y

∂
∂y
+ γ1z

∂
∂z

) β2∏
i=1

(
b2 + β2 − i + β2y

∂
∂y

) F̃(3)
A = 0 (31)

and  γ3∏
i=1

(
c3 + γ3 − i + γ3z

∂
∂z

) γ4∏
i=1

(
c6 + γ4 − i + γ4z

∂
∂z

)
z−1

−

γ1∏
i=1

(
a + γ1 − i + α1x

∂
∂x
+ β1y

∂
∂y
+ γ1z

∂
∂z

) γ2∏
i=1

(
b3 + γ2 − i + γ2z

∂
∂z

) F̃(3)
A = 0. (32)

Analogous systems of partial differential equations are satisfied by the other three-variable Mittag-Leffler-type functions
F̃(3)

B , F̃(3)
C and F̃(3)

D .

Proof. For the validity of the first partial differential equation (30), we substitute the defining triple series
for the function F̃(3)

A into its right-hand side, so that α3∏
i=1

(
c1 + α3 − i + α3x

∂
∂x

) α4∏
i=1

(
c4 + α4 − i + α4x

∂
∂x

)
x−1

 F̃(3)
A

=

∞∑
m=1

∞∑
n,p=0

(a)α1m+β1n+γ1p (b1)α2m (b2)β2n (b3)γ2p

Γ
(
c1 + α3 (m − 1)

)
Γ
(
c2 + β3n

)
Γ
(
c3 + γ3p

)
·

xm−1

Γ
(
c4 + α4 (m − 1)

) yn

Γ
(
c5 + β4n

) zp

Γ
(
c6 + γ4p

) (33)

and  α1∏
i=1

(
a + α1 − i + α1x

∂
∂x
+ β1y

∂
∂y
+ γ1z

∂
∂z

) α2∏
i=1

(
b1 + α2 − i + α2x

∂
∂x

) F̃(3)
A

=

∞∑
m,n,p=0

(a)α1(m+1)+β1n+γ1p (b1)α2(m+1) (b2)β2n (b3)γ2p

Γ (c1 + α3m)Γ
(
c2 + β3n

)
Γ
(
c3 + γ3p

)
·

xm

Γ (c4 + α4m)
yn

Γ
(
c5 + β4n

) zp

Γ
(
c6 + γ4p

) . (34)

Now, upon substituting (33) and (34) into the equation (30), if we replace the summation index m by m + 1,
we complete the demonstration of the first assertion (30) of Theorem 1 after some simplification and inter-
pretation.

The proofs of the validity of the second assertion (31) and the third assertion (32) are similar, so we omit
their proofs.
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5. Euler-Type Integral Representations

The Euler-type integral representations for the three-variable Mittag-Leffler-type function F̃(3)
A are pre-

sented as Theorem 2 below. One can analogously derive the corresponding Euler-type integral representa-
tions for the other three-variable Mittag-Leffler-type functions F̃(3)

B , F̃(3)
C and F̃(3)

D .

Theorem 2. If a, bi, c j, x, y, z ∈ C (i = {1, 2, 3}; j = {1, · · · , 6}), αk, βk, γk ∈ R (k = {1, · · · , 4}) and min
{
αk, βk, γk

}
>

0 (k = {1, · · · , 4}), then each of the following Euler-type integral representations holds true:

F̃(3)
A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
x, y, z

 = Γ
(
µ
)

Γ (b1)Γ
(
µ − b1

)
·

∫ 1

0
ξb1−1 (1 − ξ)µ−b1−1 F̃(3)

A

 a, α1, β1, γ1;µ, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
xξα2 , y, z

 dξ (35)

(
ℜ(µ) >ℜ(b1) > 0

)
,

F̃(3)
A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
x, y, z

 = Γ
(
µ
)

Γ (b2)Γ
(
µ − b2

)
·

∫ 1

0
ξb2−1 (1 − ξ)µ−b2−1 F̃(3)

A

 a, α1, β1, γ1;µ, α2;µ, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
x, yξβ2 , z

 dξ (36)

(
ℜ(µ) >ℜ(b2) > 0

)
,

F̃(3)
A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
x, y, z

 = Γ
(
µ
)

Γ (b3)Γ
(
µ − b3

)
·

∫ 1

0
ξb3−1 (1 − ξ)µ−b3−1 F̃(3)

A

 a, α1, β1, γ1; b1, α2; b2, β2;µ, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
x, y, zξγ2

 dξ (37)

(
ℜ(µ) >ℜ(b3) > 0

)
,

F̃(3)
A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
x, y, z


=

Γ
(
µ1

)
Γ
(
µ2

)
Γ
(
µ3

)
Γ (b1)Γ (b2)Γ (b3)Γ

(
µ1 − b1

)
Γ
(
µ2 − b2

)
Γ
(
µ3 − b3

)
·

∫ 1

0

∫ 1

0

∫ 1

0
ξb1−1ηb2−1τb3−1 (1 − ξ)µ1−b1−1 (

1 − η
)µ2−b2−1 (1 − τ)µ3−b3−1

· F̃(3)
A

 a, α1, β1, γ1;µ1, α2;µ2, β2;µ3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
xξα2 , yηβ2 , zτγ2

 dξ dη dτ (38)
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ℜ(µ1) >ℜ(b1) > 0; ℜ(µ2) >ℜ(b2) > 0; ℜ(µ3) >ℜ(b3) > 0

)
,

F̃(3)
A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
x, y, z

 = Γ
(
µ
)

Γ (a)Γ
(
µ − a

)
·

∫ 1

0
ξa−1 (1 − ξ)µ−a−1 F̃(3)

A

 µ, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
xξα1 , yξβ1 , zξγ1

 dξ (39)

(
ℜ(µ) >ℜ(a) > 0

)
and

F̃(3)
A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4 + µ1, α4; c5 + µ2, β4; c6 + µ3, γ4;
x, y, z

 = 1
Γ
(
µ1

)
Γ
(
µ2

)
Γ
(
µ3

)
·

∫ 1

0

∫ 1

0

∫ 1

0
ξc4−1ηc5−1τc6−1 (1 − ξ)µ1−1 (

1 − η
)µ2−1 (1 − τ)µ3−1

· F̃(3)
A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
xξα4 , yηβ4 , zτγ4

 dξ dη dτ (40)

(
ℜ(µ1) > 0; ℜ(µ2) > 0; ℜ(µ2) > 0

)
.

Proof. For proving the Euler-type integral representations (35) to (40), which are asserted by Theorem 2,
we express F̃(3)

A as a triple series, justifiably invert the order of the series and the integrals involved, and
then evaluate the resulting integrals by means of the well-known integral representing the classical Beta
function B(α, β):

B(α, β) :=



∫ 1

0
tα−1 (1 − t)β−1 dt

(
min{ℜ(α),ℜ(β)} > 0

)
Γ(α)Γ(β)
Γ(α + β)

(
α, β ∈ C \Z−0

)
.

(41)

The details are being left as an exercise for the interested reader.

6. One- and Three-Dimensional Laplace Transforms

Named after the French scholar and polymath, Pierre-Simon Laplace (1749–1827), the Laplace transform
is defined for a suitably-constrained function f by

L
{
f (t) : s

}
:=

∫
∞

0
e−st f (t) dt

(
ℜ(s) > 0

)
, (42)

provided that the integral exists. The need for simultaneous operational calculus (based upon multidimen-
sional Laplace transformation) presents itself naturally when problems dependent on several variables are



H. M. Srivastava, H. A. Yuldashova / Filomat 38:21 (2024), 7355–7375 7368

to be treated operationally (see, for example, [5], [12] and [13]; see also [11]). The multidimensional Laplace
transform defined by

Ln{ f (t1, · · · , tn) : s1, · · · sn} :=
∫
∞

0
· · ·

∫
∞

0
exp (−s1t1 − · · · − sntn) f (t1, · · · , tn) dt1 · · ·dtn (43)

(
ℜ(s j) > 0 ( j = {1, · · · ,n})

)
,

so that, obviously, L = L1.

Theorem 3. LetL andL3 denote the operators of the one-dimensional and the three-dimensional Laplace transforms,
respectively. Suppose also that the following obvious special case of the Fox-Wright function in (4) exists:

Eλ,ξµ,η;ν,ζ (χ) :=
∞∑

m=0

(λ)ξm

Γ
(
µ + ηm

) χm

Γ (ν + ζm)
, (44)

which corresponds to the limit case of the function E1(x, y) defined by (12) when y→ 0. Then the following Laplace
transformations are valid:

L

{
ta−1 Eb1,α2

c1,α3,c4,α4
(xtα1 ) Eb2,β2

c2,β3,c5,β4

(
ytβ1

)
Eb1,α2

c1,α3,c6,γ4
(ztγ1 ) : s

}
=
Γ(a)
sa F̃(3)

A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;

x
sα1
,

y
sβ1
,

z
sγ1

 (45)

(
min{ℜ(a),ℜ(α1),ℜ(β1),ℜ(γ1)} > 0

)
and

L3

tc4−1
1 tc5−1

2 tc6−1
3 F̃(3)

A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
xtα4

1 , ytβ4

2 , ztγ4

3

 : s1, s2, s3


=

1
sc4

1 sc5
2 sc6

3

F̃(3)
A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; 1, 0; 1, 0; 1, 0;

x
sα4

1

,
y

sβ4

2

,
z

sγ4

3

 (46)

(
min{ℜ(c4),ℜ(c5),ℜ(c6),ℜ(α4),ℜ(β4),ℜ(γ4)} > 0

)
,

provided that each member of the equations (45) and (46) exists. Analogous one-dimensional and three-dimensional
Laplace transformations hold true also for the other three-variable Mittag-Leffler-type functions F̃(3)

B , F̃(3)
C and F̃(3)

D .

Proof. The above results can easily be proved on using the definitions of L, L3 and F̃(3)
A in conjunction with

the following familiar formula for the Laplace transform of a power function:

L

{
tλ−1 : s

}
=
Γ(λ)
sλ

(
ℜ(λ) > 0; ℜ(s) > 0

)
. (47)

Remark 3. The Eulerian integral defining the classical Laplace transform in (42) as well as its following
s-multiplied version studied by the American transmission theorist, John Renshaw Carson (1886–1940):
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LC
{
f (t) : s

}
:= s

∫
∞

0
e−st f (t) dt = sFL

{
f (t) : s

}
, (48)

which has one distinct advantage over the Laplace transform (42) in the fact that the Laplace-Carson
transform of a constant in (48) is the same constant (see, for details, [39]). Regrettably, many obviously
trivial and inconsequential variations have been and continue to be made in the parameter (or index) s or
in the integration variable t (or in both s and t), ridiculously giving a “new” name to each of such trivial
parametric and argument variations of the classical Laplace transform in (42) or its s-multiplied version in
(48) by forcing-in some obviously redundant (or superfluous) parameters. Some of these examples can be
found in [75, pp. 1508–1510] and in [77, Section 5, pp. 36–38] and, more recently, in [79, pp. 2341–2346]
and [80, pp. 58–60]. Yet another somehow missed-out instance of such trivialities can be exemplified by
Yang’s attempt to produce what he called a “new” integral transform by replacing the parameter (or index)
s in (42) by 1

s (see, for details, [104] and [105]). Such demonstratively trivial and obviously inconsequential
parametric and argument variations as those that we have recalled above continue to flood the literature
merely to unnecessarily repeat or translate the already-published developments using the Laplace transform
itself rather successfully.

7. Connections with the Riemann-Liouville Operators of Fractional Calculus

The Riemann-Liouville fractional integral operator RLIατ+ of order α
(
α ∈ C; ℜ(α) > 0

)
is defined for a

function f as follows (see, for example, [27], [42], [49], [51] and [59]):

RLIατ+ f (x) =
1
Γ (α)

∫ x

τ
(x − t)α−1 f (t) dt

(
x > τ; ℜ(α) > 0

)
. (49)

Correspondingly, the Riemann-Liouville fractional derivative operator RLDα
τ+ of order α

(
α ∈ C; n − 1 <

ℜ(α) < n; n ∈ N
)

is defined for a function f by

RLDατ+ f (x) =
( d

dx

)n {
RLIn−α

τ+ f (x)
} (

ℜ (α) ≧ 0; n = [ℜ(α)] + 1
)
, (50)

where the function f is locally integrable, ℜ (α) denotes the real part of the complex number µ ∈ C and
[ℜ (α)] means the greatest integer inℜ (α).

Theorem 4 below lists the applications of the Riemann-Liouville fractional integral and fractional deriva-
tive operators involving the three-variable Mittag-Leffler-type function F̃(3)

A . Analogous results for the other
three-variable Mittag-Leffler-type functions F̃(3)

B , F̃(3)
C and F̃(3)

D can be derived similarly.

Theorem 4. Let a, bi, c j,wi ∈ C
(
i = {1, 2, 3}; j = {1, · · · , 6}

)
, αk, βk, γk ∈ R and min

{
αk, βk, γk

}
> 0

(
k =

{1, · · · , 4}
)
. Then

RLIατ+

(x − τ)a−α−1 F̃(3)
A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
σ1, σ2, σ3




= (x − τ)a−1 F̃(3)
A

 a − α, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
σ1, σ2, σ3

 (51)
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ℜ(a) >ℜ(α) > 0

)
,

where

σ1 = w1 (x − τ)α1 , σ2 = w2 (x − τ)β1 and σ3 = w3 (x − τ)γ1 . (52)

For the Riemann-Liouville fractional derivative operator RLDατ+, it is asserted that

RLDατ+

(x − τ)a+α−1 F̃(3)
A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
σ1, σ2, σ3




= (x − τ)a−1 F̃(3)
A

 a + α, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
σ1, σ2, σ3

 (53)

(
ℜ(α) ≧ 0; ℜ(a) > −ℜ(α)

)
,

where σ1, σ2 and σ3 are given by (52).

Proof. For the Riemann-Liouville fractional integral operator defined by (49), it is easily seen that (see, for
example, [27, p. 71, Eq. (2.1.16)])

RLIατ+
{
(x − τ)µ

}
=
Γ
(
µ + 1

)
Γ
(
µ + α + 1

) (x − τ)µ+α
(
ℜ(α) > 0; ℜ(µ) > −1

)
. (54)

Similarly, from the definition (50) of the Riemann-Liouville fractional derivative operator RLDατ+, we have
(see, for example, [27, p. 71, Eq. (2.1.17)])

RLDατ+
{
(x − τ)µ

}
=
Γ
(
µ + 1

)
Γ
(
µ − α + 1

) (x − τ)µ−α
(
ℜ(α) ≧ 0; ℜ(µ) > −1

)
. (55)

The assertions (51) and (53) of Theorem 4 can now be established by using the formulas (54) and
(55), respectively, in conjunction with the triple-series representing the three-variable Mittag-Leffler-type
function F̃(3)

A .

Some corollaries and consequences of the above developments are recorded below.

Result 1. For n ∈N, we have

( d
dx

)n
(x − τ)a+n−1 F̃(3)

A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
σ1, σ2, σ3




= (x − τ)a−1 F̃(3)
A

 a + n, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
σ1, σ2, σ3

 , (56)

where σ1, σ2 and σ3 are given, as before, by (52).

Result 2. For ν1, ν2, ν3 ∈ C
(

min{ℜ(ν1) > 0,ℜ(ν2),ℜ(ν3)} > 0
)
, we have

RLI
ν1
τ+

RLI
ν2
τ+

RLI
ν3
τ

{
(x − τ)c1−1 (

y − τ
)c2−1 (z − τ)c3−1
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· F̃(3)
A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
σ̃1, σ̃2, σ̃3


}

= (x − τ)c1+ν1−1 (
y − τ

)c2+ν2−1 (z − τ)c3+ν3−1

· F̃(3)
A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1 + ν1, α3; c2 + ν2, β3; c3 + ν3, γ3; c4, α4; c5, β4; c6, γ4;
σ̃1, σ̃2, σ̃3

 , (57)

where

σ̃1 = w1 (x − τ)α3 , σ̃2 = w2
(
y − τ

)β3 and σ̃3 = w3 (z − τ)γ3 , (58)

it being tacitly assumed that the Riemann-Liouville fractional integral operators RLI
ν1
τ+, RLI

ν2
τ+ and RLI

ν3
τ+

apply, individually and respectively, on the first, second and third variables of the the three-variable Mittag-
Leffler-type function F̃(3)

A .

Result 3. For ν1, ν2, ν3 ∈ C
(

min{ℜ(ν1) > 0,ℜ(ν2),ℜ(ν3)} ≧ 0
)
, we have

RLD
ν1
τ+

RLD
ν2
τ+

RLD
ν3
τ+

{
(x − τ)c1−1 (

y − τ
)c2−1 (z − τ)c3−1

· F̃(3)
A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
σ̃1, σ̃2, σ̃3


}

= (x − τ)c1−ν1−1 (
y − τ

)c2−ν2−1 (z − τ)c3−ν3−1

· F̃(3)
A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1 − ν1, α3; c2 − ν2, β3; c3 − ν3, γ3; c4, α4; c5, β4; c6, γ4;
σ̃1, σ̃2, σ̃3

 , (59)

where σ̃1, σ̃2 and σ̃3 are given by (58), it being tacitly assumed that the Riemann-Liouville fractional deriva-
tive operators RLD

ν1
τ+, RLD

ν2
τ+ and RLD

ν3
τ+ apply, individually and respectively, on the first, the second and

the third variables of the three-variable Mittag-Leffler-type function F̃(3)
A .

Result 4. For ν1 = p, ν2 = q and ν3 = r (p, q, r ∈ N0), the above result (59) reduces to the following simple
form:

∂p+q+r

∂xp ∂yq ∂zr

{
(x − τ)c1−1 (

y − τ
)c2−1 (z − τ)c3−1

· F̃(3)
A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1, α3; c2, β3; c3, γ3; c4, α4; c5, β4; c6, γ4;
σ̃1, σ̃2, σ̃3


}

= (x − τ)c1−p−1 (
y − τ

)c2−q−1 (z − τ)c3−r−1

· F̃(3)
A

 a, α1, β1, γ1; b1, α2; b2, β2; b3, γ2;

c1 − p, α3; c2 − q, β3; c3 − r, γ3; c4, α4; c5, β4; c6, γ4;
σ̃1, σ̃2, σ̃3

 , (60)

where σ̃1, σ̃2 and σ̃3 are given by (58).

8. Concluding Remarks and Observations

In this article, we have first investigated various families of multivariable hypergeometric functions
including (for example) the four Lauricella functions F(n)

A , F(n)
B , F(n)

C and F(n)
D of n variables for n ∈ N \ {1, 2}
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and their generalized forms which are known as the Srivastava-Daoust hypergeometric functions of two
and more variables. We have then introduced and studied a set of four three-variable Mittag-Leffler-type
functions F̃(3)

A , F̃(3)
B , F̃(3)

C and F̃(3)
D , which are analogous to the Lauricella functions F(3)

A , F(3)
B , F(3)

C and F(3)
D of

three variables. Among the various properties and characteristics of the three-variable Mittag-Leffler-type
functions F̃(3)

A , F̃(3)
B , F̃(3)

C and F̃(3)
D , which we have investgated in this article, include their relationships with

other extensions and generalizations of the classical Mittag-Leffler functions, their three-dimensional con-
vergence regions, the systems of partial differential equations which are satisfied by them, their Euler-type
integral representations, their one- as well as three-dimensional Laplace transforms, and their connections
with the Riemann-Liouville operators of fractional calculus.

We believe that, analogous to the lines of the developments in [23] and [24] based upon the two-variable
Mittag-Leffler-type functions E1(x, y) and E2(x, y), our obtained results are potentially useful in similar fu-
ture investigations.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References
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C. R. Acad. Sci. Paris 90 (1880), 496–298.
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[97] Ž. Tomovski, R. Hilfer and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators

and Mittag-Leffler type functions, Integral Transforms Spec. Funct. 21 (2010), 797–814.
[98] V. K. Tuan and R. G. Buschman, Integral representations of generalized Lauricella hypergeometric functions, Internat. J. Math.

Math. Sci. 15 (1992), 653–657.
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