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Abstract. The main goal of this paper is to identify some important tensor structures in the semi-tangent
bundle, to provide instances of these structures and to study lift problems in these structures. The definition
of almost product, almost paracomplex, almost contact and almost paracontact structural geometry in a
semi-tangent bundle is covered in this paper. Using the semi-tangent bundle theory, several properties of
adapted frames are shown. Furthermore, the prolongations (horizontal lifts, complete lifts and vertical lifts)
of affinor fields in the semi-tangent bundle are used in this study to build almost product, almost complex
and Lorentzian almost paracontact structures.

1. Introduction

The tensor structures on smooth manifolds are remarkable geometric objects in popular differential
geometry. Many authors have made important contributions to this field. In 1947, Weil noticed that
there exist in a complex space a (1, 1)− tensor field (i.e., an affinor field) P whose square is minus unity
[33]. Ehresmann and Libermann [5] researched and provided the prerequisites for a complex structure to
generate an almost complex structure.

In 1955, A.G. Walker started the study of so-called an almost product spaces and showed that there exists
a mixed tensor field P whose square is unity instead of being minus unity as in the case of an almost complex
space [29]. In 1965, K. Yano tried to make as clear as possible the analogy between the almost complex and
almost product structures in [32]. In reality, polynomial structures (P−structures) are (1, 1)−tensor fields,
which are roots of the algebraic equation

φ(P) = Pn + anP(n−1) + ... + a2P + a1I = 0,

in which a1, a2, ..., an ∈ R and I = idMn is the identity tensor of type (1, 1). The polynomial structures on a
manifold that we have discussed were defined as the following equations:

(i) If φ(P) = P2 + I = 0, then P is referred to as an almost complex structure. That is to say, we have
a smooth (1, 1)−tensor field P such that P2 = −I when regarded as a vector bundle isomorphism P : T(Mn)→
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T(Mn) on the tangent bundle T(Mn). Thus, we defined an almost-complex structure to be a linear bundle
map P : T(Mn)→ T(Mn) with P2 = −I.

(ii) If φ(P) = P2
− I = 0, then P is referred to as an almost product structure. That is to say, an

almost-product structure on Mn is a field of endomorphisms of T(Mn), i.e. an affinor field on Mn, so P2 = I.
(iii) If φ(P) = P2 = 0, then P is referred to as an almost tangent structure [4], [6].
Let Bm and Mn denote two differentiable manifolds of dimensions m and n respectively, let (Mn, π1,Bm)

be a differentiable bundle and let π1 be the submersion (natural projection) π1 : Mn → Bm. We may consider
(xi) = (xa, xα), i = 1, ...,n; a, b, ... = 1, ...,n −m; α, β, ... = n −m + 1, ...,n as local coordinates in a neighborhood
π−1

1 (U).
Let Bm be the base manifold and T(Bm) be the tangent bundle over Bm and let π̃ : T(Bm)→ Bm be the nat-

ural projection. Also, let Tp(Bm) represent in for the tangent space at a p−point
(
p̃ = (xa, xα) ∈Mn, p = π1

(
p̃
))

on the base manifold Bm. If Xα = dxα (X) are components of X in tangent space Tp(Bm) with regard to the nat-
ural base {∂α} = { ∂∂xα }, then we have the set of all points (xa, xα, xα), Xα = xα = yα, α, β, ... = n+1, ...,n+m is by
definition, the semi-tangent bundle t(Bm) over the Mn manifold and the natural projection π2 : t(Bm)→Mn,
dim t(Bm) = n + m.

Specifically, assuming n = m, then the semi-tangent bundle [21] t(Bm) becomes a tangent bundle T(Bm).
If given a tangent bundle π̃ : T(Bm)→ Bm and a natural projection π1 : Mn → Bm, the pullback bundle (for
example, see [7], [9], [14], [16], [17], [24], [27], [28]) is defined by π2 : t(Bm)→Mn where

t(Bm) =
{
((xa, xα) , xα) ∈Mn × Tx(Bm)

∣∣∣π1 (xa, xα) = π̃
(
xα, xα

)}
.

The induced coordinates
(
x1′ , ..., xn−m′ , x1′ , ..., xm′

)
with regard to π−1(U) will be given by{

xa′ = xa′ (xb, xβ), a, b, ... = 1, ...,n −m
xα′ = xα′

(
xβ

)
, α, β, ... = n −m + 1, ...,n, (1)

if (xi′ ) = (xa′ , xα′ ) is another coordinate chart on Mn.
The Jacobian matrice of (1) is given by [21]:

(
Ai′

j

)
:
(
∂xi′

∂x j

)
=

 ∂xa′

∂xb
∂xa′

∂xβ

0 ∂xα′

∂xβ

 ,
where i, j, .... = 1, ...,n.

If (1) is the local coordinate system on Mn, then we have the induced fiber coordinates (xa′ , xα′ , xα
′

) on
the semi-tangent bundle (change of coordinates):

xa′ = xa′ (xb, xβ), a, b, ... = 1, ...,n −m,
xα′ = xα′

(
xβ

)
, α, β, ... = n −m + 1, ...,n,

xα
′

= ∂x
α′

∂xβ yβ, α, β, ... = n + 1, ...,n +m,
(2)

The Jacobian matrice for (2) is as follows [21]:

Ā :
(
AI′

J

)
=


∂xa′

∂xb
∂xa′

∂xβ 0
0 ∂xα′

∂xβ 0
0 yε ∂

2xα′

∂xβ∂xε
∂xα′

∂xβ

 , (3)

where I, J, .... = 1, ...,n +m.
Therefore, we obtain

(
AI

J′
)
=


Aa

b′ Aa
β′ 0

0 Aαβ′ 0
0 Aαβ′ε′ y

ε′ Aαβ′

 , (4)
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which is the Jacobian matrix of inverse (2).
There is numerous research on tangent bundle theory, which is a popular topic in engineering, physics

and particularly differential geometry [8], [18].
The semi-tangent bundle considered in this work specifies a pull-back bundle and differs from the

tangent bundle.
We note that almost paracontact structure and almost contact structure in the tangent bundles and their

some features were studied in [1], [2], [13], [19], [22]. Numerous studies, including [21], [27], [28] and
others, have studied the geometric properties of the semi-tangent bundle.

The study of projectable linear connections in the semi-tangent bundles and some of their properties is
known to have occurred in [16], [27], [28].

This paper’s main objectives are to find some significant tensor structures that have not yet been
established in the semi-tangent bundle, to give examples of these structures and to research lift problems
in these structures.

The definition of the geometry for almost product structures, almost paracomplex structures, almost
contact structures and almost paracontact structures is the focus of this work. Some properties of adapted
frames are presented by using the theory of the semi-tangent bundle t(Bm). In addition, in this work,
almost product, almost complex and Lorentzian almost paracontact structures are defined according to the
prolongations (horizontal lifts, complete lifts and vertical lifts) of affinor fields in the semi-tangent bundle.

2. Basic formulas on the semi-tangent bundle

If f is a function on Bm, we write vv f for the function on the semi-tangent bundle t(Bm) obtained by
forming the composition of π : t(Bm)→ Bm and v f = f ◦ π1, so that

vv f = v f ◦ π2 = f ◦ π1 ◦ π2 = f ◦ π.

Consequently,

vv f (xa, xα, xα) = f (xα) (5)

is provided by the vv f−vertical lift of the function f ∈ ℑ0
0(Bm) to t(Bm).

Consequently, we obtain from (5), the formula

vv (
f1

)
= vv f vv1 (6)

for any f , 1 ∈ ℑ0
0(Bm).

It should be observed that along every fiber ofπ : t(Bm)→ Bm, the value vv f stays constant. If f = f (xa, xα)
is a function in Mn, then we write cc f for the function in t(Bm) defined by

cc f = ı(d f ) = xβ∂β f = yβ∂β f (7)

and name the complete lift of the function f [21].
HH f = cc f − ∇γ f determines the HH f−horizontal lift of the function f to t(Bm), where

∇γ f = γ∇ f .

Let X ∈ ℑ1
0(Bm), i.e. X = Xα∂α. From (3), on putting

vvX :

 0
0
Xα

 , (8)

we easily see that vvX′ = Ā(vvX). The vector field vvX is called the vertical lift of X to semi-tangent bundle
[27].
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Let ω ∈ ℑ0
1(Bm), i.e. ω = ωαdxα. On putting

vvω : (0, ωα, 0) , (9)

from (3), we easily verify that vvω = Āvvω′. The vector field vvω is called the vertical lift of ω to t(Bm) [27].
The complete lift ccω ∈ ℑ0

1(t (Bm)) of ω ∈ ℑ0
1(Bm) with the components ωα in Bm has the following

components

ccω :
(
0, yε∂εωα, ωα

)
(10)

relative to the induced coordinates in the semi-tangent bundle [27]. Let ω be a covector field on Bm with an
affine connection ∇.

Then the components of the HHω−horizontal lift of ω have the form

HHω = ccω − ∇γω

in t(Bm), where ∇γω = γ∇ω. The horizontal lift HHω ∈ ℑ0
1(t (Bm)) of ω has the following components

HHω :
(
0,Γεαωε, ωα

)
relative to the induced coordinates in t(Bm).

Now, consider that there is given a (p, q)−tensor field S whose local expression is

S = Sα1...αp

β1...βq

∂
∂xα1

⊗ ... ⊗
∂
∂xαp

⊗ dxβ1 ⊗ ... ⊗ dxβq

in the base manifold Bm with ∇−affine connection and a ∇γS−tensor field defined by

∇γS = yε∇εS
α1...αp

β1...βq

∂
∂xα1

⊗ ... ⊗
∂
∂xαp

⊗ dxβ1 ⊗ ... ⊗ dxβq

relative to the induced coordinates (xa, xα, xα) in π−1(U) in the semi-tangent bundle. Additionally, we define
a ∇XS−tensor field in π−1(U) by

∇XS =
(
XεSα1...αp

εβ1...βq

)
∂
∂xα1

⊗ ... ⊗
∂
∂xαp

⊗ dxβ1 ⊗ ... ⊗ dxβq

and a γS−tensor field in π−1(U) by

∇S =
(
yεSα1...αp

εβ1...βq

)
∂
∂xα1

⊗ ... ⊗
∂
∂xαp

⊗ dxβ1 ⊗ ... ⊗ dxβq

relative to the induced coordinates (xa, xα, xα), U being an arbitrary coordinate neighborhood in Bm. Next,
we obtain

∇XS = vv (SX)

for any X ∈ ℑ1
0(Bm) and S ∈ ℑ0

s (Bm) or S ∈ ℑ1
s (Bm), where SX ∈ ℑ

0
s−1(Bm) or ℑ1

s−1(Bm).
The HHS−horizontal lift of (p, q)−tensor field S in the base manifold Bm to t(Bm) has the following

equation:

HHS = ccS − ∇γS.

Assuming P,Q ∈ t(Bm), we get,

∇γ (P ⊗Q) = vvP ⊗
(
∇γQ

)
+

(
∇γP

)
⊗

vvQ,
HH (P ⊗Q) = HHP ⊗ vvQ + vvP ⊗ HHQ.
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Assume X̃ ∈ ℑ1
0(Mn) is a projectable (1, 0)−tensor field with projection X = Xα(xα)∂α, i.e. X̃ = X̃a(xa, xα)∂a +

Xα(xα)∂α.
Now, take into account X̃ ∈ ℑ1

0(Mn), in that case complete lift ccX̃ has components of the form [21]:

ccX̃ :

 X̃a

Xα

yε∂εXα

 (11)

relative to the coordinates (xa, xα, xα) on the semi-tangent bundle t(Bm).
For an arbitrary affinor field F ∈ ℑ1

1(Bm), if (3) is taken into consideration, we may demonstrate that
(γF)′ = Ā(γF), where γF is a (1, 0)−tensor field defined by [16]:

γF :

 0
0
yεFαε

 (12)

relative to the coordinates (xa, xα, xα).
For each projectable (1, 0)−tensor field X̃ ∈ ℑ1

0(Mn) [28], we well-know that the HHX̃−horizontal lift of X̃
to t(Bm) is given by HHX̃ = ccX̃ − γ(∇X̃) (see [16]). In the above situation, a differentiable manifold Bm has a
projectable symmetric linear connection denoted by ∇. We recall that γ(∇X̃)− vector field has components
[16]:

γ(∇X̃) :

 0
0
yε∇εXα


relative to the coordinates (xa, xα, xα) on t(Bm). ∇αXε being the covariant derivative of Xε, i.e.,

(∇αXε) = ∂αXε + XβΓεβα.

Consequently, for the induced coordinates (xa, xα, xα) on t(Bm), we obtain the HHX̃−horizontal lift of X̃ to
t(Bm) with the following components [16]:

HHX̃ :


X̃a

Xα

−ΓαβX
β

 (13)

where

Γαβ = yεΓαε β. (14)

Let
{
U, xβ

}
be coordinate neighborhood of Bm. Then if we put in π−1(U)

X̂(a) =
HH

(
∂
∂xa

)
, X̂(α) =

HH
(
∂
∂xα

)
, X̂(α) =

vv
(
∂
∂xα

)
, (15)

we have in π−1(U) n+m−frame
{
X̂(A)

}
=

{
X̂(a), X̂(α), X̂(α)

}
, which is called the frame adapted to the non-linear

connection. Thus the (1, 0)−tensor field X, the horizontal lift HHX̃ and the vertical lift vvX of an element X̃
of ℑ1

0(Mn) have respectively components of the form

X:

 Xa

0
0

 , HHX̃ :

 0
Xα

0

 , vvX :

 0
0
Xα

 , (16)
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with regard to the adapted frame
{
X̂(B)

}
=

{
X̂(b), X̂(β), X̂(β)

}
in each π−1 (U), where Xα are local components

of X in U. There for the complete lift ccX̃ of X̃ has the components

ccX̃ :
(

ccX̃I
)
=


X̃a

Xα

yε∇̂εXα

 (17)

with regard to the adapted frame
{
X̂(B)

}
, where we have put

∇̂εXα = ∂εXα + ΓαβεX
β, Γαβε =

∂
∂yβ Γ

α
ε . (18)

The coframe
{
θ̂(A)

}
=

{
θ̂(a), θ̂(α), θ̂(α)

}
is dual to the adapted frame

{
X̂(B)

}
in π−1 (U), where θ̂a = dxa, θ̂α = dxα

and θ̂α = Γαεdxε + dyα with regard to the induced coordinates.
Vertical lifts are given by the following relations:

vv (P ⊗Q) = vvP ⊗ vvQ, vv (P + R) = vvP + vvR, (19)

to an algebraic isomorphism (unique) of the ℑ (Bm)-tensor algebra into the ℑ (t(Bm))-tensor algebra with
regard to constant coefficients.

Where P, Q and R being arbitrary elements of t(Bm). For an arbitrary affinor field F ∈ ℑ1
1(Bm), if (3) is

taken into consideration, we may demonstrate that vvFI
J = AI

I′A
J′

J (vvFI′
J′ ), where vvF is a (1, 1)−tensor field

defined by [27]:

vvF :


0 0 0
0 0 0
0 Fαβ 0

 (20)

relative to the coordinates (xa, xα, xα). The (1, 1)−tensor field (20) is called the vertical lift of affinor field F
to semi-tangent bundle t(Bm) [27].

Complete lifts are given by the following relations:

cc (P + R) = ccP + ccR, cc (P ⊗Q) = ccP ⊗ vvQ + vvP ⊗ ccQ, (21)

to an algebraic isomorphism (unique) of the ℑ (Bm)-tensor algebra into the ℑ (t(Bm))-tensor algebra with
regard to constant coefficients. Where P, Q and R being arbitrary elements of t(Bm).

For an arbitrary projectable affinor field F̃ ∈ ℑ1
1(Mn) [28] with projection F = Fαβ (xα) ∂α ⊗ dxβ i.e. F̃ has

components

F̃ :

 F̃a
b(xa, xα) F̃a

β(x
a, xα)

0 F̃αβ (x
α)


relative to the coordinates (xa, xα). If (3) is taken into consideration, we may demonstrate that ccF̃I

J =

AI
I′A

J′

J (ccF̃I′
J′ ), where ccF̃ is a (1, 1)−tensor field defined by [27]:

ccF̃ :


F̃a

b F̃a
β 0

0 Fαβ 0
0 yε∂εFαβ Fαβ

 , (22)

relative to the coordinates (xa, xα, xα). The (1, 1)−tensor field (22) is called the complete lift of affinor field F
to semi-tangent bundle t(Bm) [27].

We will now give below some important equations that we will use.
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Lemma 2.1. Let X̃, Ỹ and F̃ be projectable vector and (1, 1)−tensor fields on Mn with projections X,Y and F on the
base manifold Bm, respectively. If f ∈ ℑ0

0 (Bm), ω ∈ ℑ0
1 (Bm) and I = idMn , then [27], [28]:

(i) vvIccX̃ = vvX, (xi)
[

ccX̃, ccỸ
]
= cc

[
X̃,Y

]
,

(ii) ccX̃vv f = vv (
X f

)
, (xii) ccF̃vvX = vv (FX) ,

(iii) vvω
(

ccX̃
)
= vv (ω (X)) , (xiii) ccX̃cc f = cc (X f

)
,

(iv) vvFccX̃ = vv (FX) , (xiv) ccω
(

ccX̃
)
= cc (ωX) ,

(v) vvXcc f = vv (
X f

)
, (xv) cc

(
F̃X

)
= ccF̃ccX̃,

(vi) cc
(

f̃ X
)
= cc f vvX + vv f ccX̃, (xvi) vv (

f X
)
= vv f vvX,

(vii) vvIvvX = 0, (xvii) vvωvvX = 0,
(viii)

[
vvX, ccỸ

]
= vv [X,Y] , (xviii) vv (

fω
)
= vv f vvω,

(ix) cc̃I = Ĩ, (xix) vvFvvX = 0,
(x)ccω (vvX) = vv (ω (X)) , (xx) vvXvv f = 0.

3. Main results

3.1. Almost product structure

Definition 3.1. An almost product structure on a smooth manifold Bm is a tensor field F̂ of type (1,1) on Bm,
such that: F̂2 = I (F̂ , I), where I is the identity tensor field of type (1,1) on Bm. The pair

(
Bm, F̂

)
is called

an almost product manifold.

We shall define a tensor field F̂ ∈ ℑ1
1 (t(Bm)) by

F̂ :
(
F̂A

B

)
=


δa

b 0 0
0 −δαβ 0
0 0 δαβ

 (23)

or F̂ = X̂(b) ⊗ θ̂(a)
− X̂(β) ⊗ θ̂

(α) + X̂(β) ⊗ θ̂
(α) with regard to the adapted frame

{
X̂(B)

}
=

{
X̂(b), X̂(β), X̂(β)

}
in each

π−1 (U). The matrix F̂ in (23) has the inverse since it is not singular. We have this inverse represented by

(
F̂
)−1

:
(
F̂B

C

)−1
=


δb

c 0 0
0 −δ

β
θ 0

0 0 δ
β
θ

 , (24)

where F̂
(
F̂
)−1
= (F̂A

B )
(
F̂B

C

)−1
= δA

C = Ĩ, where A = (a, α, α), B =
(
b, β, β

)
, C =

(
c, θ, θ

)
.

Theorem 3.2. Given the above Definition 3.1, we say that F̂ gives an almost product structure and we call the
manifold Bm an almost product manifold on the semi-tangent bundle t(Bm) (see, for example [3], [11]).

Theorem 3.3. Suppose that F̂ has a condition that trF̂ = 0 is an almost product structure. As such, F̂ is an almost
paracomplex structure on the semi-tangent bundle t(Bm).

Let Bm denote a smooth manifold with a given affine connection ∇. In each coordinate neighborhood
{U, xα} of Bm, we put

X(a) =
∂
∂xa , X(α) =

∂
∂xα .



F. Yildirim et al. / Filomat 38:22 (2024), 7797–7809 7804

Then n +m local vector fields HHX̃(a), HHX̃(α) and vvX(α) have respectively components of the form

HHX̃(a):

 δ
a
b

0
0

 , HHX̃(α):


δa
β

δαβ
−Γαβ

 , vvX(α):


0
0
δαβ

 , (25)

with regard to the induced coordinates (xa, xα, xα) in π−1 (U). We call the set{
HHX̃(a),

HHX̃(α),
vvX(α)

}
the frame adapted to the affine connection ∇ in π−1 (U). When we set

ê(a) =
HHX̃(a), ê(α) =

HHX̃(α), ê(α) =
vv X(α), (26)

we can write the adapted frame as{̂
e(B)

}
=

{̂
e(a), ê(α), ê(α)

}
. (27)

The adapted frame
{̂
e(B)

}
=

{̂
e(a), ê(α), ê(α)

}
is expressed as

Â :
(
ÂA

B

)
=


δa

b δa
β 0

0 δαβ 0
0 −Γαβ δαβ

 , (28)

where Γβα = yεΓβεα then the matrix Â in (28) has the inverse since it is not singular. Using
(
Â
)−1

to denote
this inverse, we obtain

(
Â
)−1

:
(
ÂB

C

)−1
=


δb

c −δb
θ 0

0 δ
β
θ 0

0 Γ
β
θ δ

β
θ

 , (29)

where Â
(
Â
)−1
= (ÂA

B )
(
ÂB

C

)−1
= δA

C = Ĩ, where A = (a, α, α), B =
(
b, β, β

)
, C =

(
c, θ, θ

)
.

Proof. In fact, from (28) and (29), we easily see that

Â
(
Â
)−1

=


δa

b δa
β 0

0 δαβ 0
0 −Γαβ δαβ



δb

c −δb
θ 0

0 δ
β
θ 0

0 Γ
β
θ δ

β
θ


=

 δ
a
c −δa

θ + δ
a
θ 0

0 δαθ 0
0 Γαθ − Γ

α
θ δαθ

 =
 δ

a
c 0 0

0 δαθ 0
0 0 δαθ


= δA

C = Î.

Proposition 3.4. Let S̃ and T̃ be two tensor fields of type (r, s) in t(Bm) such that

S̃(X̃s, ..., X̃1) = T̃(X̃s, ..., X̃1)

for all vector fields X̃t (t = 1, 2, ..., s) which are of the form HHX̃(a), vvX(α) or HHX̃(α), where X ∈ ℑ1
0(Mn). Then S̃ = T̃.
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Proof. The local vector fields HHX̃(a), vvX(α) and HHX̃(α) span the module of vector fields in π−1(U). Therefore,
each tensor field is determined in π−1(U) by its action of HHX̃(a), vvX(α) and HHX̃(α). Thus, we can conclude
our proposition.

Let Bm be an m−dimensional differentiable manifold (m = 2k + 1, k ≥ 0) endowed with a projectable
(1, 1)−tensor field φ̃ ∈ ℑ1

1(Mn) [28] with projectionφ = φαβ (xα) ∂α⊗dxβ i.e., and let ξ̃ ∈ ℑ1
0(Mn) be a projectable

(1, 0)−tensor field with projection ξ = ξα (xα) ∂α i.e. ξ̃ = ξ̃a(xα, xα)∂a + ξα (xα) ∂α [28], and let η be a 1-form,
and let I = idMn be an idendity and let them also satisfy

φ̃2 = −I + η ⊗ ξ̃, φ̃
(
ξ̃
)
= 0, η ◦ φ̃ = 0, η

(
ξ̃
)
= 1. (30)

Then
(
φ̃, ξ̃, η

)
define almost contact structure on Bm (see, for example [12], [19], [20], [25], [31]), where

φ̃2 = −I + η ⊗ ξ̃means

φ̃
(
φ̃X̃

)
= φ̃2X̃ = −X̃ + η

(
X̃
)
· ξ̃

for all X̃ ∈ ℑ1
0(Mn).

An almost contact manifold is a differentiable odd-dimensional manifold with an almost contact struc-
ture (see, for example [11]).

It is to be noted that the conditions (30) imply the following

rankφ̃ = 2k (31)

on Bm everywhere. In fact, φ̃p and ηp being the values of φ̃ and η at p ∈ Bm, the linear map φ̃p leaves
invariant the subspace Vp = η−1

p (0) of the tangent space of Bm at p. Moreover, the restriction φ̃′p of φ̃p to Vp

satisfies φ̃′p ◦ φ̃′p = −1. Hence, rankφ̃′p = 2k. On the other hand, the equations in (30) imply that rankφ̃p ≤ 2k,
whence rankφ̃p = 2k.

3.2. Almost complex structures in the semi-tangent bundle
Let now there be given a non-linear connection Γ in Bm. We shall define a projectable tensor field F̂ of

type (1, 1) in Mn by

F̂HHX̃ = −X, F̂X = −HHX̃, F̂vvX = −HHX̃ (32)

for any projectable vector field X̃ ∈ ℑ1
0 (Mn). Then F̂ has components of the form (n,m ∈ Z+; n ≥ m)

0 · · · · · · · · · 0 δa
β 0 · · · · · · 0

... . . . . . . . . . . . . 0
... . . . . . .

...
... . . . . . . δαβ . . .

...
... . . . . . .

...
... . . . −δαβ . . . . . .

...
... . . . . . .

...

0 δαβ . . . . . . . . .
...
... . . . . . .

...

−δαb 0 · · · · · · · · · 0 0 · · · · · · 0
0 · · · · · · · · · · · · 0 0 · · · 0 −δαβ
... . . . . . . . . . . . .

...
... . . . . . . 0

... . . . . . . . . . . . .
... 0 −δαβ . . .

...

0 · · · · · · · · · · · · 0 δαβ 0 · · · 0




n −m = 2 f


2m

︸                                       ︷︷                                       ︸
n−m=2 f

︸                   ︷︷                   ︸
2m

(33)
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with regard to the adapted frame
{
θ̂(A)

}
=

{
θ̂(a), θ̂(α), θ̂(α)

}
in each π−1 (U). Thus, we obtain F̂2 = −I, which

implies

Theorem 3.5. If there is given a non-linear connection in Bm, then there exists an almost complex structure F̂ defined
by (32) in t(Bm).

N being the Nijenhuis tensor of F, we define a tensor field S ∈ ℑ1
2(Bm) by

S(X,Y) = N(X,Y) + (X(ω(Y)) − (Y(ω(X)) − ω ([X,Y]) U

for any X,Y ∈ ℑ1
0(Bm),

The almost contact structure (F̃, Ũ, ω) is said to be normal if and only if S = 0 (see, for example [23]).
Taking account of (21) and Lemma 2.1, we find from (32)

(ccF̃)2 = −I + (vvU ⊗ ccω + ccŨ ⊗ vvω),

and

(i) ccF̃vvU = 0, (ii) ccF̃ccŨ = 0,
(iii) vvω ◦ ccF̃ = 0, (iv) ccω ◦ ccF̃ = 0,
(v) vvω(vvU) = 0, (vi) vvω(ccŨ) = 1,

(vii) ccω(vvU) = 1, (viii) ccω(ccŨ) = 0.

(34)

Now, if we define an element

J̃ = ccF̃ + (vvU ⊗ vvω − ccŨ ⊗ ccω), (35)

then we obtain by (34) and (35) that J̃2 is equal to −I. As a result, J̃ is an almost complex structure in the
semi-tangent bundle. The almost complex structure J̃ has components

J̃ :


F̃b

a F̃b
α − (∂ωα) Ũb

−ωαŨb

0 Fβα − (∂ωα) Uβ −ωαUβ

0 ∂Fβα − (∂ωα)
(
∂Uβ

)
+ ωαUβ Fβα − ωα∂Uβ


with regard to the local coordinates (xb, xβ, xβ) in t(Bm), where Fβα, ωα and Uβ are respectively the local
components of F̃ ∈ ℑ1

1 (Mn), ω ∈ ℑ0
1 (Bm) and Ũ ∈ ℑ1

0 (Mn) (see, for example [30], [31]). Thus we have:

Theorem 3.6. There exists in t(Bm) an almost complex structure J̃ defined by (35), if there is given in Bm an almost
contact structure (F̃, Ũ, ω).

We get from (35)

(i) J̃vvX = vv (FX) − vv (ω(X)) ccŨ,
(ii) J̃ccX̃ = cc

(
F̃X

)
+ vv (ω(X)) vvU − cc (ω(X)) ccŨ,

(36)

for any X̃ ∈ ℑ1
0(Mn).

In particular, we have

(i) J̃vvX =vv (FX), (ii) J̃ccX̃ =cc (F̃X),
(iii) J̃vvU = −ccŨ, (iv) J̃ccŨ =cc Ũ,

X being an arbitrary projectable vector field in Mn such that ω(X) = 0.

The required result now follows from (36).
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Theorem 3.7. The almost complex structure J̃ in t(Bm) defined by (36) is complex analytic if and only if the almost
contact structure (F̃, Ũ, ω) given in Bm is normal.

Let Bm be an m−dimensional differentiable manifold (m = 2k + 1, k ≥ 0) endowed with a projectable
(1, 1)−tensor field φ̃ ∈ ℑ1

1(Mn) [28] with projectionφ = φαβ (xα) ∂α⊗dxβ i.e., and let ξ̃ ∈ ℑ1
0(Mn) be a projectable

(1, 0)−tensor field with projection ξ = ξα (xα) ∂α i.e. ξ̃ = ξ̃a(xα, xα)∂a + ξα (xα) ∂α [28], and let η be a 1-form ,
and let I = idMn be an idendity and let them also satisfy

φ̃2 = I − η ⊗ ξ̃, φ̃
(
ξ̃
)
= 0, η ◦ φ̃ = 0, η

(
ξ̂
)
= 1. (37)

Then
(
φ̃, ξ̃, η

)
define almost paracontact structure on Bm (see, for example [12], [20], [25], [31]), where

φ̃2 = I − η ⊗ ξ̃means

φ̃
(
φ̃X̃

)
= φ̃2X̃ = X̃ − η

(
X̃
)
· ξ̃

for all X̃ ∈ ℑ1
0(Mn).

A differentiable manifold of odd dimension with an almost paracontact structure is called an almost
paracontact manifold (see, for example [15]).

It is to be noted that the conditions (37) imply the following:

rankφ̃ = m − 1 (38)

on Bm everywhere.

3.3. Complete lifts of Lorentzian almost paracontact structure

Let Bm be an m−dimensional differentiable manifold (m = 2k + 1, k ≥ 0) endowed with a projectable
(1, 1)−tensor field F̃ ∈ ℑ1

1(Mn) [28] with projection F = Fαβ (xα) ∂α⊗dxβ i.e., and let Ũ ∈ ℑ1
0(Mn) be a projectable

(1, 0)−tensor field with projection U = Uα (xα) ∂α i.e. Ũ = Ũa(xα, xα)∂a+Uα (xα) ∂α [28], and let ω be a 1-form
and let them also satisfy

F̃2 = I + Ũ ⊗ ω, ω ◦ F̃ = 0, F̃Ũ = 0, ω(Ũ) = 1. (39)

Then (F̃, Ũ, ω) define Lorentzian almost paracontact structure on Bm (see, for example [10], [26]).

Theorem 3.8. Let B be a differentiable manifold endowed with Lorentzian almost paracontact structure (F̃, Ũ, ω).
Prove that

J̃ = ccF̃ + (vvU ⊗ vvω − ccŨ ⊗ ccω)

is almost product structure on t(B).

Proof. According to (39), we find

(ccF̃)2 = I + (vvU ⊗ ccω − ccŨ ⊗ vvω), (40)

and

(i) ccF̃vvU = 0, (ii) ccF̃ccŨ = 0, (iii) vvω ◦ ccF̃ = 0,
(iv) ccω ◦ vvF = 0, (v) ccω ◦ ccF̃ = 0, (vi) vvω(vvU) = 0,
(vii) vvω(ccŨ) = 1, (viii) ccω(vvU) = 1, (ix) ccω(ccŨ) = 0.

(41)
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Let us define an element J̃ of J(t(B)) by

J̃ = ccF̃ + (vvU ⊗ vvω − ccŨ ⊗ ccω) (42)

then we easily obtain by (40), (41) and (42),

J̃2 = I

thus J̃ is an almost product structure in t(B).

In view of equation (42), we have

(i) J̃vvX = −vv(FX) + vv(ω(X))ccŨ,
(ii) J̃ccX̃ = −cc(F̃X) −vv (ω(X))ccŨ −cc (ω(X))ccŨ.

(43)

In particular, we have

(i) J̃vvX = −vv(FX), (ii) J̃ccX̃ = −cc(F̃X),
(iii) J̃vvU =cc Ũ, (iv) J̃ccŨ =cc Ũ.

(44)

X being an arbitrary projectable vector field in B such that ω(X) = 0.

Theorem 3.9. Let the semi-tangent bundle t(B) of the manifold B admits J̃ defined in (42), then for projectable vector
fields X,Y such that ω(Y) = 0, we obtain

(i) (LvvX J̃)ccỸ = −
vv(LXF)Y) +vv (LXω)Y)ccŨ

(ii) (LvvX J̃)ccŨ = −
vv((LXF)U) +vv (LXω)U)ccŨ

(iii) (LvvX J̃)vvU = vv(LXU)
(iv) (LvvX J̃)vvY = 0

By similar devices, we have also

(i) (LccX̃ J̃)ccỸ = −
vv((LXω)Y)ccŨ + (LXω))ccỸccŨ,

(ii) (LccX̃ J̃)vvY = −
vv((LXF)Y) +vv (LXω)Y)ccŨ,

(iii) (LccX̃ J̃)vvU = cc( ˜(LXF)U) +cc
[
X̃,U

]
+vv ((LXω)U)ccŨ,

(iv) (LccX̃ J̃)ccŨ = cc( ˜(LXF)U) −vv ((LXω)U)ccŨ −cc
[
X̃,U

]
+cc ((LXω)U)ccŨ.

Proof. Using (41), (43) and (44), the proofs can be easily done.

3.4. Horizontal lifts of Lorentzian almost paracontact structure

Let now (F̃, Ũ, ω) be Lorentzian almost paracontact structure in B with an affine connection ∇. Then by
(39), we obtain

(i) (HHF̃)2 = I +HH (Ũ ⊗ ω)

(ii) (HHF̃)2 = HH( ˜I +U ⊗ ω)

(iii) (HHF̃)2 = I +HH Ũ ⊗vv ω +vv U ⊗HH ω

also,

(i) HHF̃
(

HHŨ
)
= 0,HH F̃ (vvU) = 0

(ii) HHω(HHŨ) = 0,HH ω(vvU) = 1,vv ω(HHŨ) = 1

(iii) HHω ◦HH F̃ = 0,vv ω ◦HH F̃ = 0.
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Let us define a projectable tensor field J̃∗ of type (1,1) in t(B) by

J̄∗ =HH F̃ +
(

vvU ⊗vv ω −HH Ũ ⊗HH ω
)
,

then it is easy to show that

J̃∗
2
= I

consequently, J̃∗ is an almost product structure in t(B).
Moreover, a direct result shows that:

Theorem 3.10. Let (F̃, Ũ, ω) be Lorentzian almost paracontact structure in B with an affine connection ∇. Then J̃∗

is almost product structure in the semi-tangent bundle t(B).
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[15] N. Özdemir, Ş. Aktay, M. Solgun, Almost paracontact structures obtained from G∗2(2) structures, Turk. J. Math. 42 (2018), 3025–3033.
[16] M. Polat, F. Yıldırım, Complete lifts of projectable linear connection to semi-tangent bundle, Honam Math. J. 43 (2021), 483–501.
[17] W. A. Poor, Differential Geometric Structures, McGraw-Hill, New York, 1981.
[18] A. A. Salimov, Applications of holomorphic functions in geometry. Birkhäuser-Springer, 2023.
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