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Differential identities involving Engel conditions in prime rings
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Abstract. The aim of this article is to examine the commutativity criterion of a prime ring, where general-
ized derivation adheres to differential identities incorporating Engel conditions. Moreover, an example is
presented to illustrate that the assumption of primeness cannot be entirely ignored.

1. Introduction

Over the past years, there has been growing interest in exploring the relationship between the commutativity
of a ring R and the additive mappings on R. The first result that appears in this direction was given by
Posner [17] demonstrated that if a prime ringR has a non-zero centralizing derivation onR, thenRmust be
commutative. Later on, Herstein [9] proved that ifR is a prime ring with characteristics different from 2 and
D is a non-zero derivation onR such that [D(x), D(y)] = 0 for all x, y ∈ R, thenR is commutative. Huang [6]
extended this result by establishing the commutativity of R satisfying the identity [D(x), D(y)]m = [x, y]n

for all x, y ∈ I, where D is a derivation of R and m,n are fixed positive integers. Continuing this area of
research, similar results were obtained for the differential identities involving the anti-commutator. For
example, Ashraf and Rehman [1] investigated the action of a non-zero derivation on a prime ring R and
established the commutativity of the ring R. More precisely, they proved that if R is a 2-torsion free prime
ring, I is a non zero ideal of R andD a non-zero derivation onR such thatD(x)◦D(y) = x◦ y for all x, y ∈ I,
then R is commutative. In 2007, Huang [7] studied the problem and proved that if R is a prime ring with
char(R) , 2, U a square closed Lie ideal of R and F a generalized derivation associated with a derivation
D of R such that D(x) ◦ F (y) = x ◦ y for all x, y ∈ U, then D = 0 or R is commutative. Rehman et al. [18]
obtained the commutativity of the ring and proved that, if R is a prime ring and m,n ≥ 1 fixed positive

integers, F a generalized derivation with an associated derivationD ofR, such that
(
F (x)◦D(y)

)m
= (x◦ y)n

for all x, y in some appropriate subset of R. Rehman and his colleagues [19] continued the studies on the
commutativity of prime rings with different conditions and proved that the commutativity of a prime ring
R of characteristics different from 2 by considering the identity [F (x), D(y)]m = [x, y] for all x, y ∈ I, where
F is a generalized derivation with an associated nonzero derivation D and m ≥ 1 a fixed positive integer.
Recently Ashraf et al. [2]demonstrated the commutativity of a prime ring R and proved that, if R is a prime
ring with characteristic different from 2 , I a non zero ideal ofR, F a generalized derivation with associated

non zero derivation D such that
(
F (x) ◦ F (y)

)k
= F (x ◦k y) ∀x, y ∈ I, where k is a fixed integer, then R is

commutative.
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Keeping in view that every derivation is a generalized derivation, we aim to answer the fundamental
question of whether it is possible to consider the differential identities of the form [F (x),F (y)]m = [x, y]n

for all x, y ∈ I and F (x) ◦m F (y) = (x ◦ y)n for all x, y ∈ I. The answer to this question is affirmative and lies
in the Kharchenko theory of differential identities.

2. Preliminaries

We consider R as an associative ring with its center Z(R) and Q = Qmr(R) as the maximal right ring of
quotients of R, while U represents the Utumi quotient ring of R. The extended centroid of R is the center
of U, denoted by C. We use the notations [x, y] and x ◦ y, x, y ∈ R to refer the commutator xy − yx and
anti-commutator xy + yx, respectively. For m ≥ 1, we define

[x, y]0 = x, [x, y]1 = [x, y], [x, y]m = [[x, y]m−1, y],
x ◦0 y = x, x ◦1 y = x ◦ y, x ◦m y = (x ◦m−1 y) ◦ y.

A ring R is said to be prime if xRy = {0} implies x = 0 or y = 0. A Lie Ideal of R is an additive subgroup
U of R such that ur − ru ∈ U for all u ∈ U. If a Lie Ideal U satisfies u2

∈ U for all u ∈ U, then U is referred
to as Square closed Lie Ideal of R. We define a derivation on R as an additive mapping D : R → R such
that D(xy) = D(x)y + xD(y), x, y ∈ R. A generalized derivation associated with a derivation D : R → R is
an additive mapping F : R → R such that F (xy) = F (x)y + xD(y) holds for all x, y ∈ R. For a non-empty
subset S of R, a mapping f : S→ R is said to be centralizing on S, if [f(x), x] ∈ Z(R),∀x ∈ S. In particular,
if [f(x), x] = 0 for all x ∈ S, then f is said to be commuting on S.

The main focus of our paper is directed towards examining the annihilator

condition of the identities [F (x),F (y)]m − [x, y]n = 0 for all x, y ∈ I and
(
F (x) ◦ F (y)

)m
− (x ◦ y)n = 0

for all x, y ∈ I, where m,n are fixed positive integers and obtain the commutativity of R under this restric-
tion. Also , here we mention some well known results which will be used for developing the proofs of the
main results.

Fact 2.1. [12] Let R be a prime ring, D a nonzero derivation on R and I a nonzero ideal of R. If I satisfies the
differential identity

f (s1, . . . , sn,D(s1), . . . ,D(sn)) = 0 for all s1, . . . , sn ∈ I

then either

(i) I satisfies the generalized polynomial identity

f (s1, . . . , sn, y1, . . . , yn) = 0

or
(ii) D is Q-inner derivation i,e., for some q ∈ Q, D(x) = [q, x] and I satisfies the generalized polynomial identity

f (s1, . . . , sn, [q, s1], . . . , [q, sn]) = 0.

Fact 2.2. Let Y = {y1, y2, . . . , } be the countable set of non-commutating indeterminates y1, y2 . . . ,. Let C{Y} be
the free algebra over C in the set Y. We denote T = U∗CC{Y}, the free product of C-algebra over U and C{Y}. The
elements of T are called generalized polynomials with coefficients in U

Fact 2.3. [4] If I is a two sided ideal of R, then R,I,Q and U satisfy the same generalized polynomial identities with
coefficients in U.

Fact 2.4. [3] Every derivation of R can be uniquely extended a derivation of U

Fact 2.5. [14] Let I be a two sided ideal of R, then R,I and U satisfy the same differential identities.
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3. Main results

Following are the main results of this paper.

Theorem 3.1. Let R be a prime ring of characteristic different from 2 and b, a nonzero element of R. Suppose that F

is a generalized derivation of R associated with a nonzero derivationD of R such that b
(
[F (x),F (y)]m − [x, y]n

)
= 0

for all x, y ∈ I. Then R is commutative.

Proof. Any generalized derivation F that operates on a dense right ideal of R can be extended in a unique
way to a generalized derivation of U. Therefore, we can assume that F operates on the entirety of U in the
form of F (x) = ax +D(x), where a ∈ U and D is a derivation of U. Additionally, based on Fact 2.3, it can be
established that I, R, and U satisfy the same generalized polynomial identities. Hence, according to our
assumption, we can express this as follows:

b

([
ax +D(x), ay +D(y)

]
m
− [x, y]n

)
= 0.

In view of Kharchenko’s theorem we divide our proof into two cases:

Case 1: If D is Q-inner derivation, then applying Kharchenko’s theorem [12], we have

b

([
ax + s, ay + t

]
m
− [x, y]n

)
= 0 for all x, y, s, t ∈ R.

In particular take x = y = 0, our identity reduces to

b
[
s, t

]
m
= 0 for all s, t ∈ R. (3.1)

Assuming that R is not commutative, we take any noncentral element h from R and substitute [h, s] for t in
(3.1). This yields b

[
h, s

]
m+1
= 0 for all s ∈ R. From [11], it follows that R is commutative, which contradicts

our assumption.
Case 2: In this second case, we assume that D is the Q-inner derivation induced by some p ∈ Q, i.e.,

D(x) = [p, x] for all x ∈ R. Since we have taken D as a nonzero derivation, it is clear that p < C. We define

ψ(x, y) = b
([

ax+ [p, x], ay+ [p, y]
]

m
− [x, y]n

)
= 0. It can be observed that ψ(x, y) is a nontrivial generalized

polynomial identity (GPI) for R. According to Chuang [4, Theorem 2], ψ(x, y) is also satisfied by Q. We
denote by F either the algebraic closure of C or C, depending on whether C is infinite or finite, respectively.
By using standard arguments, we conclude thatψ(x, y) is also a generalized polynomial identity forQ⊗CF .
Since Q ⊗C F is a centrally closed prime F -algebra (for instance, see [5]), we can replace R by Q ⊗C F and
C by F . Thus, we can assume that R is centrally closed and C is either finite or algebraically closed. Using
Martindale’s theorem [16], we can conclude that R is a primitive ring with a nonzero socle H, where C is
the associated division ring. According to Jacobson’s theorem [10, p.75], R is isomorphic to a dense ring of
linear transformations of a vector spaceV over C, and H consists of the linear transformations in R of finite
rank. IfV is finite dimensional over C, then density of R onV implies that R � MKC, where K = dimCV.
Suppose that dimCV ≥ 2, otherwise we are done. Now we will show that for any v ∈ V, v and pv are
linearly C-dependent. Suppose that v and pv are linearly independent for some v ∈ V. By density of R on
V, there exist x, y ∈ R such that

xv = pv, xpv = (ap + p2)v,
yv = 0, ypv = −v.

Therefore, we have

0 = b
([

ax + [p, x], ay + [p, y]
]

m
− [x, y]n

)
v = bv. (3.2)
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In fact, for any u ∈ V, C-independence of u and v implies that bu = 0. Since b , 0, there exists w ∈ V such
that bw , 0 and so w and v are linearly C-independent. Also b(w + v) = bw , 0 and b(w − v) = bw , 0.
By the above arguments it follows that w and bw are linearly C-dependent, as are {w + v, p(w + v)} and
{w − v, p(w − v)}. Hence there exist αw, αw+v, αw−v ∈ C such that

pw = αww, p(w + v) = αw+v(w + v), p(w − v) = αw−v(w − v),

that is,

αww + pv = αw+vw + αw+vv, and (3.3)

αww − pv = αw−vw − αw−vv. (3.4)

On comparing (3.3) and (3.4), we get

(2αw − αw+v − αw−v)w + (αw−v − αw+v)v = 0, and (3.5)

2pv = (αw+v − αw−v)w − (αw+v + αw−v)v. (3.6)

By (3.5) and since w and v are linearly C-independent and char(R) , 2, we have
αw = αw+v = αw−v. Hence by (3.6), it follows that 2pv = 2αwv. This leads to a contradiction with the
fact that v and pv are linearly C-independent.

In view of this, we may assume that for any v ∈ V, there exists αv ∈ C such that pv = αvv and the
standard argument shows that there exists some α ∈ C such that pv = αv for all v ∈ V. Now let r ∈ R, v ∈ V.
As pv = αv, we have

[p, r]v = (pr)v − (rp)v = p(rv) − r(pv) = α(rv) − r(αv) = 0.

Thus [p, r]v = 0 for all v ∈ V i.e., [p, r]V = 0. The faithfulness ofV implies that [p, r] = 0 for all r ∈ R. Thus
p ∈ Z(R), a contradiction. This completes the proof of our theorem.

The following result is the immediate consequence of the above Theorem.

Corollary 3.1. [6, Theorem 2.2] Let R be a prime ring of characteristic different from 2 and b , 0 ∈ R. Suppose D

is a derivation of R and n ≥ 1,m ≥ 1 fixed positive integers such that b
([
D(x), D(y)

]
m
− [x, y]n

)
= 0 for all x, y ∈ I,

then R is commutative.

Considering Theorem 3.1, it is reasonable to inquire whether substituting the commutator with the anti-

commutator would result in the commutativity of R. i.e., R satisfies b
((
F (x) ◦p F (y)

)m
− (x ◦ y)n

)
= 0, where

m ≥ 1, n ≥ 1, p ≥ 1 are fixed positive integers. The subsequent outcome demonstrates that Theorem 3.1 still

holds if R fulfills the differential identity b
((
F (x) ◦ F (y)

)m
− (x ◦ y)n

)
= 0 for all m ≥ 1, n ≥ 1.

Theorem 3.2. Let R be a prime ring and b an element of R. If R admits a generalized derivation F with associated

non zero derivation D and m, n fixed positive integers such that b
((
F (x) ◦ F (y)

)m
− (x ◦ y)n

)
= 0 for all x, y ∈ I,

then either b = 0 or R is commutative.

Proof. Since R is a prime ring and F is a generalized derivation of R. By the given hypothesis and using
Lee [15, Theorem 3], we can write

b

(((
zx +D(x)

)
◦

(
zy +D(y)

))m

− (x ◦ y)n
)
= 0, for all x, y ∈ I.
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This can be rewritten as

b

((
zx ◦ zy + zx ◦D(y) +D(x) ◦ zy +D(x) ◦D(y)

)m
− (x ◦ y)n

)
= 0, (3.7)

for all x, y ∈ I. Firstly, we assume that D is an outer derivation on Q. By kharchenko’s Theorem [12], I
satisfies the generalized polynomial identity

b

((
zx ◦ zy + zx ◦ z + w ◦ zy + w ◦ z

)m
− (x ◦ y)n

)
= 0, for all x, y, z, z,w ∈ I.

Taking x = y = 0 yields b(w ◦ z)m = 0 for all w, z ∈ I, which is a generalized polynomial identity (GPI) for
I. By Chuang [4, Theorem 2], this GPI is satisfied by Q and hence by R.

Let s = (wz + zw)m. Since bs = 0, we have b(tsub + subt)m = 0 for all t,u ∈ Q. Thus, b(tsub)m = 0, which
implies (subt)m+1 = 0 by Levitzki’s lemma [9, Lemma 1.1]. Therefore, sub = 0 for all u ∈ R, and since R is
prime, we conclude that either b = 0 or s = 0. If s = (wz + zw)m = 0 for all w, z ∈ R, then this is a polynomial
identity for R. By invoking Lemma 1 in [13], there exists a field E such that R ⊆ Mk(E), the ring of k × k
matrices over E, andR andMk(E) satisfy the same polynomial identity. If k ≥ 2, choosing x = e12 and y = e21
leads to the contradiction 0 = (wz+zw)m = e11+ e22, so we must haveR commutative. Thus, we have shown
that either R is commutative or b = 0.

Our second assumption is that D is a Q-inner derivation induced by an element q ∈ Q such that
D(x) = [r, x] for all x ∈ R. Using this assumption and equation (3.7), we obtain the following relation for all
x, y ∈ I:

b
((
zx ◦ zy + zx ◦ [r, y] + [r, x] ◦ zy + [r, x] ◦ [r, y]

)m
− (x ◦ y)n

)
= 0.

This relation also holds for Q, as proven by Chuang [4, Theorem 2], so we can write:

b
((
zx ◦ zy + zx ◦ [r, y] + [r, x] ◦ zy + [r, x] ◦ [r, y]

)m
− (x ◦ y)n

)
= 0,

for all x, y ∈ Q. If the center C of Q is infinite, we can extend Q to Q ⊗C F , where F is the algebraic closure
of C. Then, the same relation holds for all x, y ∈ Q ⊗C F . Since both Q and Q ⊗C F are prime and centrally
closed (see [16, Theorems 2.5 and 3.5]), we can replace R by Q or Q ⊗C F depending on whether F is finite
or infinite. Therefore, we can assume that R is centrally closed over C, which is either finite or algebraically
closed and

b

((
zx ◦ zy + zx ◦ [r, y] + [r, x] ◦ zy + [r, x] ◦ [r, y]

)m
− (x ◦ y)n

)
= 0, (3.8)

for all x, y ∈ R. According to Martindale’s [16, Theorem 3], the ring R is primitive and has a non-zero
socle H, where C is the associated division ring. Using Jacobson’s theorem [10, p.75], it follows that R is
isomorphic to a dense ring of linear transformations on some vector spaceV over C, with C as its associated
division ring. Since R is dense on V, it must be isomorphic to the ring of k × k matrices over C, where
K = dimCV. However, if K is less than 2, then we are finished with the proof.
Now our aim is to demonstrate that for all v ∈ V, both v and rv are linearly dependent over C If rv = 0, then
v and rv are C-dependent. Suppose on the contrary that v and rv are linearly C-dependent for some v ∈ C.
By the density of R onV, there exist x, y ∈ R such that

xv = 0, xrv = −v,
yv = 0, yrv = −v.

Thus from the relation (3.8), we find that

0 = b
((
zx ◦ zy + zx ◦ [r, y] + [r, x] ◦ zy + [r, x] ◦ [r, y]

)m
− (x ◦ y)n

)
v = 2mbv.

From now on wards, we apply the same logic as in the proof of the Theorem 3.1 after the relation (3.2)
to get the desired result. This completes the proof of the theorem.
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We have the following immediate consequence of the above theorem.

Corollary 3.2. [1, Theorem 4.4] Let R be a prime ring of characteristics different from 2 and Suppose that D is a
non zero derivation of R and I a non zero ideal of R such that D(x) ◦ D(y) − x ◦ y = 0 for all x, y ∈ I, then R is
commutative.

Next we provide an example which shows the existence of primeness is essential in our Theorems.

Example 3.1. Let G be the set of integers and Let R =
{(0 x y

0 0 z
0 0 0

)
| x, y, z ∈ G

}
.

Define a map F : R → R by F (xe12 + ye13 + ze23) = xe13. Then it is clear that F is a generalized derivation
with an associated derivation D : R → R defined by D(xe12 + ye13 + ze23) = ye13 for all x, y, z ∈ G. One can very
easily see that F satisfies the assumptions of our Theorems 3.1 and 3.2. However R is not commutative. Hence the
primness of R can not be ignored.

In retrospect, we have the following open problem:

Problem 1. Let R be a prime ring and b an element from R. If R admits a generalized derivation F is a generalized

derivation associated with a non zero derivationD and m,n, p, fixed positive integers such that b
((
F (x) ◦p F (y)

)m
−

(x ◦ y)n
)
= 0 for all x, y ∈ I, then either b = 0 or R is commutative.
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