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Abstract. In this paper, we focus on the relationship between upper generalized semi-Fredholm and
weakly demicompact operators acting on Banach spaces and we use this relation to extend some known
results to generalized Fredholm theory. Moreover, in non-reflexive Banach spaces satisfying certain topo-
logical properties, we develop under some conditions on its entries, generalized Fredholm results for a 2×2
block operator matrix. The obtained results are used to characterize the generalized essential spectra, in
particular the generalized Gustafson and Wolf essential spectra.

1. Introduction

Let X and Y be two Banach spaces. The set of all closed densely defined (resp. bounded) linear operators
acting from X into Y is denoted by C(X,Y) (resp. L(X,Y)). For T ∈ C(X,Y), we denote byD(T), R(T),Y/R(T)
and N(T) the domain, the range, the co-kernel and the kernel of T respectively. When X = Y we denote
by ρ(T) and σ(T) the resolvent set and the spectrum of T respectively. K (X,Y) (resp. W(X,Y)) are the
subspaces of compact (resp. weakly compact) operators of L(X,Y). We recall that W(X,X) is a closed
two-sided ideal ofL(X,X) containingK (X,X). Further information can be found in [17, 20]. The dual (resp.
the second dual or bidual) is denoted by X∗ (resp. X∗∗), whenever T∗ is the conjugate of an operator T and
T∗∗ is the second conjugate. For a subspace M of X∗, ◦M := {x ∈ X : ∀ φ ∈M, φ(x) = 0} and for a subspace M
of X, M◦ := {φ ∈ X∗ : ∀ x ∈M, φ(x) = 0}. Now, a bounded linear operator T acting between X and Y is called
tauberian and we denote T ∈ T (X,Y), if T∗∗−1(Y) ⊆ X, also T is co-tauberian and we denote T ∈ T d(X,Y),
when its conjugate T∗ is tauberian. For more information on these classes, the reader can see the book [19].
In [6], the sets of upper generalized semi-Fredholm operators and lower generalized semi-Fredholm oper-
ators are respectively defined by:

Φ1+(X,Y) := {T ∈ L(X,Y) :N(T) is reflexive and R(T) is closed in Y},

Φ1−(X,Y) := {T ∈ L(X,Y) : Y/R(T) is reflexive and R(T) is closed in Y}.

The set Φ1(X,Y) := Φ1+(X,Y) ∩Φ1−(X,Y) is formed by all generalized Fredholm operators and Φ1±(X,Y) :=
Φ1+(X,Y) ∪ Φ1−(X,Y). It is well known that the set of upper (resp. lower) generalized semi-Fredholm
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Email addresses: mahamedbeghdadi32@gmail.com (Mahamed Beghdadi), bilel.krichen@fss.usf.tn (Bilel Krichen)



M. Beghdadi, B. Krichen / Filomat 38:22 (2024), 7775–7795 7776

operators is strictly contained in the set of tauberian (resp. co-tauberian) operators (see [6]). Further, an
operator T ∈ L(X,Y) is called g-Riesz (resp. upper g-Riesz) if (λ−T) ∈ Φ1(X,Y) (resp. (λ−T) ∈ Φ1+(X,Y)) for
all λ ∈ C\{0} (see [7]). As an extension of weakly compact operators, we say that F ∈ L(X,Y) is a generalized
Fredholm perturbation, if (T+F) ∈ Φ1(X,Y) whenever T ∈ Φ1(X,Y). Analogously, F is said to be upper (resp.
lower) generalized semi-Fredholm perturbation, if (T + F) ∈ Φ1+(X,Y) (resp. (T + F) ∈ Φ1−(X,Y)) whenever
T ∈ Φ1+(X,Y) (resp. T ∈ Φ1−(X,Y)). The sets of generalized Fredholm, upper generalized and lower
generalized semi-Fredholm perturbations from X into Y are respectively denoted byF1(X,Y), F1+(X,Y) and
F1−(X,Y). When X = Y, the sets C(X,Y), L(X,Y), K (X,Y),W(X,Y), Φ1(X,Y), Φ1+(X,Y), Φ1−(X,Y), T (X,Y),
T

d(X,Y), F1(X,Y), F1+(X,Y), F1−(X,Y) are replaced by C(X), L(X), K (X), W(X), Φ1(X), Φ1+(X), Φ1−(X),
T (X), T d(X), F1(X), F1+(X), F1−(X) respectively. For more details on these classes of operators we refer to
[7].
As subsets of the classical essential spectra, A. Azzouz, M. Beghdadi and B. Krichen introduced in [6, 7]
the so-called generalized essential spectra for a bounded linear operator T acting on a Banach space X as
follow:

σe1,1(T) := {λ ∈ C : (λ − T) < Φ1+(X)} and
σe4,1(T) := {λ ∈ C : (λ − T) < Φ1(X)}.

Here, σe1,1(.) refers to the generalized Gustafson essential spectrum and σe4,1(.) to the generalized Wolf
essential spectrum.

As an extension of demicompact linear operators, B. Krichen and D. O’Regan introduced in [26] the class of
weakly relative demicompact linear operator with respect to a given linear operator. This concept asserts
that if T : D(T) ⊂ X −→ X is a linear operator, then T is said to be weakly demicompact, if for every bounded
sequence (xn)n in D(T) such that xn − Txn weakly converges in X, then there exists a weakly convergent
subsequence of (xn)n. Obviously, weakly compact operators are weakly demicompacts. We refer to [26] for
further examples. Moreover, if T ∈ L(X) is weakly demicompact equivalently, then I − T is tauberian [19],
where I is the identity operator. However, T2 is weakly demicompact, if and only if T and −T are weakly
demicompact. The set of weakly demicompact operators acting on X is denoted byWDC(X).

The theory of block operator matrices has appeared in a variety of fields and applications, among which
we mention systems theory, such as the Hamiltonians (see [15]), the estimation of PDEs as large matrices
divided due to patterns of variance, and the saddle point problems of nonlinear analysis (see [11]), problems
of evolution, such as linearity of second-order Cauchy problems and as a linear parameter describing the
paired systems of partial differential equations. As a result, many important works have been published
on the spectrum theory of operator matrices, among them we cite [14, 30, 33]. For example, in [33] author
developed the essential spectra of 2×2 block operator matrices and presented a wide panorama of methods
to investigate the essential spectra of block operator matrices.

Our main purpose in this work is to use the concept of weak demicompactness to describe the general-
ized essential spectra of an operator matrix in non-reflexive Banach spaces satisfying certain topological
conditions.

The paper is organized in the following way. In Section 2, we recall some definitions and preliminaries
results and give some positive answers to questions raised in [6]. Therefore, we present an example of
a generalized Fredholm operator given by a tridiagonal infinite matrix acting on the generalized Hahn
space. In section 3, we study weakly demicompact operators in relation to generalized Fredholm theory.
In Section 4, we develop some results concerning the weak demicompactness of operator matrices under
some assumptions. Among these results, we extend some theorems proved in [10]. Further, we characterize
the generalized Gustafson and the generalized Wolf essential spectrum of a 2 × 2 block operator matrix in
a non-reflexive Banach space satisfying some properties. An example of a weakly demicompact operator
matrices in the James’ non-reflexive space is presented.
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2. Preliminary results

We start this section by recalling the following definition due to A. Azzouz, M. Beghdadi and B. Krichen
in [6].

Definition 2.1. Let X be a Banach space. We say that X has the property (H1) (resp. (H2)) if every reflexive
subspace admits a closed complementary subspace (resp. if every closed subspace with reflexive quotient
space admits a closed complementary subspace).
We say that X has the property (H), if it satisfies both properties (H1) and (H2).

As an example of non-reflexive Banach space has the property (H1), we cite the James’ quasi-reflexive space
J. Indeed, let J be the James Banach space and F1 be a reflexive subspace of J, then by [[4], Theorem 9] F1 is
contained in a reflexive complemented subspace F of J, that is

J = F ⊕ Z. (1)

where Z is a closed subspace of J. Since F is a reflexive Banach space and F1 is closed in F, then there exists
F2 a closed subspace of F such that F = F1 ⊕ F2 (see [27]). By applying this result in Eq. (1) we obtain:

J = F1 ⊕ F2 ⊕ Z.

Hence F1 is a complemented in J and consequently the last satisfies the property (H1).
For another example of spaces having the properties (H1) and (H2), we refer the reader to [6]. Note that if
X is reflexive and satisfies property (H1), then it has property (H2).

Now under the above properties, let us recall a characterization of a generalized Fredholm operator due to
K. W. Yang [34].

Theorem 2.2. [34] Let X and Y be two Banach spaces satisfying the properties (H1) and (H2) respectively,
and let T ∈ L(X,Y). Then the following assertions are equivalent.
(i) T is a generalized Fredholm operator.
(ii) There exist weakly compact operators W1 ∈ W(X), W2 ∈ W(Y) and an operator T0 ∈ L(Y,X) such that
T0T = I +W1 and TT0 = I +W2 and R(T) is closed in Y.

Next, for X and Y are two Banach spaces, we will try to find out the answer to the following relations:

(i) If X achieves the property (H1), this entails that X∗ satisfies the property (H2)?
(ii) If X achieves the property (H2), this implies that X∗ satisfies the property (H1)?
(iii) If X and Y satisfy the property (H1), this implies that X × Y has the property (H1)?
(iv) If X and Y satisfy the property (H2), this implies that X × Y has the property (H2)?
The answer to the above four questions is positive. Before giving answers to these questions, let us present
the following result.

Remark 2.3. Let X be a Banach space. For any closed subspace F of X∗, the map A defined by:

A : (◦F)∗ → X∗/F
φ → φ̂ := φ + F.

is an isomorphism. Indeed, firstly, let us check that φ̂ is well defined. To do so, ifφ,ψ ∈ (◦F)∗ such thatφ = ψ,
then for all x ∈ ◦F, (φ − ψ)(x) = 0 implies that φ − ψ ∈ (◦F)◦ = F. Then, φ̂ = ψ̂ and thus A is well defined.
Secondly, if φ̂ = 0̃, then for all x ∈ ◦F,φ(x) = 0. It follows thatφ = 0̃. Hence, A is injective. Now its remains to
show that A is surjective. For this purpose, letψ ∈ X∗/F and let π be the projection from X∗ to X∗/F. We have
(ψ◦π)(F) = ψ(π)(F) = ψ(0) = 0, thus ψ◦π ∈ (◦F)∗. Moreover, ψ̂ ◦ π(φ+F) = (ψ◦π)(φ) = ψ(π)(φ) = ψ(φ+F).
Hence, A(ψ ◦ π) = ψ. Consequently, A is surjective.
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Next, we state the following useful lemma.

Lemma 2.4. Let X be a Banach space. The following assertions hold.
(i) If X satisfies the property (H1), then X∗ has the property (H2).
(ii) If X satisfies the property (H2), then X∗ has the property (H1).

Proof. (i) Let F be a closed subspace of X∗ such that X∗/F is reflexive. We have ◦F := {x ∈ X such that∀φ ∈ F :
φ(x) = 0}. Since, (◦F)∗ � X∗/F (see Remark 2.3) and X∗/F is reflexive, then by using [[17], Corollary 24] we
deduce that ◦F is also reflexive. Taking into account that X has the property (H1), then there exists a closed
subspace X0 of X such that X = X0 ⊕

◦F. Thus,

X∗ = X◦0 ⊕ F,

here, X◦0 := {φ ∈ X∗ such that ∀x ∈ X0, φ(x) = 0}. Hence, X∗ has the property (H2).
(ii) Let F be a closed reflexive subspace of X∗. Since F = (◦F)◦ � (X/◦F)∗ and F is reflexive, then by [[17],
Corollary 24] we infer that X/◦F is also reflexive. This result combined with the fact that X satisfies the
property (H2), enable us to deduce that there exists a closed subspace X1 of X such that X = ◦F ⊕ X1 and so
X∗ = F ⊕ X◦1 . Thus, X∗ has the property (H1).

As a consequence of Lemma 2.4, we can easily obtain the following result.

Remark 2.5. Let X be a Banach space. If X has the property (H), then X∗ has the property (H).

As examples of spaces that are achieved the two above results, we have the Lp(0, 1)-spaces with 1 < p < ∞.
Below, we present some results from [6, 7]. Before that, we would like to point out that from Lemma 2.4
(ii), [[6], Theorem 3.9] can be rewritten as follow:

Theorem 2.6. Let X be a non-reflexive Banach space having the property (H) and let T and S be two bounded
linear operators on X. The following statements hold.
(i) If ST ∈ Φ1+(X), then T ∈ Φ1+(X).
(ii) If ST ∈ Φ1−(X), then S ∈ Φ1−(X).
(iii) If ST ∈ Φ1(X), then S ∈ Φ1−(X) and T ∈ Φ1+(X).

Theorem 2.7. [6] Let X, Y and Z be three non-reflexive Banach spaces and let T ∈ L(X,Y), S ∈ L(Y,Z). The
following statements hold.
(i) Assume that X, Y and Z satisfy the properties (H1), (H) and (H2) respectively. If T ∈ Φ1(X,Y) and
S ∈ Φ1(Y,Z), then ST ∈ Φ1(X,Z).
(ii) Assume that X and Y satisfy the properties (H1) and (H2) respectively. If T ∈ Φ1(X,Y) and W ∈ W(X,Y),
then (T +W) ∈ Φ1(X,Y).
For X = Y = Z, we have the following assertions:
(iii) Assume that X has the property (H1). If T ∈ Φ1+(X) and S ∈ Φ1+(X), then ST ∈ Φ1+(X).
(iv) Assume that X has the property (H2). If T ∈ Φ1−(X) and S ∈ Φ1−(X), then ST ∈ Φ1−(X).
(v) Assume that X has the property (H1). If T ∈ Φ1+(X) and W ∈ W(X), then (T +W) ∈ Φ1+(X).

Now, let us recall the De Blasi measure of weak noncompactness. Before that, we present some standard
notations useful for the sequel. We denote byMX (resp. Kw(X)) the set of bounded sets of a Banach space
X (resp. the set of all weakly compact subsets of X), by conv(A) the convex hull of a subset A ⊂ X and by
Br = B(0, r) the open ball centered at 0 and with radius r.
In [16], the De Blasi measure of weak noncompactness of a non empty bounded subset A of X, denoted by
ω :MX −→ [0,+∞[, was introduced as follow:

ω(A) = inf{r > 0, there exists N ∈ Kw(X) : A ⊂ N + Br}. (2)



M. Beghdadi, B. Krichen / Filomat 38:22 (2024), 7775–7795 7779

We point out that the definition given by Eq. (2) can be also expressed as axiomatic statements [9] which is
as follows.

Definition 2.8. Let X be a Banach space and let A, B be two bounded subsets of X. A function µ :MX −→

[0,+∞[ is a measure of weak noncompactness in X, if the following conditions are satisfied,
(i) µ(A) = 0 if, and only if, A is relatively weakly compact set,
(ii) if A ⊂ B, then µ(A) ≤ µ(B),

(iii) µ(conv(A)) = µ(A),
(iv) µ(A ∪ B) = max{µ(A), µ(B)},
(v) µ(A + B) ≤ µ(A) + µ(B),
(vi) µ(λA) = |λ|µ(A), for λ ∈ C.
From [9], the measure of weak noncompactness guarantees the Cantor intersection condition, and the
following inequality for all A ∈ MX:

µ(A) ≤ µ(Br)ω(A).

Recently, measures of weak noncompactness are widely used in the theory of bounded linear operators.
More precisely, for T ∈ L(X) we have the following definition:

ω(T) = inf {k : ω(T(A)) ≤ k · ω(A), for all A ∈ MX} .

In the following proposition, we recall some known properties of ω(·).

Proposition 2.9. [16] Let X be a Banach space, T,S ∈ L(X) and let B ∈ MX. Then, we have the following
properties:
(i) ω(T) = 0 if, and only if, T is weakly compact.
(ii) ω(T(B)) ≤ ω(T)ω(B).
(iii) ω(TS) ≤ ω(T)ω(S).
(iv) ω(T + S) ≤ ω(T) + ω(S).
(v) ω(λT) = |λ|ω(T), for λ ∈ C.

Next, let us recall a generalized Fredholm result from [6] related with the measure ω(·) that we will need in
the sequel.

Theorem 2.10. Let X be a Banach space and let T ∈ L(X) such that ω(Tn) < 1 for some n ∈ N\{0}. Then,
(I − T) ∈ Φ1(X).

In the following, we give an example of generalized Fredholm operator acting on the generalized Hahn
space inferred from [29]. Before that, let us recall the following notations and results.

For Λ denote the set of all complex sequences x = (xk)∞k=1, the operator ∆ : Λ → Λ of the so-called forward
differences is defined by ∆xk = xk − xk+1, for all k ∈N.
In 1972, G. Goes [18] introduced the generalized Hahn space by

hd =
{
x ∈ Λ :

∞∑
k=1

dk|∆xk| < ∞
}
∩ c0,

with its norm is the following

∥x∥hd =

∞∑
k=1

dk|∆xk| < ∞, for all x ∈ hd,

where d = (dk)∞k=1 is a given sequence of positive real numbers dk for all k ∈N.
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Recently, E. Malkowsky, V. Rakočević and O. Tuǧ in [29] showed that (hd, ∥x∥hd ) is a Banach space. Notice
that, if dk = k for all k, then hd reduces to the original Hahn space h (see [21]).
Beside, let us recall the definition of the Hausdorff measure of noncompacntess of non empty bounded
subset in Banach space.

Let X be a Banach space and let A ∈ MX, then the Hausdorff measure of noncompacntess of A, χ(A), is
defined by

χ(A) = inf
{
ε > 0 : A ⊂

n⋃
i=1

B(xi, ri), xi ∈ X, ri ≤ ε, i = 1, . . . ,n
}
.

Moreover, for T ∈ L(X) we have

∥T∥χ = inf
{
c ≥ 0 : χ(T(A)) ≤ c · χ(A), for all A ∈ MX

}
.

For several useful properties of this measure χ(·), we refer to [8, 28].
In order to state our example, we need to fix some notations that we are using. Throughout this note, let
A = (ank)∞n,k=1 be an infinite matrix. Let us also write for m ∈ N, A<m> = (a<m>

nk )∞n,k=1 for the matrix with the
rows A<m>

n = 0 for 1 ≤ n ≤ m and A<m>
n = An for n ≥ m + 1 and denote by T<m> the operator represented by

the matrix A<m>.

Example 2.11. Let α = (αn)∞n=1, β = (βn)∞n=1 and γ = (γn)∞n=1 be given sequences of complex numbers. For
dk = k, αk = 1 − 1/k and βk = γk = 1/k for all k, the operator T ∈ L(hd, hd) represented by the matrix

A(γ, α, β) =



α1 β1 0 · · · 0 · · ·

γ1 α2 β2
. . . · · · 0 · · ·

0 γ2 α3 β3 0 · · · 0 · · ·

...
. . .

. . .
. . .

. . .
0 γn−1 αn βn 0 · · · 0 · · ·

...
. . .

. . .
. . .

. . .
...


= A(γ, 0, 0) + A(0, α, 0) + A(0, 0, β)

is generalized Fredholm.
Indeed, writing c<l>

m (α − e), c<l>
m (γ) and c<l>

m (β) for the previous expressions that defined in the following
equation for the matrices A(0, α − e, 0), A(γ, 0, 0) and A(0, 0, β) respectively

cm =
1

dm

[ m−2∑
n=1

dn|∆(αn + βn + γn−1| + dm−1|∆(αm−1 + γm−2) + βm−1|

]
+

1
dm

[
dm|αm + ∆γm−1 | + dm+1|γm|

]
.

Therefore,

c<l>
m (α − e) =

1
m

( 1
l + 1

m−1∑
n=l+1

n
(1

n
−

1
n + 1

)
+

m
m

)
≤

2
l

∞∑
n=l+1

(1
n
−

1
n + 1

)
.

Combining Lemma 4.5 and Theorem 4.8 in [29] together with the fact that ω(·) ≤ ∥ · ∥χ then we obtain that

ω(TA(0,α,0) − I) ≤ lim sup
l→∞

(
sup

m
c<l>

m (α − e)
)
< 1.
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By using Theorem 2.10 we deduce that TA(0,α,0) ∈ Φ1(hd, hd).
Moreover,

c<l>
m (γ) =

1
dm

(
dl|γl| +

m∑
n=l+1

dn|∆γn−1| + dm+1|γm|

)
≤

1
m
+

∞∑
n=1

( 1
n − 1

−
1
n

)
+

m + 1
m2

≤
3
l
+ 2

∞∑
n=l

1
n2 .

Then
ω(TA(γ,0,0)) ≤ lim sup

l→∞

(
c<l>

m (γ)
)
= 0,

and so TA(γ,0,0) is weakly compact.
Similarly, we have

c<l>
m (β) =

1
dm

( m∑
n=l+1

dn|∆βn| + dm|βm|

)
=

1
m

( ∞∑
n=1

(1
n
−

1
n + 1

)
+

m
m

)
≤

1
l
+

∞∑
n=l+1

(1
n
−

1
n + 1

)
.

Then,

ω(TA(0,0,β)) ≤ lim sup
l→∞

(
c<l>

m (β)
)
= 0,

and hence TA(0,0,β) is weakly compact.
Furthermore, the operator TA(γ,α,β) − I can be written in the following form:

TA(γ,α,β) − I = TA(γ,0,0) + TA(0,α,0) − I + TA(0,0,β).

Accordingly,

ω(TA(γ,α,β) − I) = ω(TA(γ,0,0) + TA(0,α,0) − I + TA(0,0,β))
≤ ω(TA(γ,0,0)) + ω(TA(0,α,0) − I) + ω(TA(0,0,β)).

Since TA(γ,0,0) and TA(0,0,β) are weakly compact and ω(TA(0,α,0) − I) < 1, then we obtain that ω(TA(γ,α,β) − I) < 1.
Hence, by applying Theorem 2.10 we conclude that TA(γ,α,β) ∈ Φ1(hd, hd).

3. Weakly demicompact and generalized semi-Fredholm operators

In this section, we give some generalized Fredholm results related with weakly demicompact operators.
Before that, we recall the following definition.

Definition 3.1. [24] Let T be a closed linear operator on a Banach space X. For x ∈ D(T), the graph norm of
x is defined by

∥x∥T = ∥x∥ + ∥Tx∥.

It follows from the closedness of T that D(T) endowed with the norm ∥x∥T is a Banach space. In this new
space, denoted by XT, the operator T satisfies ∥Tx∥ ≤ ∥x∥T and, consequently, is a bounded operator (acting
from XT into X).
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Let J be a linear operator on X. IfD(T) ⊂ D(J), then J will be called T-defined. If J is an T-defined operator,
we will denote by Ĵ the restriction of J toD(T). Moreover, if Ĵ ∈ L(XT,X) , we say that J is T-bounded. One
checks easily that if J is closed or closable (see [[24], Remark 1.5, p. 191]), then J is T-bounded. Furthermore,
we have the obvious relations{

N(T̂) = N(T), N(T̂ + Ĵ) = N(T + J),
R(T̂) = R(T), R(T̂ + Ĵ) = R(T + J).

(3)

Remark 3.2. From Eq. (3), we can see that T ∈ Φ1(X) (resp. Φ1+(X),Φ1−(X)) if and only if, T̂ ∈ Φ1(XT,X)
(resp. Φ1+(XT,X),Φ1−(XT,X)).

The following result consists to a generalization of [[12], Theorem 3.1] and [[13], Theorem 2.8], which shows
the connection between upper generalized semi-Fredholm operators and the class of weakly demicompact
operators.

Theorem 3.3. Let X be a Banach space having the property (H1) and T ∈ C(X). Then T is weakly demicom-
pact if and only if I − T is upper generalized semi-Fredholm.

Proof. Let Π1 = {x ∈ D(T) : (I − T)x = 0 and ∥x∥ ≤ 1}. Let (xn)n be a sequence in Π1, then xn − Txn ⇀ 0 and
∥xn∥ ≤ 1. Since T ∈ WDC(X), then there exists a subsequence (xφ(n))n of (xn)n such that

xφ(n) ⇀ y, y ∈ X.

According to the closedness of T we deduce that y ∈ D(T) and y = Ty. Then y ∈ N(I − T). Since xφ(n) ⇀ y,
then ∥y∥ ≤ lim inf ∥xφ(n)∥ ≤ 1. Thus, y ∈ B(0, 1). Hence, y ∈ Π1. Implies that the unit ball of the N(I − T) is
weakly compact. Consequently,N(I − T) is reflexive. Now, we will show that R(I − T) is closed. To do this,
let (xn)n be a bounded sequence inD(T) such that

xn − Txn ⇀ x, x ∈ X.

Since T is weakly demicompact, then there exists a subsequence (xφ(n))n of (xn)n such that

xφ(n) ⇀ y, y ∈ X.

We have xφ(n) ⇀ y and (I − T)xφ(n) ⇀ x. Then, we obtain x ∈ D(T) and x = (I − T)y. Thus, x ∈ R(I − T).
Hence, R(I − T) is closed. Therefore (I − T) ∈ Φ1+(X).
Conversely, since X has the property (H1) and N(I − T) is reflexive, then there exists a closed subspace X0
of X such that

X = N(I − T) ⊕ X0

and D(T) = N(I − T) ⊕ X0 ∩ D(T). Taking into account that R(I − T) = R(Î − T) is a closed subset of X,
we deduce that the restriction (Î − T)|(X0∩D(T)) of I − T on X0 ∩D(T) is an isomorphism between the Banach
spaces (X0 ∩D(T), ∥.∥I−T) and (R(I − T), ∥.∥). Hence

[Î − T|(X0∩D(T),∥.∥I−T)]−1 : R(I − T) −→ (X0 ∩D(T), ∥.∥I−T)

is bounded. Let (xn)n be a bounded sequence inD(T) such that xn−Txn ⇀ y, y ∈ X, then y ∈ R(I−T). So we
get, [Î − T|(X0∩D(T),∥.∥I−T)]−1(xn−Txn) ⇀ [Î − T|(X0∩D(T),∥.∥I−T)]−1(y). Thus, xn ⇀ [Î − T|(X0∩D(T),∥.∥I−T)]−1(y) = z, z ∈ X
and hence T ∈ WDC(X).

Remark 3.4. Let X be a Banach space having the property (H1). If T1 : D(T1) ⊂ X −→ X is weakly
demicompact and T2 : D(T2) ⊂ D(T1) −→ X is weakly compact. Then, I − T1 − T2 is upper generalized
semi-Fredholm.
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Theorem 3.5. Let X be a Banach space satisfying the property (H1) and let T ∈ L(X). Then, for all n ∈N\{0},
we have the following implication:

(I − T) ∈ WDC(X) implies that Tn
∈ Φ1+(X).

Proof. Since (I − T) ∈ WDC(X), then (I − Tn) ∈ WDC(X) and so by using Theorem 3.3 we infer that
Tn
∈ Φ1+(X).

Next, we will give a characterization of weakly demicompact bounded projections on a Banach space
satisfying the property (H1) which may be seen as a generalization of [[23], Corollary 2.1]. Before that, we
recall the following theorem.

Theorem 3.6. [34] Let X be a Banach space and let T ∈ L(X) with closed range. Then, T is weakly compact
if and only if R(T) is reflexive.

Theorem 3.7. Let X be a Banach space having the property (H1) and P be a bounded projection on X. Then
the following statements are equivalent.
(i) P is weakly demicompact.
(ii) P ∈ W(X).
(iii) I − P is generalized Fredholm operator.

Proof. (i) ⇒ (ii) Let P be a bounded projection on X such that P ∈ WDC(X). Then, by Theorem 3.3 we
deduce that I−P is an upper generalized semi-Fredholm operator. Since R(P) = N(I−P) which is reflexive,
then by using Theorem 3.6 we deduce that P is weakly compact on X.
(ii)⇒ (iii) Let P ∈ W(X), then P ∈ WDC(X) and thus by applying Theorem 3.3 we show that

(I − P) ∈ Φ1+(X). (4)

On the other hand, since I is co-tauberian and P ∈ W(X), then (I − P) ∈ T d(X) and according to Eq. (4)
we conclude that R(I − P) is closed. Hence, I − P is a lower generalized semi-Fredholm operator and thus
(I − P) ∈ Φ1(X).
(iii) ⇒ (i) Suppose that (I − P) ∈ Φ1(X), then (I − P) ∈ Φ1+(X) and so by using Theorem 3.3 we obtain the
desired result.

We can now give an example of a bounded projection which verifies the above theorem. Before that, let us
recall the following definition.

Definition 3.8. [2] The Rademacher functions (rk)∞k=1 are defined on [0, 1] by:

rk(t) := s1n(sin 2kπt),

satisfy the following properties:
• (rk)(t) = ±1 a.e for all k,

•

∫ 1

0
rk1 rk2 . . . rkm (t)dt = 0, whenever k1 < k2 < . . . km.

We denote by Lp the space Lp(0, 1) for 1 < p < ∞. Let Rp be the closed subspace spanned in Lp, 1 < p < ∞,
by the Rademacher functions (rk)∞k=1 which is isomorphic to l2 and complemented in Lp with 1 < p < ∞. For
more detail see [2].

Example 3.9. There exists a bounded projection P from Lp onto Rp with 1 < p < ∞ such that the operator P
is weakly demicompact.
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Indeed, let P : Lp −→ Rp such that I − P : Lp −→ Lp. We have that the space Lp with 1 < p < ∞ satisfies
the property (H1) (see [[2], Proposition 6.4.2]) and Rp, with 1 < p < ∞ is reflexive, then there exists a closed
subspace X0 of Lp such that Lp = X0 ⊕ Rp. Clearly,N(I − P) = R(P) and R(I − P) = N(P). Thus,

R(I − P) is closed in Lp. (5)

While, the space Lp with 1 < p < ∞ is reflexive andN(I − P) is closed, then

N(I − P) is reflexive. (6)

Moreover, since Lp with 1 < p < ∞ is reflexive and by using Eq. (5), then we deduce thatR(I−P) is reflexive.
This result combined with the fact that Lp with 1 < p < ∞ has the property (H1) allow us to infer that there
exists a closed subspace X1 of Lp such that Lp = X1⊕R(I−P). Taking into account that Lp/R(I−P) is reflexive
and X1 is closed in Lp, then we deduce that

Lp/R(I − P) is reflexive. (7)

Again, the use of Eqs. (5), (6) and (7) enables us to conclude that (I−P) ∈ Φ1(Lp) and hence P ∈ WDC(Lp,Rp)
by Theorem 3.7.

Now, let us recall the following definitions.

Definition 3.10. [19] Let X be a Banach space and let T ∈ L(X). We define the weak essential norm of T by:

∥T∥w = inf{∥T −W∥ : W ∈ W(X)}.

Definition 3.11. [22, 25, 31] Let X be a Banach space and let T ∈ L(X). The operator T is said to be:
(i) Quasi-compact if there exists K ∈ K (X) and a positive integer m such that ∥Tm

− K∥ < 1.
(ii) Weakly quasi-compact if there exists W ∈ W(X) and a positive integer m such that ∥Tm

−W∥ < 1.

We note QP(X), (resp. WQP(X)) for the set of quasi-compact operators (resp. weakly quasi-compact
operators) acting on a Banach space X.

The following theorem is an extension of [[23], Theorem 3.1]. Before that, let us present the following
lemma. The proof can be found in [19].

Lemma 3.12. Let X,Y be two Banach spaces and Z be a linear subspace of X. For an operator T ∈ L(X,Y),
the following statements are equivalent.
(i) T is co-tauberian.
(ii) Every operator S ∈ L(Y,Z) is weakly compact whenever ST is weakly compact.

Theorem 3.13. Let X be a Banach space satisfying the property (H1) and T ∈ L(X). Assume that ∥T∥w < 1,
then
(i) T is weakly demicompact operator on X.
(ii) I − T is a generalized Fredholm operator on X.

Proof. (i) Suppose that ∥T∥w < 1, then there exists W ∈ W(X), such that

∥T∥w ≤ ∥T −W∥ < 1.

Hence, ω(T −W) < 1 and thus by using assertions (i) and (iv) from Proposition 2.9, then we get

ω(T) < 1.

Let (xn)n be a bounded sequence such that

xn − Txn ⇀ x, x ∈ X.
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We have {xn,n ∈N} ⊂ {xn − Txn,n ∈N} + {Txn,n ∈N}. It follows that

ω({xn,n ∈N}) ≤ ω({xn − Txn,n ∈N}) + ω({Txn,n ∈N}).

Accordingly, (1 − ω(T))ω({xn,n ∈ N}) ≤ 0. Consequently, ω({xn,n ∈ N}) = 0. So there exists a weakly
convergent subsequence. Hence, T is weakly demicompact.
(ii) We have from the above assertion (i) that T is weakly demicompact, then by Theorem 3.3, we deduce
that

(I − T) ∈ Φ1+(X). (8)

Now, we will show that I − T is co-tauberian. To do this, let A ∈ L(X) such that A(I − T) is weakly compact.
By Lemma 3.12, it is enough to show that A is weakly compact.
We have

A = A(I − T) + AT.

Accordingly,
ω(A) ≤ ω(A)ω(T).

Then, (1 − ω(T))ω(A) ≤ 0. Hence, A is weakly compact, which implies that I − T is co-tauberian. From Eq.
(8), we obtain that R(I − T) is closed. Consequently,

(I − T) ∈ Φ1−(X). (9)

Using Eqs. (8) and (9), we obtain the desired result.

Theorem 3.14. Let X be a non-reflexive Banach space having the property (H1) and T ∈ L(X). Then, the
following statements hold.
(i) If T ∈ WQP(X), then (I − T) ∈ Φ1(X).
(ii) If T ∈ QP(X), then (I − T) ∈ Φ1(X).

Proof. (i) Let T ∈ L(X). If there exists a positive integer m and W ∈ W(X) such that ∥Tm
−W∥ < 1, then

ω(Tm
−W) ≤ ∥Tm

−W∥ < 1. (10)

Now, let (xn)n be a bounded sequence in X such that

xn − (Tm
−W)xn ⇀ x, x ∈ X,

We set yn := xn − (Tm
−W)xn ⇀ x, x ∈ X, then we have

xn = yn + (Tm
−W)xn.

Accordingly,
ω({xn,n ∈N}) ≤ ω({yn,n ∈N}) + ω(Tm

−W)ω({xn,n ∈N}).

Which implies that
(1 − ω(Tm

−W))ω({xn,n ∈N}) ≤ 0.

It follows from Eq. (10) that ω({xn,n ∈ N}) = 0 and consequently Tm
− W ∈ WDC(X). Thus, the use

of Theorem 3.3 leads to I − Tm +W ∈ Φ1+(X). By using assertion (iii) from Theorem 2.7, we deduce that
I − Tm

∈ Φ1+(X). Taking into account that

I − Tm = (I + T + T2 + · · · + Tm−1)(I − T),

then by using Theorem 2.6 (i), we get that

(I − T) ∈ Φ1+(X). (11)
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In order to finish the proof we only need to show that I − T is co-tauberian. For this purpose let S ∈ L(X)
such that S(I−T) is weakly compact. From Lemma 3.12, we have to claim that S is weakly compact. S(I−Tm)
is weakly compact thanks to S(I − Tm) = S(I − T)(I + T + · · · + Tm−1), where (I + T + · · · + Tm−1) is bounded.
Clearly,

ω(Tm) ≤ ω(Tm
−W)

≤ ∥Tm
−W∥ < 1.

From the expression S = S − STm + STm = S(I − Tm) + STm, we deduce that

ω(S) ≤ ω(STm) ≤ ω(S)ω(Tm)

and thus, (1−ω(Tm))ω(S) ≤ 0, which implies that ω(S) = 0 and so S is weakly compact. Then, from Lemma
3.12, we infer that I−T is co-tauberian and according to Eq. (3.4) we conclude thatR(I−T) is closed. Hence,

(I − T) ∈ Φ1−(X). (12)

From Eqs. (11) and (12), we infer that (I − T) ∈ Φ1(X).
(ii) The proof of (ii) follows from the fact that QP(X) ⊂WQP(X) and by arguing similarly as for (i).

4. Generalized Fredholm results and spectral properties for operator matrices involving weak demi-
compactness classes

In this section, we will characterize the generalized essential spectra of the operator matrix L, the closure
of L0, acting on the space X ×X, where X is a non-reflexive Banach space satisfying the properties (H1) and
(H2) or one of them. For this, let us consider the operator L0 in the product space X × X as follow

L0 :=
(

A B
C D

)
, (13)

where the operator A acts on X and has domainD(A), D is defined onD(D) and acts on the Banach space
X, and the intertwining operator B (resp. C) is defined on the domainD(B) (resp. D(D)) and acts on X.
Further, we suppose in the following that the entries of this matrix satisfy some conditions which were
introduced in [32].
(P1) A is closed, densely defined linear operator on X with nonempty resolvent set ρ(A).
(P2) The operator B is a densely defined linear operator on X and for (hence all) µ ∈ ρ(A), the operator
(A − µ)−1B is closable. (In particular, if B is closable, then (A − µ)−1B is closable).
(P3) The operator C satisfies D(A) ⊂ D(C), and for some (hence all) µ ∈ ρ(A), the operator C(A − µ)−1 is
bounded. (In particular, if C is closable, then C(A − µ)−1 is bounded).
(P4) The linealD(B)∩D(D) is dense in X and for some (hence all) µ ∈ ρ(A), the operator D−C(A− µ)−1B is
closable. We will denote by S(µ) its closure.

Remark 4.1. (i) Under the assumptions (P1) and (P2), we infer that for each µ ∈ ρ(A) the operator G(µ) :=
(A − µ)−1B is bounded on X.
(ii) From the assumption (P3), it follows that the operator: F(µ) := C(A − µ)−1 is bounded on X.

In the next, we recall the following result which characterizes the operator L.

Theorem 4.2. [5] Let conditions (P1)-(P3) be satisfied and the lineal D(B) ∩D(D) be dense in X. Then, the
operator L0 is closable and the closure L of L0 is given by

L = µ −
(

I 0
F(µ) I

) (
µ − A 0

0 µ − S(µ)

) (
I G(µ)
0 I

)
.
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Remark 4.3. For λ ∈ C, it yields from previous equation that

λ − L =
(

I 0
F(µ) I

) (
λ − A 0

0 λ − S(µ)

) (
I G(µ)
0 I

)
− (λ − µ)M(µ),

where

M(µ) =
(

0 G(µ)
F(µ) F(µ)G(µ)

)
.

Now, let us present the next useful lemma which is related to the cartesian product of two Banach spaces
possesses on the one hand the property (H1) and on the other hand the property (H2).

Lemma 4.4. Let X and Y be two Banach spaces.
(i) If X and Y have the property (H1), then X × Y has the property (H1).
(ii) If X and Y have the property (H2), then X × Y has the property (H2).

Proof. (i) Let F be a reflexive subspace of X × Y and let P and Q be the bounded projections of F onto X and
Y respectively. Clearly R(P) is closed. Since F is reflexive, then N(P) is also reflexive and so P is tauberian
operator. By applying [[19], Proposition 2.1.3] we get that P is weakly compact and then the use of Theorem
3.6 leads to R(P) is a reflexive subspace of X. This result combined with the fact that X has the property
(H1) show that there exists a closed subspace X1 of X such that X = X1 ⊕ R(P). Similarly we can prove that
Y = Y1 ⊕ R(Q), where Y1 (resp. R(Q)) is a closed (resp. reflexive) subspace of Y. Therefore,

X × Y = (X1 × Y1) ⊕ (R(P) × R(Q)). (14)

To demonstrate this, it remains to check that for all z ∈ X × Y that z = a + b, where a = (a1, a2) ∈ X1 × Y1 and
b = (b1, b2) ∈ R(P)×R(Q) and that (X1×Y1)∩(R(P)×R(Q)) = {0}. In order to do so, let z = (x, y) ∈ X×Y. Since
X = X1⊕R(P) and Y = Y1⊕R(Q), then for x ∈ X and y ∈ Y, there exist respectively unique (a1, b1) ∈ X1×R(P)
and (a2, b2) ∈ Y1×R(Q) such that x = a1+b1 and y = a2+b2. Hence z = (x, y) = (a1, a2)+ (b1, b2). Furthermore,

(X1 × Y1) ∩ (R(P) × R(Q)) = (X1 ∩ R(P)) × (Y1 ∩ R(Q)) = {0}.

While R(P) and R(Q) are reflexive, then so is R(P) × R(Q) (see [[1], Proposition 1.8.3]), and thus by using
Eq. (14) we conclude that X × Y satisfies the property (H1).
(ii) Let E and F be two closed subspaces of X and Y respectively. Firstly, we will prove that

(X × Y)/(E × F) � (X/E) × (Y/F). (15)

Since E and F are closed subspaces of X and Y respectively, then X/E and Y/F are two Banach spaces. Hence,
(X × Y)/(E × F) is isomorphic to (X/E) × (Y/F).
Now, let M be a closed subspace with reflexive quotient of X×Y and let P1 and Q1 be the bounded projections
of (X × Y)/M onto X and Y respectively. Obviously, R(P1) is closed. While (X × Y)/M is reflexive, then P1 is
weakly compact and so by applying Theorem 3.6 we conclude that R(P1) is a reflexive subspace of X. This
combined with the fact that X has the property (H2) allow us to deduce that there exists a closed subspace
X0 of X such that X = X0 ⊕N(P1). Similarly we can show that Y0 andN(Q1) are complemented in Y, where
Y0 (resp. N(Q1)) is a closed (resp. reflexive) subspace of Y. Moreover,

X × Y = (N(P1) ×N(Q1)) ⊕ (X0 × Y0).

Since X and Y have the property (H2) and by using Eq. (15) together with [[1], Proposition 1.8.3], we infer
that X × Y satisfies the property (H2).

Next, we state some generalized Fredholm results by means of weak demicompactness classes. Before that,
we give the following remark.
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Remark 4.5. Let X and Y be two non-reflexives Banach spaces. Then X×Y is a non-reflexive Banach space.
Indeed, we have from [[24], Page 164] that (X ×Y)∗ = X∗ ×Y∗. So (X ×Y)∗∗ = X∗∗ ×Y∗∗. Using the fact that X
and Y are non-reflexives, then so is X × Y.

If T ∈ C(X1) (resp. C(X2)), then X1,T = (D(T), ∥.∥X1 ) (resp. X2,T = (D(T), ∥.∥X2 )) is a Banach space. From now,
we assume that X1,T and X2,T are non-reflexive having the property (H).

Lemma 4.6. Let X1 and X2 be two non-reflexive Banach spaces having the the property (H) and let M1 be
the operator matrix defined by:

M1 =

(
A 0
0 B

)
,

where A ∈ C(X1),B ∈ C(X2). Then, the following statements hold.

(i) If M1 ∈ Φ1+(X1 × X2), then A ∈ Φ1+(X1) and B ∈ Φ1+(X2).

(ii) If M1 ∈ Φ1−(X1 × X2), then A ∈ Φ1−(X1) and B ∈ Φ1−(X2).

(iii) If A ∈ Φ1+(X1) and B ∈ Φ1+(X2), then M1 ∈ Φ1+(X1 × X2).

(iv) If A ∈ Φ1(X1) and B ∈ Φ1(X2), then M1 ∈ Φ1(X1 × X2).

Proof. (i) Suppose that M1 ∈ Φ1+(X1 × X2), then M̂1 ∈ Φ1+(X1,T × X2,T,X1 × X2). The operator M̂1 can be
written in the following from:

M̂1 =

(
I 0
0 B̂

) (
I 0
0 I

) (
Â 0
0 I

)
=

(
Â 0
0 I

) (
I 0
0 I

) (
I 0
0 B̂

)
. (16)

By applying Theorem 2.6 (i) to Eq. (16) we deduce that Â ∈ Φ1+(X1,T,X1) and hence by applying Remark
3.2 we infer that A ∈ Φ1+(X1).
The proof for the other operator will be similarly achieved and the proof of (i) is complete.
(ii) By using Lemma 2.4 (ii) and Lemma 4.4 (ii), the proof of (ii) follows by symmetry as (i).
(iii) The proof of (iii) follows immediately from Eq. (16).
(iv) The statement (iv) can be checked in the same way from the assertion (iii).

Next, for A ∈ C(X1),B ∈ C(X2) and C ∈ C(X1,X2), let us consider the 2 × 2 operator matrix MC as

MC =

(
A C
0 B

)
. (17)

Lemma 4.7. Let X1 and X2 be two non-reflexive Banach spaces having the property (H) and let MC be the
matrix operator defined in Eq. (17), then
(i) If A ∈ Φ1(X1) and B ∈ Φ1(X2), then MC ∈ Φ1(X1 × X2).
(ii) If A ∈ Φ1+(X1) and B ∈ Φ1+(X2), then MC ∈ Φ1+(X1 × X2).

Proof. (i) Since X1,T and X2,T satisfy the property (H), then by Lemma 4.4 we deduce that X1,T ×X2,T satisfies
the property (H). Moreover, the operator MC can be written in the following form

MC =

(
I 0
0 B

) (
I C
0 I

) (
A 0
0 I

)
= JKL, J,K,L ∈ C(X1 × X2).

Since A ∈ Φ1(X1) and B ∈ Φ1(X2), then from assertion (iii) of Lemma 4.6, it yields that J and L are both
generalized Fredholm operators. Taking account that K is invertible, for every C ∈ C(X2,X1), then K is
generalized Fredholm. So, Ĵ, K̂ and L̂ are both generalized Fredholm operators. By using Theorem 2.7 we
infer that M̂C ∈ Φ1(X1,T × X2,T,X1 × X2). Hence MC ∈ Φ1(X1 × X2).
(ii) The proof of (ii) is established similarly as that in (i) by using Lemma 2.4 (ii).
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Remark 4.8. Let X1 and X2 be two non-reflexive Banach spaces having the property (H). Then, by using a
similar reasoning as in again Lemma 4.7, it is easy to check that:
If A ∈ Φ1(X1) and B ∈ Φ1(X2), then for every D ∈ C(X1,X2)

MD =

(
A 0
D B

)
is a generalized Fredholm operator on X1 × X2.

Lemma 4.9. Let X1 and X2 be two non-reflexive Banach spaces having the property (H) and let MC be the
matrix operator defined in Eq. (17). Then,
(i) If MC ∈ Φ1+(X1 × X2), then A ∈ Φ1+(X1).
(ii) If MC ∈ Φ1−(X1 × X2), then B ∈ Φ1−(X2).
(iii) If MC ∈ Φ1(X1 × X2), then A ∈ Φ1+(X1) and B ∈ Φ1−(X2).

Proof. (i) Since X1,T and X2,T have the property (H), then by Lemma 4.4 we infer that X1,T × X2,T satisfies
the property (H). Since MC ∈ Φ1+(X1 × X2), then M̂C ∈ Φ1+(X1,T × X2,T,X1 × X2). Moreover, we have the
following decomposition

M̂C =

(
I 0
0 B̂

) (
I Ĉ
0 I

) (
Â 0
0 I

)
, (18)

where Ĉ ∈ C(X2,T,X1).Using assertion (i) from Theorem 2.6, we get that
(

Â 0
0 I

)
∈ Φ1+(X1,T×X2,T,X1×X2).

By using Lemma 4.6 we get Â ∈ Φ1+(X1,T,X1). Consequently, A ∈ Φ1+(X1).
(ii) Since MC ∈ Φ1−(X1 ×X2), the combination of the decomposition given in Eq. (18) and assertion (ii) from
Lemma 4.6 shows that B ∈ Φ1−(X2).
(iii) The proof of (iii) is a direct consequence of (i) and (ii).

Remark 4.10. Similarly as in Lemma 4.7, it can be shown for X1 and X2 are two non-reflexive Banach spaces
having the property (H) that,

(i) if A ∈ Φ1+(X1) and B ∈ Φ1+(X2), then
(

A 0
D B

)
∈ Φ1+(X1 × X2) for every D ∈ C(X1,X2).

(ii) If A ∈ Φ1−(X1) and B ∈ Φ1−(X2), then
(

A 0
D B

)
∈ Φ1−(X1 × X2) for every D ∈ C(X1,X2).

The following lemma concerns the set of upper g-Riesz operators.

Lemma 4.11. Let X1 and X2 be two non-reflexive Banach spaces having the property (H1) and let MC be the
matrix operator defined in Eq. (17). Then, A and B are weakly demicompact if and only if, λ −MC is an
upper generalized semi-Fredholm, for all λ ∈ C\({0} ∩ σ(B)).

Proof. We have

λ −MC =

(
λ − A C

0 λ − B

)
.

Since A and B are weakly demicompact and X1 × X2 has the property (H1) by Lemma 4.4, then the use of
Theorem 3.3 leads to λ − A and λ − B are upper generalized semi-Fredholm operators for all λ ∈ C\{0}, by
Lemma 4.7 (ii), (λ −MC) ∈ Φ1+(X1 × X2). For the converse, let λ ∈ C\σ(B), then we consider the following
decomposition:

λ −MC =

(
λ − A −C

0 λ − B

)
=

(
I −C(λ − B)−1

0 I

) (
λ − A 0

0 I

) (
I 0
0 λ − B

)
.



M. Beghdadi, B. Krichen / Filomat 38:22 (2024), 7775–7795 7790

From the facts that (λ − M̂C ) ∈ Φ1+(X1,T × X2,T,X1 × X2) and(
λ − Â 0

0 I

) (
I 0
0 λ − B̂

)
=

(
I 0
0 λ − B̂

) (
λ − Â 0

0 I

)
,

then by using Theorem 2.6 and Lemma 4.6 (i), it follows that λ − A and λ − B are upper generalized
semi-Fredholm. Again, the use of Theorem 3.3 leads to the desired result.

In the following results, we assume that XT is non-reflexive.

Proposition 4.12. Let X be a non-reflexive Banach space. Assume that X and XT satisfy the property (H1)
and let L0 be the matrix operator defined in Eq. (13) satisfies (P1)-(P4). Suppose that there is µ ∈ C\{0}
such that 1

µ ∈ ρ(A). If the operator µS( 1
µ ) is weakly demicompact, then I − µL is an upper generalized

semi-Fredholm operator.

Proof. The operator L can be written by the Frobenius-Schur factorization as follow:

L =
1
µ
−

(
I 0

F( 1
µ ) I

)  1
µ − A 0

0 1
µ − S( 1

µ )

 ( I G( 1
µ )

0 I

)
=

1
µ
−QRP.

Clearly, Q and P are upper generalized semi-Fredholm operators on X×X (see Lemma 4.6 (ii)). Furthermore,
we have the following decomposition

µL = I − µ
(

I 0
F( 1

µ ) I

)  1
µ − A 0

0 1
µ − S( 1

µ )

 ( I G( 1
µ )

0 I

)
.

Since 1
µ ∈ ρ(A) for µ , 0, then ( 1

µ − A) ∈ Φ1(X × X) and so

(I − µA) ∈ Φ1+(X × X). (19)

Taking account that µS( 1
µ ) ∈ WDC(X), then by Theorem 3.3 we deduce that

(I − µS(
1
µ

)) ∈ Φ1+(X × X). (20)

The use of Eqs. (19), (20) and Lemma 4.6 (ii) leads to R ∈ Φ1+(X × X). This result combined with the
fact that Q and P are bounded with bounded inverses allow us to get that QR̂P is an upper generalized
semi-Fredholm operator and so is QRP. It yields from Theorem 3.3 that µL = (µ−QRP) ∈ WDC(X×X) for
µ ∈ C\{0} and hence the result follows from Theorem 3.3.

Now, we need the following lemma.

Lemma 4.13. Let X1, X2 be two non-reflexive Banach spaces satisfying the property (H1) and let

F :=
(

F11 F12
F21 F22

)
,

where Fi j ∈ L(X j,Xi), with i, j = 1, 2. If Fi j ∈ F
l
1(X j,Xi) then, F ∈ F1+(X1 × X2).

Here, F l
1 denotes the set of perturbations of upper generalized semi-Fredholm with complemented range.
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Proof. We have

F =

(
F11 0
0 0

)
+

(
0 F12
0 0

)
+

(
0 0

F21 0

)
+

(
0 0
0 F22

)
= K + L +M +N,

where

K :=
(

F11 0
0 0

)
, L :=

(
0 F12
0 0

)
, M :=

(
0 0

F21 0

)
and N =:

(
0 0
0 F22

)
.

First, we will prove that if F11 ∈ F
l
1(X1) then K ∈ F1+(X1 × X2). To do this, let

S :=
(

A C
D B

)
∈ Φ1+(X1 × X2),

with complemented range. Since X1 × X2 is non-reflexive and satisfies the property (H1), it follows that
there exist

S0 :=
(

A0 C0
D0 B0

)
∈ L(X1 × X2) and W :=

(
W11 W12
W21 W22

)
∈ W(X1 × X2),

such that S0S = I +W on X1 × X2. Then,

S0(S + K) = I +W + S0K =
(

I +W11 + A0F11 W12
W21 +D0F11 I +W22

)
.

Since F11 ∈ F
l
1(X1), then by using Theorem 2.7 we get (I +W11 + A0F11) ∈ Φ1+(X1). This result combined

with the fact that (I +W22) ∈ Φ1+(X2), enables us to infer from Remark 4.10, that[
S0(S + K) −

(
0 W12
0 0

) ]
∈ Φ1+(X1 × X2).

Taking into account that W12 ∈ W(X1,X2) and (S0(S + K)) ∈ Φ1+(X1 × X2), then by Theorem 2.6 we deduce
that (S + K) ∈ Φ1+(X1 × X2). Consequently, K ∈ F1+(X1 × X2). The proofs for the other operators can be
proved similarly.

Theorem 4.14. Let X be a non-reflexive Banach space. Assume that X and XT satisfy the property (H1).
Let L0 be the operator defined in Eq. (13) satisfies (P1)-(P4). Suppose that µ ∈ ρ(A), G(µ) ∈ W(X) and
F(µ) ∈ F l

1(X). If A and S(µ) are weakly demicompact, then (µ − L) ∈ Φ1+(X × X).

Proof. For λ = 1, we have

I − L =

(
I 0

F(µ) I

) (
I − A 0

0 I − S(µ)

) (
I G(µ)
0 I

)
− (1 − µ)M(µ)

= UV(µ)W − (1 − µ)M(µ).

It is clear that U and W are upper generalized semi-Fredholm. Since A and S(µ) are weakly demicompact,
then by Theorem 3.3 we deduce that I − A and I − S(µ) are upper generalized semi-Fredholm operators on
X. By using Lemma 4.6 we get V(µ) is upper generalized semi-Fredholm. It follows from the boundedness
of the operators U and W and their inverses that UV(µ)W ∈ Φ1+(X × X). We have

I − L = UV(µ)W + (1 − µ)M(µ) = UV(µ)W + (1 − µ)
(

0 G(µ)
F(µ) F(µ)G(µ)

)
= Z + F1,

where,

Z := UV(µ)W and F1 := (1 − µ)
(

0 G(µ)
F(µ) F(µ)G(µ)

)
.
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To prove that (I − L) ∈ Φ1+(X ×X), it is enough to show that F1 ∈ F1+(X ×X). For this purpose, let µ ∈ ρ(A).
Since F(µ) ∈ L(X) and G(µ) is weakly compact, then the fact thatW(X) is a two-sided ideal of L(X) shows
that F(µ)G(µ) ∈ W(X) ⊂ F l

1(X). Moreover, taking into account that F(µ),G(µ) ∈ F l
1(X), then according to

Lemma 4.13 we conclude that F1 ∈ F1+(X × X). Thus,
[
UV(µ)W − (1 − µ)M(µ)

]
∈ Φ1+(X × X) and so the

result follows.

Finally, we will describe the generalized essential spectra of the matrix operator L. The following results
are generalizations of some results found in [33].

Theorem 4.15. Let X be a non-reflexive Banach space. Assume that X and XT satisfy the property (H1).
Assume that L0 satisfies (P1)-(P4). If A ∈ WDC(X), then for every µ ∈ C\{0}

σe1,1(L)\{0} = σe1,1(S(µ))\{0}.

Proof. We have

µ − L =

(
I 0

F(µ) I

) (
µ − A 0

0 µ − S(µ)

) (
I G(µ)
0 I

)
.

Let us consider the following operators:

K :=
(

I 0
F(µ) I

)
, T :=

(
µ − A 0

0 µ − S(µ)

)
and U :=

(
I G(µ)
0 I

)
.

Again, let µ < σe1,1(L)\{0}, then (µ − L) ∈ Φ1+(X × X). Clearly, U and K are bounded and have bounded
inverses. Then, it follows that T ∈ Φ1+(X × X). According to Remark 4.10 (i) we conclude that (µ − S(µ)) ∈
Φ1+(X). Consequently, µ < σe1,1(S(µ))\{0}. To show the opposite inclusion, let µ < σe1,1(S(µ))\{0}, then
(S(µ) − µ) ∈ Φ1+(X). Since A ∈ WDC(X), then from Theorem 3.3 it follows that (µ −A) ∈ Φ1+(X). Applying
Lemma 4.6 (ii) we infer that T ∈ Φ1+(X × X). The fact that U and K are bounded with bounded inverses
allow us to conclude that (µ − L) ∈ Φ1+(X × X), for all µ ∈ C\{0}. Hence µ < σe1,1(L)\{0}.

Remark 4.16. In the rest of this paper, we impose the following assumptions (P′1), (P′2), (P′3) and (P′4) by
replacing the operators A and C in (P1), (P2), (P3) and (P4), by D and B respectively. The closure of
A − B(D − µ)−1C is here denoted by T(µ).

(P′5) The operator A satisfiesD(A) ⊂ D(C), ρ(A) ∩ ρ(D) , ∅ andD(B) ∩D(D) is a core of D.

(P′6) The operator D satisfiesD(D) ⊂ D(B), ρ(A) ∩ ρ(D) , ∅ andD(A) ∩D(C) is a core of A.

Theorem 4.17. Let X be a non-reflexive Banach space. Assume that X and XT satisfy the property (H1). Let
L0 be the matrix operator defined in Eq. (13) satisfies the assumption (P′1)-(P′4). If D ∈ WDC(X), then for
every µ ∈ C\{0}

σe1,1(L)\{0} = σe1,1(T(µ))\{0}.

Proof. Since assumption (P5) is satisfied, then [[33], Theorem 2.2.18], shows that A is closable (resp. closed)
if and only if A − B(D − µ)−1C is closable (resp. closed) for some (and hence for all) µ ∈ ρ(D) and thus the
operator L − µ can be written as follow

L − µ =

(
I B(D − µ)−1

0 I

) (
T(µ) − µ 0

0 D − µ

) (
I 0

(D − µ)−1C I

)
.

Now, similarly as in the proof of again Theorem 4.15 and for all µ ∈ C\{0}, it can be shown that (T(µ)− µ) ∈
Φ1+(X) if and only if (L − µ) ∈ Φ1+(X × X), which achieves the result.
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The following theorems give a characterization of the generalized Wolf essential spectra of L. Before that,
for an arbitrary fixed µ0 ∈ ρ(A) (resp. µ0 ∈ ρ(D)) let us define the operator L1,µ0 (resp. L2,µ0 ) as:

L1,µ0 :=
(

A 0
0 S(µ0) + µ0

)
and L2,µ0 :=

(
T(µ0) + µ0 0

0 D

)
.

Theorem 4.18. Let X be a non-reflexive Banach space. Assume that X and XT satisfy the property (H) and
let L0 be the matrix operator defined in Eq. (13) satisfies the assumption (P1)-(P4) and (P′5). If for some (and
hence for all) µ ∈ ρ(A) ∩ ρ(D):
(i) (A − µ)−1B and C(A − µ)−1B are bounded onD(B),
(ii) (D − µ)−1C(A − µ)−1 and (A − µ)−1B(D − µ)−1 are weakly compact,

then for every µ0 ∈ ρ(A) with ρ(L)∩ρ(A)∩ρ(D−C(A − µ0)−1B) , ∅, the difference of the resolvents (L−λ)−1

and (L1,µ0 − λ)−1 is weakly compact for λ ∈ ρ(L) ∩ ρ(A) ∩ ρ(D − C(A − µ0)−1B). In particular,

σe4,1(L) = σe4,1(A) ∪ σe4,1(D − C(A − µ0)−1B).

Proof. Let µ0 ∈ ρ(A) and let λ ∈ C be so that ρ(L) ∩ ρ(A) ∩ ρ(D − C(A − µ0)−1B) , ∅, then we have

(L − λ)−1
− (L1,µ0 − λ)−1 := (A − λ)−1B S(λ)

−1
C(A − λ)−1

−(A − λ)−1B S(λ)
−1

−S(λ)
−1

C(A − λ)−1 S(λ)
−1
− (S(µ0) + µ0 − λ)−1

 (21)

Furthermore,

S(λ)
−1

C(A − λ)−1 = (D − λ)−1C(A − λ)−1 + S(λ)
−1

C(A − λ)−1B(D − λ)−1C(A − λ)−1,

and

S(λ)
−1
− (S(µ0) + µ0 − λ)−1 = (λ − µ0)S(λ)

−1
C(A − λ)−1(A − µ0)−1B(S(µ0) + µ0 − λ)−1. (22)

To prove that the operator (L − λ)−1
− (L1,µ0 − λ)−1 is weakly compact, it suffices to show that all its entries

that defined in Eq. (21) are weakly compact. To do so, we have from the second condition in (i) and the

first condition in (ii) that (A − λ)−1B S(λ)
−1

C(A − λ)−1 is weakly compact.

Moreover, by assertion (i) and the first condition from (ii) we infer that S(λ)
−1

C(A−λ)−1 is weakly compact.

It suffices to use Eq. (22) to obtain that S(λ)
−1
− (S(µ0) + µ0 − λ)−1 is weakly compact.

The proofs for the other operators will be similarly achieved.
Therefore, it follows from assertion (iii) of Lemma 4.9 and the weak compactness of (L − λ)−1

− (L1,µ0 − λ)−1

combined with the fact that

L − λ = (λ − µ)(L − µ)((λ − µ)−1
− (L − µ)−1)

that

λ ∈ σe4,1(L) ⇔ (λ − µ)−1
∈ σe4,1((L − µ)−1) = σe4,1((L1,µ0 − λ)−1)

⇔ λ ∈ σe4,1(L1,µ0 ).

Accordingly,

σe4,1(L) = σe4,1(A) ∪ σe4,1(D − C(A − µ0)−1B).

As a similar way as in theorem 4.18, we can easily obtain the following result.
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Theorem 4.19. Let X be a non-reflexive Banach space. Assume that X and XT satisfy the property (H) and
let L0 be the matrix operator defined in Eq. (13) satisfies the assumptions (P′1)-(P′4) and (P′6). If for some
(and hence for all) µ ∈ ρ(A) ∩ ρ(D):
(i) (D − µ)−1C and B(D − µ)−1C are bounded onD(C),
(ii) (A − µ)−1B(D − µ)−1 and (D − µ)−1C(A − µ)−1 are weakly compact,

then for every µ0 ∈ ρ(D) with ρ(L)∩ρ(D)∩ρ(A−B(D − µ0)−1C) , ∅, the difference of the resolvents (L−λ)−1

and (L2,µ0 − λ)−1 is weakly compact for λ ∈ ρ(L) ∩ ρ(D) ∩ ρ(A − B(D − µ0)−1C). In particular,

σe4,1(L) = σe4,1(D) ∪ σe4,1(A − B(D − µ0)−1C).

Remark 4.20. In Theorems 4.18 and 4.19, if X and XT satisfy the property (H1) and the other conditions are
satisfied, then

σe1,1(L) = σe1,1(A) ∪ σe1,1(D − C(A − µ0)−1B),
and

σe1,1(L) = σe1,1(D) ∪ σe1,1(A − B(D − µ0)−1C).

Now, we will finish with a simple example of weakly demicompact 2 × 2 matrix operator acting on the
space J(Xn) × J(Xn).

Example 4.21. Let J(Xn) be the James’ quasi-reflexive Banach space with Xn denotes the subspace of l1
generated by {e1, . . . , en}. For more details see [3, 19].
For k ∈N, we define the operator Tk : J(Xn)→ J(Xn) as follows:

Tk((xn)) := (x1, x2, . . . , xk, 0, 0, . . .); (xn) ∈ J(Xn).

Clearly Tk is a projection onto a finite dimensional subspace. Then, Tk is compact.
Next, we define the following operators on J(Xn) by:

Bk((xn)) = (x1, 2x2, x3, 2x4, . . . , xk, 0, 0, . . .); (xn) ∈ J(Xn),
Ck((xn)) = (x1, 0, x3, 0, x5, . . . , xk, 0, 0, . . .); (xn) ∈ J(Xn),
Sk((xn)) = (0, x2, 0, x4, . . . , xk−1, 0, 0, . . .); (xn) ∈ J(Xn).

Clearly, the operators Bk, Ck and Sk are weakly compact.
Now, we consider the matrix operatorMk defined on J(Xn) × J(Xn) as:

Mk :=
(

Tk Bk
Ck Sk

)
.

Since all the entries ofMk are weakly compact then so isMk. HenceMk ∈ WDC(J(Xn)× J(Xn)). On the other
hand, it yields from Lemma 4.4 and Remark 4.5 that J(Xn)× J(Xn) is non-reflexive and satisfies the property
(H1). This result combined with the use of Theorem 3.3, allow us to conclude that (I−Mk) ∈ Φ1+(J(Xn)×J(Xn)).

Finally, we present some additional interesting works:
(1) What about generalized Fredholm theory in Banach Lattice spaces.
(2) What about the current study (generalized Fredholm and weak demicompactness) in Banach Lattice
spaces.
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[22] H. Hennion, L. Hervé, Limit Theorems for Markoc chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness.

Springer-Verlag, Berlin Heidelberg (2001).
[23] A. Jeribi, B. Krichen, M. Salhi: Characterization of relatively demicompact operators by means of measures of noncompactness.

J. Korean Math. Soc. 55, 877-895 (2018).
[24] T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-

Verlag New York, Inc., New York, 1966.
[25] U. Krengel, Ergodic Theorems. Walter de Gruyter, Berlin, New York (1985).
[26] B. Krichen, D. O’Regan, On the Class of Relatively Weakly Demicompact Nonlinear Operators, Fixed Point Theory, 19, 625-630

(2018).
[27] J. Lindenstrauss. On a theorem of Murray and Mackey. An. Acad. Brasil. Ci. 39 (1967) 1-6.
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