Filomat 38:22 (2024), 7811–7822 https://doi.org/10.2298/FIL2422811A

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On the lattice of *z* ◦ **-ideals (resp.,** *z***-ideals) and its applications**

Maryam Ahmadi^a , Ali Taherifara,[∗]

^aDepartment of Mathematics, Yasouj University, Yasouj, Iran

Abstract. An ideal *I* of a commutative ring *R* is a *z*[°]-ideal (resp., *z*-ideal) if, for each *a* ∈ *I*, the intersection of all minimal prime ideals (resp., maximal ideals) containing *a* is contained in *I*. A ring *R* is termed a *WSA*-ring if, for any two ideals *I*, *J* of *R*, where $I \cap J = 0$, we have $(Ann(I) + Ann(J))$ [。] = *R*. It is observed that for a reduced ring *R*, the lattice of *z*[°]-ideals of *R* (*Z*[°]*Id*(*R*)) is a co-normal lattice if and only if *R* is a *WSA*-ring. This concept is then applied to characterize spaces *X* for which *C*(*X*) is a *WSA*-ring. In this context, a space *X* is termed a *WED*-space if every two disjoint open sets can be separated by two disjoint Z-zero-sets (i.e., the interior of a zero-set). The class of *WED*-spaces contains the class of extremally disconnected spaces and the class of perfectly normal spaces. It has been proven that *C*(*X*) is a *WSA*-ring if and only if *X* is a *WED*-space, and also if and only if *C* ∗ (*X*) is a *WSA*-ring. Moreover, it has been demonstrated that the lattice of z-ideals of a commutative ring *R* (*ZId*(*R*)) is a co-normal lattice if and only if *R* is an *SA*-ring, and also if and only if the lattice of radical ideals of *R* (*RId*(*R*)) is a co-normal lattice.

1. Introduction

Throughout this paper, *R* denotes a commutative ring with identity. Almost all our rings are reduced, which are the rings with no non-zero nilpotent elements. Let $ZId(R) = \{I : I$ is a *z*-ideal of *R*}. Additionally, for an ideal *K* of *R*, we use *K^z* (resp., *K*◦) to denote the smallest *z*-ideal (resp., *z* ◦ -ideal) containing *K*. The lattice (*ZId*(*R*),⊆) equipped with the operations *I*∨*J* = (*I*+*J*)*^z* and *I*∧*J* = *I*∩*J* forms a fundamental structure. Similarly, the set $Z^{\circ}Id(\overline{R}) = \{I : I \text{ is a } z^{\circ}\text{-ideal of } R\}$ partially ordered by inclusion, also forms a lattice under the operations $I \lor J = (I + J)$ ^Ⅰ and $I \land J = I \cap J$. The concept of *z*-ideal (resp., *z*°-ideal) was originally introduced by Khols [16] in the study of rings of continuous functions. After that, Mason in [18] and [19] generalized these concepts in any commutative ring. Martınez and Zenk in [17] started the study of the lattice of *z*-ideals. They proved that the lattice of *z*-ideals of the ring *C*(*X*) is a frame. They actually proved that it is a coherently normal Yosida frame. Ighedo [14] extended the results of Martinez and Zenk to the lattices of *z*-ideals of the ring R*L* of continuous real-valued functions on a completely regular frame. This was further extended by Dube [10] to the lattices of *z*-ideals of an *f*-ring with bounded inversion. Recently, Ighedo and McGovern [13] investigated many properties of this lattice in any commutative ring. Actually, they characterize when the lattice *ZId*(*R*) is a Yosida frame.

In the present paper, we recall in section 2 the necessary background, and we fix notation. Section 3 is devoted to the lattice of z° -ideals. Whenever *R* is a reduced ring, the lattice $Z^{\circ}Id(R)$ is the one that was

²⁰²⁰ *Mathematics Subject Classification*. Primary 13A15; Secondary 54C40.

Keywords. Completely regular space, commutative ring, *z*-ideal, ring of continuous functions, semiprimitive ring, distributive lattice.

Received: 20 December 2023; Revised: 06 February 2024; Accepted: 14 February 2024

Communicated by Ljubiša D. R. Kočinac

^{*} Corresponding author: Ali Taherifar

Email addresses: ahmadymryam66@gmail.com (Maryam Ahmadi), ataherifar@yu.ir, ataherifar54@gmail.com (Ali Taherifar)

presented by Dube [9] as the lattice *DId*(*R*). We prove that for a z^o-ideal *J* of a reduced ring *R* and a family $\overline{\{I_{\alpha} : \alpha \in S\}}$ of ideals of *R*, $J \cap (\sum_{\alpha \in S} I_{\alpha})_{\circ} = (\sum_{\alpha \in S} (J \cap I_{\alpha}))_{\circ}$ (Lemma 3.2), where for an ideal *I* of *R*, *I*_° is the smallest *z*[°]-ideal containing it. This leads to the conclusion that *Z*[°]Id(*R*) forms a frame when *R* is a reduced ring. To study the lattice properties of $Z^{\circ}Id(R)$, it suffices to assume *R* is reduced, as the lattices $Z^{\circ}Id(R)$ and $Z^{\circ}Id(R/N(R))$ are isomorphic. We define a ring *R* a *WSA*-ring if for any two ideals *I*, *J* of *R* with *I* \cap *J* = 0, (Ann(*I*) + Ann(*J*))◦ = *R*. Additionally, we designate a completely regular space *X* as a *WED*-space if every pair of disjoint open sets can be separated by two disjoint *Z*-zero-sets (i.e., the interior of a zero-set). We prove that a space *X* is a *WED*-space if and only if β*X* is a *WED*-space (Theorem 3.7). Using this result, we establish that the ring *C*(*X*) is a *WSA*-ring if and only if the space *X* is *WED* which is also equivalent to the *C* ∗ (*X*) is a *WSA*-ring (Theorem 3.8). Furthermore, we demonstrate that a reduced ring *R* is *WSA* if and only if *Z* ◦ *Id*(*R*) is a co-normal lattice (Proposition 3.9). For a reduced ring *R* with property *A*, we prove that *R* is a *WSA*-ring if and only if for each two ideals *I*, *J* of *R*, $(Ann(I) + Ann(J))_{\circ} = Ann(I \cap J)$ (Proposition 3.11). In Section 4, we extend the results to *z*-ideals, proving that for a *z*-ideal *J* of a ring *R* and a set { I_α : $\alpha \in S$ } of ideals of *R*, $J \cap (\sum_{\alpha \in S} I_{\alpha})_z = (\sum_{\alpha \in S} (J \cap I_{\alpha}))_z$ (Lemma 4.2). Using this result, we reaffirm that the lattice *ZId*(*R*) forms a frame. Additionally, for a semiprimitive ring *R*, we demonstrate that the lattice *ZId*(*R*) is a co-normal lattice if and only if *R* is an *SA*-ring, which is also equivalent to the lattice *RId*(*R*) forming a co-normal lattice (Theorem 4.4).

2. Background and notation

√

2.1. Rings

√

Let *S* be a subset of a ring *R*. We write Ann(*S*) for the annihilator of *S* in *R*. The ideal generated by *S* in *R* is denoted by < *S* >. The *radical* of an ideal *I* of *R* is the ideal

 $\overline{I} = \{x \in R : x^n \in I \text{ for some } n \in \mathbb{N}\}.$

Whenever *I* = *I*, we say *I* is a *radical ideal*. It is well-known that

I is a radical ideal
$$
\Leftrightarrow a^2 \in I
$$
 implies $a \in I$.

The *Jacobson radical* of a ring *R* is denoted by *J*(*R*). It is well-know that *J*(*R*) is the intersection of all maximal ideals of *R*. For each element *a* in a ring *R*, the intersection of all maximal ideals in *R* containing *a* is denoted by *Ma*, an ideal *I* of *R* is a *z*-ideal if *M^a* ⊆ *I* for each *a* ∈ *I*, see [11, 7A]. Maximal ideals, minimal prime ideals (in reduced rings) and annihilator ideals (in semiprimitive rings in which the intersection of all maximal ideals is zero) and most of familiar ideals are *z*-ideals. Intersections of *z*-ideals are *z*-ideals. Hence the smallest *z*-ideal containing an ideal *I* of *R* always exists and it is denoted by *Iz*. We refer the reader to Mason [18] for more details and characterizations of ideal *I^z* in commutative rings and in *C*(*X*), the ring of all real valued continuous functions on a completely regular Hausdorff space *X*.

The following lemma is well-known and is needed in the sequel.

Lemma 2.1. *The following statements hold.*

- (1) *If P is minimal in the class of prime ideals containing a z-ideal I, then P is a z-ideal.*
- (2) If I, *J* are two ideals in R, then $(I \cap J)_z = I_z \cap J_z$.

Proof. (1) See [18, Theorem 1.1] for Part (1).

(2) Trivially $(I \cap J)_z \subseteq I_z \cap J_z$. To see the reverse inclusion, let $a \in I_z \cap J_z$. Since $(I \cap J)_z$ is a z-ideal, so it is an intersection of minimal prime ideals over it, each of which is a *z*-ideal. Let *P* be a prime ideal contains $(I ∩ J)_z$. Then $P ⊇ I$ or $P ⊇ J$. Thus $P ⊇ I_z$ or $P ⊇ J_z$. This shows that $a ∈ P$. So we are done. $□$

An ideal *I* of *R* is called a z^o -ideal if for each $a \in I$, $P_a \subseteq I$, where P_a is the intersection of all minimal prime ideals of *R* containing *a*. Important *z*[°]-ideals in any ring are minimal prime ideals. An intersection **outhable 12** of *z*°-ideal. Hence the nilradical of *R* (i.e, *N*(*R*)) which is the intersection of all minimal prime ideals of *R*, is a *z*°-ideal. The smallest *z*°-ideal containing a proper ideal *I* is denoted by *I*_°. It is well-known that whenever *I* is an ideal of $C(X)$, (see [4]),

$$
I_{\circ} = \{ f \in C(X) : \exists g \in I \quad \text{with} \quad \text{int } Z(g) \subseteq \text{int } Z(f) \}.
$$

It is important to mention that for a proper ideal *I* of a ring *R* we may have *I*◦ = *R*. For example, consider an ideal *I* of *C*(*X*) containing some *f* such that int $Z(f) = \emptyset$ (i.e., *f* is a non-zero-divisors). Then $I_0 = C(X)$. The following lemma also is needed in the sequel.

Lemma 2.2. *Let R be a reduced ring.*

- (1) *If I is a z -ideal in R, then every prime ideal, minimal over I is a prime z -ideal.*
- (2) A proper ideal I of R is a z[∘]-ideal if and only if it is an intersection of prime z°-ideals.
- (3) If I, *J* are two ideals of R, then $(I \cap J)_{\circ} = I_{\circ} \cap J_{\circ}$.
- *Proof.* (1) See [4, Theorem 1.1.16].
	- (2) See [4, Corolarry 1.18]

(3) Always $(I \cap J)$ ∘ ⊆ I ∘ ∩ J ∘. If $(I \cap J)$ ∘ = R , then I [°] = R and J [°] = R , hence the equality holds. Now let $(I \cap J)$ _o be a proper ideal of *R*. Then it is an intersection of prime z° -ideals containing it. Let $a \in I_\circ \cap J_\circ$ and *P* be a prime z° -ideal containing (*I* ∩ *J*)_○. Then *P* containing *I* or *P* containing *J*. Thus *a* ∈ *P*. So we are done. □

In this paper, we use Max (*R*) (resp., Min (*R*)) for the spaces of maximal ideals (resp., minimal prime ideals) of *R* with the *hull*-*kernel* topology.

2.2. Rings of continuous functions and topological concepts

In this paper, *C*(*X*) (*C*^{*}(*X*)) is the ring of all (bounded) real-valued continuous functions on a completely regular Hausdorff space *X*. In fact, for every topological space *X* there exists a completely regular Hausdorff space *Y* such that *C*(*X*) and *C*(*Y*) are isomorphic as two rings. So, whenever we speak about *C*(*X*), *X* is a completely regular and Hasdorff space.

In studying relations between topological properties of a space *X* and algebraic properties of *C*(*X*), it is natural to look at the subsets of X of the form $\hat{f}^{-1}\{0\}$, for each $f \in C(X)$. The set $f^{-1}\{0\}$ is called the zero-set of *f* and denoted by *Z*(*f*). Any set that is a zero-set of some function in *C*(*X*) is called a zero-set in *X*. Thus, *Z* is a mapping from the ring *C*(*X*) onto the set of all zero-sets in *X*. A coz *f* is the set *X* \ *Z*(*f*) which is called the cozero-set of *f*. The set of all zero-sets in *X* is denoted by *Z*[*X*] and for each ideal *I* in *C*(*X*), *Z*[*I*] is the set of all zero-sets of the form *Z*(*f*), where *f* ∈ *I*. The space β*X* is known as the *Stone-Cech compactification* of *X*. It is characterized as that compactification of *X* in which *X* is *C* ∗ -embedded as a dense subspace. The space υ*X* is the *real-compactification* of *X*, and *X* is *C*-embedded in this space as a dense subspace. For a completely regular Hausdorff space *X*, we have *X* ⊆ ν *X* ⊆ β*X*. For each *Z*(f) ∈ *Z*[*X*], *Z*^β = *Z*(f^β), where f^β is the unique continuous extension of *f* on β*X*.

2.3. Basic facts and definitions of lattices

Recall from [6], [8] and [22] that a lattice < $L, \wedge, \vee, 0, 1 >$ is called a normal lattice whenever it is a distributive lattice and for all $a, b \in L$ with $a \wedge b = 0$ there exist $x, y \in L$ such that $x \vee y = 1$ and $x \wedge a = y \wedge b = 0$. We prefer to call these classes of lattices co-normal lattices, since in the frame literature the adjective normal refers to the dual property. Trivially, every Boolean algebra is a co-normal lattice. To see more details about lattices the reader is referred to [21].

A frame is a complete lattice *L* satisfying the distributivity law

$$
(\bigvee A) \wedge b = \bigvee \{a \wedge b : a \in A\},\
$$

for any subset *A* of *L* and any $b \in L$. Our reference for frames and their homomorphisms is [20].

3. On the lattice *Z* ◦ *Id***(***R***)**

The set $Z^{\circ}Id(R)$, partially ordered by inclusion forms a lattice with

$$
I \wedge J = I \cap J
$$
 and $I \vee J = (I + J)_{\circ}$, for $I, J \in Z^{\circ}Id(R)$.

An ideal *I* of *R* is a *d*-ideal if $Ann(a) \subseteq Ann(b)$ and $a \in I$, then $b \in I$. Since every z° -ideal is a *d*-ideal, for an ideal *I* of a ring *R*, we have $I \subseteq I_d \subseteq I_o$, where I_d is the smallest *d*-ideal containing *I*. When *R* is a reduced ring, the class of d-ideals and the class of z°-ideals coincide, as shown in [21, Proposition 2.8]. Consequently, for each ideal *I* of a reduced ring *R*, *I*_° = *I*_d. Thus, when *R* is a reduced ring, the lattices $Z^{\circ}Id(R)$ and $DId(R)$ are the same.

In [9], Dube extensively investigated the properties of the lattice *DId*(*R*) and demonstrated that it forms a frame. In this section, we aim to provide alternative characterizations of this lattice and utilize them to introduce novel classes of topological spaces.

Rings in which the sum of two z°-ideals is a z°-ideal are also important. We now turn to characterizing them. We recall that the set of all basic z° -ideals of *R* is $\{P_a : a \in R\}$.

Proposition 3.1. *The following statements are equivalent.*

- (1) *The sum of two* z° -ideals in R is a z° -ideal.
- (2) *For each two ideals I and J of R,* $(I_0 + J_0)_0 = I_0 + J_0$.
- (3) *The lattice Z Id*(*R*) *is a sublattice of the lattice of ideals of R.*
- (4) *For each two families* ${P_a : a \in S}$ *and* ${P_b : b \in K}$ *of basic* z° -*ideals*,

$$
(\sum_{a\in S}P_a+\sum_{b\in K}P_b)_{\circ}=(\sum_{a\in S}P_a)_{\circ}+(\sum_{b\in K}P_b)_{\circ}.
$$

Proof. (1) \Rightarrow (2) Let *I*, *J* be two ideals of *R*. By hypothesis, *I*_◦ + *J*◦ is a *z*[◦]-ideal of *R* and hence (*I*◦ + *J*◦)◦ = *I*◦ + *J*◦. (2) ⇒ (3) Consider two *z*°-ideals *I*, *J* of *R*. Then by (2), *I* + *J* = *I*_∘ + *J*_∘ = (*I*_∘ + *J*_∘)_∘. This shows *I* + *J* is a *z* ◦ -ideal. So we are done.

(3) \Rightarrow (4) By hypothesis, $(\sum_{a\in S} P_a)_{\circ} + (\sum_{b\in K} P_b)_{\circ} \in Z^{\circ}Id(R)$ and it contains $\sum_{a\in S} P_a + \sum_{b\in K} P_b$. Also, it is clear that $(\sum_{a\in S}P_a)_{\circ} + (\sum_{b\in K}P_b)_{\circ} \in Z^{\circ}Id(R)$ is contained in $(\sum_{a\in S}P_a + \sum_{b\in K}P_b)_{\circ}$. So we are done.

 $(4) \Rightarrow (1)$ Let *I*, *J* be two *z*°-ideals of *R*. Then $I = \sum_{a \in I} P_a$, $\overline{J} = \sum_{b \in J} P_b$ and,

$$
I + J = \sum_{a \in I} P_a + \sum_{b \in J} P_b = (\sum_{a \in I} P_a)_{\circ} + (\sum_{b \in J} P_b)_{\circ} = (\sum_{a \in I} P_a + \sum_{b \in J} P_b)_{\circ}.
$$

 \Box

Lemma 3.2. *For a* z° -ideal *J* of a reduced ring R and a set { I_{α} : $\alpha \in S$ } of ideals of R we have,

$$
J\cap(\sum_{\alpha\in S}I_{\alpha})_{\circ}=(\sum_{\alpha\in S}(J\cap I_{\alpha}))_{\circ}.
$$

Proof. We have $J \cap (\sum_{\alpha \in S} I_\alpha)$ is a *z*°-ideal containing $\sum_{\alpha \in S} I_\alpha \cap J$. As $(\sum_{\alpha \in S} (I_\alpha \cap J))$ is the smallest *z*°-ideal containing $\sum_{\alpha \in S} I_{\alpha} \cap \overline{J_{\alpha}}$

$$
(\sum_{\alpha\in S}(I_{\alpha}\cap J))_{\circ}\subseteq J\cap(\sum_{\alpha\in S}I_{\alpha})_{\circ}.
$$

We can assume $(\sum_{\alpha\in S}(I_\alpha\cap J))_\circ$ is a proper ideal of *R*. Since $(\sum_{\alpha\in S}(I_\alpha\cap J))_\circ$ is a z°-ideal, so it is an intersection of minimal prime ideals over it, each of which is a z°-ideal. Now, let $a \in (\sum_{\alpha \in S} I_\alpha)$ _o $\cap J$ and *P* be a minimal prime ideal over $(\sum_{\alpha \in S} (I_\alpha \cap J)_\circ$. Then $a \in J$, $a \in (\sum_{\alpha \in S} I_\alpha)_\circ$ and *P* contains $I_\alpha \cap J$ for each $\alpha \in S$. If $P \not\supseteq J$, then $P \supseteq I_\alpha$, for all $\alpha \in S$, hence $P \supseteq \sum_{\alpha \in S} I_\alpha$. But *P* is a *z*°-ideal, so $P \supseteq (\sum_{\alpha \in S} I_\alpha)$. This implies $a \in P$. Hence $a \in (\sum_{\alpha \in S} (J \cap I_{\alpha}))$ _∘.

Lemma 3.2 implies Theorem 2.2 in [9] (i.e., $Z^{\circ}Id(R)$ is a frame). In fact, if *J* and the family $\{I_\alpha : \alpha \in S\}$ are *z* ◦ -ideals of *R*, then we have,

$$
J \wedge (\bigvee_{\alpha \in S} I_{\alpha}) = J \cap (\sum_{\alpha \in S} I_{\alpha})_{\circ} = (\sum_{\alpha \in S} (J \cap I_{\alpha}))_{\circ} = \bigvee_{\alpha \in S} (J \wedge I_{\alpha}).
$$

It is well-known that $Z^{\circ}Id(R/H) \cong \uparrow H$ for every radical ideal *H*, hence $Z^{\circ}Id(R/N(R)) \cong Z^{\circ}Id(R)$, because *N*(*R*) is the bottom element of $Z^{\circ}Id(R)$. Although this is well-known we provide a direct proof for this result.

Lemma 3.3. *For a ring R, the two lattices Z*◦ *Id*(*R*) *and Z*◦ *Id*(*R*/*N*(*R*)) *are isomorphic.*

Proof. (1) First we denote join and meet in *R*/*N*(*R*) by ∨' and ∧', respectively. It is easy to see that for two *z* ◦ -ideals *I*1, *I*² of *R*, we have

$$
I_1/N(R) \vee I_2/N(R) = (I_1 \vee I_2)/N(R) = (I_1 + I_2)_{\circ}/N(R)
$$
 and

$$
I_1/N(R) \wedge' I_2/N(R) = (I_1 \cap I_2)/N(R).
$$

These show two operations (∨', ∧') on the lattice (*Z*[°]Id(*R*/*N*(*R*)), ⊆). Next, define ϕ : *Z*[°]Id(*R*) → *Z*[°]Id(*R*/*N*(*R*)) by $\phi(I) = I/N(R)$. By the fact that for two z° -ideals I_1 , I_2 of R, we have $I_1 = I_2$ if and only if $I_1/N(R) = I_2/N(R)$, the map ϕ is well-defined and injective from $Z^{\circ}Id(R)$ onto $Z^{\circ}Id(R/N(R))$. We also have,

$$
\phi(I_1 \vee I_2) = \phi((I_1 + I_2)_{\circ}) = (I_1 + I_2)_{\circ}/N(R) = I_1/N(R) \vee I_2/N(R) = \phi(I_1) \vee \phi(I_2),
$$

$$
\phi(I_1 \wedge I_2) = \phi(I_1 \cap I_2) = (I_1 \cap I_2)/N(R) = I_1/N(R) \wedge' I_2/N(R) = \phi(I_1) \wedge' \phi(I_2).
$$

Thus ϕ is a lattice isomorphism. \Box

The above result tells us that for the investigation of the lattice properties of *Z* ◦ *Id*(*R*), we can assume *R* to be a reduced ring.

Definition 3.4. A ring *R* is called *WSA* if for each two ideals *I* and *J* of *R* where $I \cap J = 0$, we have

 $(Ann(I) + Ann(J))$ ° = *R*.

Recall from [7] that a ring *R* is an *SA*-ring if the sum of two annihilator ideals is an annihilator ideal. According to Theorem 4.4 in [7], every reduced *SA*-ring is *WSA*. However, we will demonstrate that the reverse is not necessarily true. To explore this further, we need to introduce the following topological concept in the sequel.

Definition 3.5. A completely regular space *X* is called *W. Extremally disconnected* (briefly, *WED*-space) if every two disjoint open sets can be separated by two disjoint *Z*-zero-sets (i.e., the interior of a zero-set).

Example 3.6. (1) Every extremally disconnected space is a *WED*-space. This follows from [11, 1H.2], where it is established that in an extremally disconnected space, any two disjoint open sets are completely separated, and hence, they are separated by two disjoint *Z*-zero-sets.

(2) Every perfectly normal space, such as a metric space *X*, is a *WED*-space. To see it, consider two disjoint open sets *A* and *B* in *X*. Let cl *A* and cl *B* be the closures of *A* and *B*, respectively, which are two zero-sets in *X*. We claim that int cl *A* \cap int cl *B* = \emptyset . Assume, to the contrary, that $x \in \text{int } c1$ $A \cap \text{int } c1$ *B*. Then, there exist open sets *U* and *V* in *X* such that $x \in U \subseteq c$ *A* and $x \in V \subseteq c$ *B*. This implies $V \cap A \neq \emptyset$, which leads to a contradiction. Therefore, int cl *A* \cap int cl *B* is empty, and *A* and *B* are contained in two disjoint *Z*-zero-sets.

(3) If we consider R with usual topology, it serves as an example of a *WED*-space that is not an extremally disconnected space, as shown in Part (2).

Theorem 3.7. *Let X be a completely regular Hausdor*ff *space. Then X is a WED-space if and only if* β*X is a WED-space.*

Proof. \Rightarrow Assume *X* is a *WED*-space. Let *U*, *V* be two disjoint open sets in β*X*. Then $U \cap X \cap V \cap X = \emptyset$. By hypothesis, there exist two disjoint *Z*-zero-sets int_{*X*} *Z*₁ and int_{*X*} *Z*₂ in *X* such that *U* ∩ *X* ⊆ int_{*X*} *Z*₁ and $V \cap X \subseteq \text{int}_X Z_2$. These imply $U \subseteq cl_{\beta X} U = cl_{\beta X} (U \cap X) \subseteq cl_{\beta X} Z_1$ and $V \subseteq cl_{\beta X} V = cl_{\beta X} (V \cap X) \subseteq cl_{\beta X} Z_2$. Thus $U \subseteq \text{int}_{\beta X} \text{cl}_{\beta X} Z_1 = \text{int}_{\beta X} Z_1^{\beta}$ \int_{1}^{β} and $V \subseteq \text{int}_{\beta X}$ $cl_{\beta X} Z_{2} = \text{int}_{\beta X} Z_{2}^{\beta}$ ^β. On the other hand, $int_X Z_1 ∩ int_X Z_2 = ∅$ and *X* is dense in βX , hence int $_XZ_1^{\beta}$ $\frac{\beta}{1} \cap \text{int}_X Z_2^{\beta}$ $\frac{\beta}{2}$ = 0. Therefore, *U* ⊆ int_{βX} Z_1^{β} \int_{1}^{β} and $V \subseteq \text{int}_{\beta X} Z_2^{\beta}$ $\frac{p}{2}$ in βX , proving the forward direction.

⇐ Assume β*X* is a *WED*-space. Let *U*, *V* be two disjoint open sets in *X*. Then there are two open sets *U*1, *V*¹ in β*X* such that *U* = *U*¹ ∩ *X* and *V* = *V*¹ ∩ *X*. Since *U*¹ and *V*¹ are disjoint in β*X* (as *U*, *V* are disjoint in *X* and *X* is dense in βX), by the hypothesis, there exist two disjoint *Z*-zero-sets int $_{\beta X} Z_1^{\beta}$ n_1^{ν} and $\inf_{\beta X} Z_2^{\beta}$ $\frac{\beta}{2}$ in *βX* such that $U_1 \subseteq \text{int}_{\beta X} Z_1^{\beta}$ $\frac{\beta}{1}$ and $V_1 \subseteq \text{int}_{\beta X} Z_2^{\beta}$ ^β. Thus, *U* = *U*₁ ∩ *X* ⊆ int_β*x* $Z_1^β$ $\int_{1}^{\beta} \cap X = \mathrm{int}_{X} Z_1$ and *V* = *V*₁ ∩ *X* ⊆ int_β*x Z*^β₂ $\frac{\beta}{2} \cap X = \text{int}_X Z_2$. Furthermore,

 $int_X Z_1 \cap int_X Z_2 = int_{\beta X} Z_1^{\beta}$ $\frac{\beta}{1} \cap \mathrm{int}_{\beta X} Z_2^{\beta}$ $\frac{\beta}{2} \cap X = \emptyset.$

This completes the proof. \square

The next result shows that *C*(R) is a *WSA*-ring which is not an *SA*-ring.

Theorem 3.8. *Let X be a completely regular Hausdor*ff *space. The following statements are equivalent.*

- (1) *C*(*X*) *is a WSA-ring.*
- (1) *The space X is a WED-space.*
- (1) *C* ∗ (*X*) *is a WSA-ring.*

Proof. (1) \Rightarrow (2) Let *A*, *B* be two disjoint open sets in *X*. As *X* is a completely regular space, there are two subsets *S*, *H* of *C*(*X*) such that

$$
A = \bigcup_{f \in S} (X \setminus Z(f)) \quad \text{and} \quad B = \bigcup_{g \in H} (X \setminus Z(g)).
$$

Consider the two ideals *I* and *J*, where $I = \langle S \rangle$ and $J = \langle H \rangle$, respectively. Then $A \cap B = \emptyset$ implies $I \cap J = 0$. Since $f \in I \cap J$ follows $X \setminus Z(f) \subseteq A \cap B$, i.e., $f = 0$. By the hypothesis, $(Ann(I) + Ann(J))_∘ = C(X)$. This shows that there exists a non-zero-divisor element $f \in Ann(I) + Ann(I)$. Hence there are $h \in Ann(I)$ and *k* ∈ Ann(*I*) such that $f = h + k$ and $int Z(h) \cap int Z(k) = ∅$. $h \in Ann(I)$ and $k \in Ann(I)$ imply $A \subseteq Z(h)$ and $B \subseteq Z(k)$, respectively. So we are done.

(2) \Rightarrow (1) Let *I* and *J* be two ideals of *C(X)* with *I* ∩ *J* = 0. Put

$$
A = \bigcup_{f \in I} (X \setminus Z(f)) \quad \text{and} \quad B = \bigcup_{g \in J} (X \setminus Z(g)).
$$

The equality $I \cap I = 0$ implies $A \cap B = \emptyset$. By the hypothesis, there are two zero-sets $Z(f)$, $Z(q) \in Z[X]$ such that

$$
A \subseteq \text{int } Z(f)
$$
, $B \subseteq \text{int } Z(g)$ and $\text{int } Z(f) \cap \text{int } Z(g) = \emptyset$.

A ⊆ int *Z*(*f*) implies *f* ∈ Ann(*I*) and *B* ⊆ int *Z*(*g*) implies *g* ∈ Ann(*J*). On the other hand, int *Z*(*f*)∩int *Z*(*g*) = ∅ implies $f^2 + g^2$ is a non-zero-divisor element in Ann(*I*) + Ann(*J*). Therefore $(Ann(I) + Ann(J))$ ° = *C*(*X*).

(3) \Leftrightarrow (4) As *C*^{*}(*X*) is isomorphic to *C*(β *X*), this follows from Theorem 3.7 and (1)⇔(2).

Now we want to characterize the co-normality of the lattice $Z^{\circ}Id(R)$ ($DId(R)$) in the class of reduced rings.

Proposition 3.9. *Let R be a reduced ring. Then the lattice Z*◦ *Id*(*R*) *is co-normal if and only if R is a WSA-ring.*

Proof. \Rightarrow Let *I*, *J* be two ideals of *R* with *I* ∩ *J* = 0. Then *I*° ∩ *J*[°] = (*I* ∩ *J*[∂] = 0[°] = 0[′] since *R* is a reduced ring. By the hypothesis, there are two *z*°-ideals I_1 , J_1 such that $I_1 \vee J_1 = R$, $I_0 \cap I_1 = 0$ and $J_0 \cap J_1 = 0$. The first equality shows that $(I_1 + J_1)$ [°] = *R* and the others show

 $I_1 \subseteq \text{Ann}(I_0) \subseteq \text{Ann}(I)$ and $J_1 \subseteq \text{Ann}(J_0) \subseteq \text{Ann}(J)$.

This implies that

 $(I_1 + J_1)$ ° ⊆ $(Ann(I) + Ann(J))$ °.

Thus $(Ann(I) + Ann(J))_{\circ} = R$.

⇐ Consider two *z* ◦ -ideals *I*, *J* of *R* with *I* ∩ *J* = 0. Then by the hypothesis,

 $(Ann(I) + Ann(J))_{\circ} = R.$

Put $I_1 = Ann(I)$ and $J_1 = Ann(J)$. Then I_1 , J_1 are two z° -ideals of R , $I \cap I_1 = 0$, $J \cap J_1 = 0$ and $I_1 \vee J_1 = (I_1 + J_1)_{\circ} = R$. This shows $Z^{\circ}Id(R)$ is a co-normal lattice.

From Theorem 3.8 and Proposition 3.9, we have the next result.

Corollary 3.10. *Let X be a completely regular Hausdor*ff *space. Then Z*◦ *Id*(*C*(*X*)) *is co-normal if and only if X is a WED-space.*

Recall from [12], a ring *R* satisfies property *A* if each f.g. ideal of *R* consisting of zero divisors has a nonzero annihilator. Noetherian rings, *C*(*X*), Zero-dimensional rings (each prime ideal is maximal), the polynomial ring *R*[*x*] and rings whose classical ring of quotients are regular are examples of rings with the property *A*.

Proposition 3.11. *Let R be a reduced ring with property A. Then R is a WSA-ring if and only if for each pair of ideals I*, *J* of *R*, $(Ann(I) + Ann(J))$ ∘ = Ann $(I \cap J)$ *.*

Proof. The necessity is obvious. Now, let *R* be a *WSA*-ring and *I*, *J* be two ideals of *R*. Trivially, we have $(Ann(I) + Ann(J))$ ∘ ⊆ Ann(*I*∩ *J*). Let *x* ∈ Ann(*I*∩ *J*) = Ann(*IJ*). Then *xIJ* = 0. This shows that *xI* ∩ *J* = 0. By the hypothesis,

 $(Ann(xI) + Ann(I))_{\circ} = R.$

According to [3, Theorem 1.21], there exists a non-zero-divisor element $a + b$ in Ann(*xI*) + Ann(*I*), where $a \in Ann(xI)$ and $b \in Ann(I)$. This implies

 $ax + bx \in Ann(I) + Ann(I) \subseteq (Ann(I) + Ann(I))$ [。].

Since Ann($a + b$) = 0, we have Ann($ax + bx$) = Ann(x). Thus, $x \in (Ann(I) + Ann(I))_o$. Therefore, the proof is complete.

4. On the lattice of *z***-ideals in a commutative ring**

Rings in which the sum of two *z*-ideals is a *z*-ideal are important (e.g., *C*(*X*)). We now turn to characterizing them. We recall that the set of all basic *z*-ideals of *R* is $\{M_a : a \in R\}$.

Proposition 4.1. *The following statements are equivalent.*

(1) *The sum of two z-ideals in R is a z-ideal.*

- (2) *For each I*, $J \trianglelefteq R$, $(I_z + I_z)_z = I_z + I_z$.
- (3) *The lattice ZId*(*R*) *is a sublattice of the lattice of ideals of R.*
- (4) *For every two families* ${M_a : a \in S}$ *and* ${M_b : b \in K}$ *of basic z-ideals,*

$$
(\sum_{a\in S}M_a + \sum_{b\in K}M_b)_z = (\sum_{a\in S}M_a)_z + (\sum_{b\in K}M_b)_z.
$$

Proof. The proof is similar to the proof of Proposition 3.1. □

The lattice *RId*(*R*) of radical ideals of *R*, ordered by inclusion, constitutes a coherent frame (refer to [5]). In this frame, the meet operation corresponds to intersection, and the join operation is defined as the radical of the sum.

In [13], Ighedo and McGovern provided a characterization of various properties of the lattice of *z*-ideals using the tools of frame and locale theory. In this context, we offer direct proofs for some of these properties. Additionally, we establish results for the lattice *RId*(*R*). To support these results, the following lemma is required.

Lemma 4.2. *For a ring R the following statements hold.*

(1) *For a z-ideal J of R and a set* $\{I_\alpha : \alpha \in S\}$ *of ideals of R,*

$$
J\cap(\sum_{\alpha\in S}I_{\alpha})_{z}=(\sum_{\alpha\in S}(J\cap I_{\alpha}))_{z}.
$$

(2) *For a radical ideal J of R and a set* $\{I_\alpha : \alpha \in S\}$ *of ideals of R,*

$$
J \cap \sqrt{\sum_{\alpha \in S} I_{\alpha}} = \sqrt{\sum_{\alpha \in S} (J \cap I_{\alpha})}.
$$

Proof. (1) We have $J \cap (\sum_{\alpha \in S} I_{\alpha})_z$ is a *z*-ideal containing $\sum_{\alpha \in S} I_{\alpha} \cap J$. As $(\sum_{\alpha \in S} (I_{\alpha} \cap J))_z$ is the smallest *z*-ideal containing $\sum_{\alpha \in S} I_{\alpha} \cap J$,

$$
(\sum_{\alpha\in S}(I_{\alpha}\cap J))_{z}\subseteq J\cap (\sum_{\alpha\in S}I_{\alpha})_{z}.
$$

We can assume $(\sum_{\alpha \in S} (I_\alpha \cap J))_z$ is a proper ideal. Since $(\sum_{\alpha \in S} (I_\alpha \cap J))_z$ is a *z*-ideal, so it is an intersection of minimal prime ideals over it, each of which is a *z*-ideal. Now, let $a \in (\sum_{\alpha \in S} I_\alpha)_z \cap J$ and *P* be a minimal prime ideal over $(\sum_{\alpha\in S}(I_{\alpha}\cap J)_{z}$. Then $a\in J$, $a\in (\sum_{\alpha\in S}I_{\alpha})_{z}$ and P contains $I_{\alpha}\cap J$ for each $\alpha\in S$. If $P \not\supseteq J$, then $P \supseteq I_\alpha$, for all $\alpha \in S$, hence $P \supseteq \sum_{\alpha \in S} I_\alpha$. But *P* is a *z*-ideal, so $P \supseteq (\sum_{\alpha \in S} I_\alpha)_z$. This implies $a \in P$. Hence $a \in (\sum_{\alpha \in S} (J \cap I_{\alpha}))_z.$

(2) The proof is similar to the proof of Part (1). \Box

Lemma 4.2 implies Theorem 3.1 in [13] (i.e., *ZId*(*R*) is a frame). In fact, if *J* and the family $\{I_\alpha : \alpha \in S\}$ are *z*-ideals of *R*, then we have,

$$
J \wedge (\bigvee_{\alpha \in S} I_{\alpha}) = J \cap (\sum_{\alpha \in S} I_{\alpha})_{z} = (\sum_{\alpha \in S} (J \cap I_{\alpha}))_{z} = \bigvee_{\alpha \in S} (J \wedge I_{\alpha}).
$$

Similarly, we can apply Part 2 of Lemma 4.2 to show that *RId*(*R*) is a frame, see also [5].

It is well-known that $ZId(R/H) \cong \uparrow H$ for every radical ideal *H*, hence

$$
ZId(R/J(R)) \cong ZId(R).
$$

Because *J*(*R*) is the bottom element of *ZId*(*R*). Although this is well-known, we provide a direct proof for this result. Hence, to investigate the lattice properties of *ZId*(*R*) (resp., *RId*(*R*)), we can consider *R* to be a semiprimitive ring.

Lemma 4.3. *For a ring R the following statements hold.*

- (1) *The two lattices ZId*(*R*) *and ZId*(*R*/*J*(*R*)) *are isomorphic.*
- (2) *The two lattices RId*(*R*) *and RId*(*R*/*N*(*R*)) *are isomorphic.*

Proof. (1) First we denote join and meet in *R*/*J*(*R*) by ∨' and ∧', respectively. It is easy to see that for two *z*-ideals I_1 , I_2 of R , we have

 $I_1 / J(R) \vee I_2 / J(R) = (I_1 \vee I_2) / J(R) = (I_1 + I_2)_z / J(R)$ and

*I*₁/*J*(*R*) ∧' *I*₂/*J*(*R*) = (*I*₁ ∩ *I*₂)/*J*(*R*).

These show two operations (\vee' , \wedge') on the lattice (*ZId*(*R*/*J*(*R*)), ⊆). Next, we define ϕ : *ZId*(*R*) \to *ZId*(*R*/*J*(*R*)) by $\phi(I) = I/J(R)$. By the fact that for two z-ideals I_1, I_2 of R, we have $I_1 = I_2$ if and only if $I_1/J(R) = I_2/J(R)$, the map ϕ is well-defined and injective from *ZId*(*R*) onto *ZId*(*R*)/*J*(*R*)). We also have,

$$
\phi(I_1 \vee I_2) = \phi((I_1 + I_2)_z) = (I_1 + I_2)_z / J(R) = I_1 / J(R) \vee I_2 / J(R) = \phi(I_1) \vee \phi(I_2),
$$

 $\phi(I_1 \wedge I_2) = \phi(I_1 \cap I_2) = (I_1 \cap I_2)/J(R) = I_1/J(R) \wedge' I_2/J(R) = \phi(I_1) \wedge' \phi(I_2).$

Thus ϕ is a lattice isomorphism.

(2) Similar to the proof of (1), for two radical ideals I_1 , I_2 of R , we have

$$
I_1/N(R) \vee I_2/N(R) = (I_1 \vee I_2)/N(R) = \sqrt{(I_1 + I_2)}/N(R)
$$
 and
 $I_1/N(R) \wedge I_2/N(R) = (I_1 \cap I_2)/N(R)$.

These show two operations (\vee' , \wedge') on the lattice ($RId(R/N(R))$, ⊆). Now, define $\psi : RId(R) \to RId(R/N(R))$ by $\psi(I) = I/N(R)$. We can see that *I* is a radical ideal of *R* if and only if $I/N(R)$ is a radical ideal of $R/N(R)$. It also is easy to see that for two radical ideals I_1 , I_2 of *R*, we have $I_1 = I_2$ if and only if $I_1/N(R) = I_2/N(R)$. Thus ψ is injective and surjective from $RId(R)$ onto $RId(R/N(R))$. We also have,

$$
\psi(I_1 \vee I_2) = \psi(\sqrt{I_1 + I_2}) = \sqrt{I_1 + I_2}/N(R) = I_1/N(R) \vee I_2/N(R) = \psi(I_1) \vee \phi(I_2),
$$

$$
\psi(I_1 \wedge I_2) = \psi(I_1 \cap I_2) = (I_1 \cap I_2)/N(R) = I_1/N(R) \wedge I_2/N(R) = \psi(I_1) \wedge' \psi(I_2).
$$

Thus ψ is a lattice isomorphism. \square

We now come to the characterization of the co-normality of the lattice *ZId*(*R*) (resp., *RId*(*R*)). Whenever *R* is a reduced ring, it is proved in [7, Corollary 4.5] that *R* is an *SA*-ring if and only if *R* is a Baer ring. We remind the reader that a lattice < *L*, \wedge , \vee , 0, 1 > is co-normal whenever it is distributive and for all $a, b \in L$ with *a* \wedge *b* = 0 there exist *x*, *y* \in *L* such that *x* \vee *y* = 1 and *a* \wedge *x* = *b* \wedge *y* = 0.

Theorem 4.4. *For a semiprimitive ring R the following statements are equivalent.*

- (1) *The lattice ZId*(*R*) *is a co-normal lattice.*
- (2) *R is an SA-ring.*
- (3) *The lattice RId*(*R*) *is a co-normal lattice.*

Proof. (1) \Rightarrow (2) Let *I* and *J* be two annihilator ideals of *R* and *I* ∩ *J* = 0. Notably, since *R* is a semiprimitive ring, *I* and *J* are two *z*-ideals of *R*. This can be shown as follows:

$$
I = \text{Ann}(\text{Ann}(I)) = \bigcap_{M \in \text{Max}(R)} M.
$$

This establishes that *I* is a *z*-ideal. Similarly, *J* is a *z*-ideal. According to the hypothesis, there exist *z*-ideals *I*¹ and J_1 in *R* with $(I_1 + J_1)_z = I_1 \vee J_1 = R$ and $I \cap I_1 = 0$ and $J \cap J_1 = 0$. The first equality implies $I_1 + J_1 = R$ and the other conditions imply *I*₁ ⊆ Ann(*I*) and *J*₁ ⊆ Ann(*J*), respectively. Hence Ann(*I*) + Ann(*J*) = *R*. Now, by Corollary 4.9 in [7], *R* is an *SA*-ring.

(2) ⇒ (3) Let *I* and *J* be two radical ideals with *I* ∩ *J* = 0. According to the hypothesis and Theorem 2.14 in [1], Ann(*I*) + Ann(*J*) = Ann(*I* \cap *J*) = *R*. Set *I*₁ = Ann(*I*) and *J*₁ = Ann(*J*). Since *R* is a semiprimitive ring, *I*₁ and *J*₁ are two radical ideals, *I* ∩ *I*₁ = 0, *J* ∩ *J*₁ = 0 and *I*₁ ∨ *J*₁ = $\sqrt{Ann(I) + Ann(J)}$ = *R*. Therefore, *RId*(*R*) is a co-normal lattice.

(3) ⇒ (1) Assume that *I* and *J* are two *z*-ideals and *I* ∩ *J* = 0. As *I*, *J* are two radical ideals, there are two radical ideals I_1 and J_1 with $I_1 + J_1 = R$, $I \cap I_1 = 0$ and $J \cap J_1 = 0$, by the hypothesis. Thus $(I_1)_z + (J_1)_z = R$, *I* ∩ $(I_1)_z = (I \cap I_1)_z = 0_z = 0$ and $J \cap (J_1)_z = (J \cap J_1)_z = 0_z = 0$. So we are done. □

It is well known fact, as established by [2, Theorem 3.5] and [23, Theorem 3.12], that *C*(*X*) is a Baer ring if and only if *X* is an extremally disconnected space (i.e., the closure of every open set is open). This, combined with Theorem 3.4, leads to the following result.

Corollary 4.5. *The following statements are equivalent.*

- (1) *The lattice ZId*(*C*(*X*)) *is a co-normal lattice.*
- (2) *The space X is extremally disconnected.*
- (3) *The lattice RId*(*C*(*X*)) *is a co-normal lattice.*

Lemma 4.6. *Let R, S be two rings and* ϕ : $R \rightarrow S$ *be a ring isomorphism. The following statements hold.*

- (1) *If* $a \in R$ *, then* $\phi(M_a) = M_{\phi(a)}$ *.*
- (2) If I is a z-ideal of R, then $\phi(I)$ is a z-ideal of S.
- (3) If *J* is a z-ideal of *S*, then $\phi^{-1}(J)$ is a z-ideal of *R*.
- (4) If I is an ideal of R, then $\phi(I_z) = (\phi(I))_z$.

Proof. (1) Let $\phi(x) \in \phi(M_a)$, where $x \in M_a$. Consider a maximal ideal *M* in *S*, where $\phi(a) \in M$. Then $a \in \phi^{-1}(M)$. Since $\phi^{-1}(M)$ is a maximal ideal in *R*, $x \in \phi^{-1}(M)$, i.e., $\phi(x) \in M$. This shows $\phi(M_a) \subseteq M_{\phi(a)}$. To show other inclusion, let $y = \phi(x) \in M_{\phi(a)}$. We must show that $x \in M_a$. Assume that *M* is a maximal ideal in *R* containing *a*. Then $\phi(a) \in \phi(M)$ and $\phi(M)$ is a maximal ideal in *S*. Hence $\phi(x) \in \phi(M)$. This implies $x \in \phi^{-1}(\phi(M) = M$. Thus $x \in M_a$.

- (2) Let ϕ (*a*) ∈ ϕ (*I*), where *a* ∈ *I*. By the hypothesis, *M_a* ⊆ *I*. By Part (1), *M*_{ϕ (*a*) = ϕ (*M_a*) ⊆ ϕ (*I*).}
- (3) Suppose that $x \in \phi^{-1}(J)$. Then $\phi(x) \in J$. Thus $\phi(M_x) = M_{\phi(x)} \subseteq J$. This implies $M_x \subseteq \phi^{-1}(J)$.
- (4) By Part (1) and the fact that ϕ is a ring isomorphism,

$$
\phi(I_z) = \phi(\sum_{x \in I} M_x) = \sum_{x \in I} \phi(M_x) = \sum_{\phi(x) \in \phi(I)} M_{\phi(x)} = (\phi(I))_z.
$$

 \Box

The following result immediately follows from Proposition 6.3 of [13], since their functor *ZId* clearly sends a ring isomorphism to an isomorphism in the category *CohFrm*. However, we provide a direct proof.

Theorem 4.7. *Let R and S be two isomorphic rings. Then the two lattices ZId*(*R*) *and ZId*(*S*) *are isomorphic.*

Proof. Let ϕ : $R \rightarrow S$ be a ring isomorphism. Define

 φ : $ZId(R) \rightarrow ZId(S)$, by $\varphi(I) = \varphi(I)$ where $I \in ZId(R)$.

By Lemma 4.6, φ is a well-defined and injective map. Now, let $J \in ZId(S)$. Then $\varphi^{-1}(J) \in ZId(R)$, by Lemma 4.6. We have $\varphi(\phi^{-1}(J)) = J$. Demonstrating that φ is a surjective map. Consider two ideals $I, J \in ZId(R)$. Then we have the following equalities:

$$
\varphi(I \vee J) = \varphi((I + J)_z) = \varphi((I + J)_z) = (\varphi(I + J))_z, \text{ by Lemma 4.6}
$$

= $(\varphi(I) + \varphi(J))_z = \varphi(I) \vee \varphi(J) = \varphi(I) \vee \varphi(J).$

$$
\varphi(I \wedge J) = \varphi(I \cap J) = \varphi(I \cap J) = \varphi(I) \cap \varphi(J) = \varphi(I) \wedge \varphi(J).
$$

So φ is a lattice isomorphism. \square

It is easy to see that if *R* is a semiprimitive ring, then

 $Id(R) = {Re : e$ is an idempotent of $R}$

partially ordered by inclusion is a lattice and for two idempotents *e* and *f* of *R*, we have *eR*∨ ′ *f R* = (*e*+ *f* −*e f*)*R* and $eR \wedge fR = efR$.

Proposition 4.8. *For a semiprimitive ring R the following statements are equivalent.*

- (1) *The lattice ZId*(*R*) *is a Boolean algebra.*
- (2) *Two lattices* $\langle ZId(R), \vee, \wedge \rangle$ *and* $\langle Id(R), \vee', \wedge' \rangle$ *coincide.*
- (3) *Every maximal ideal of R is generated by an idempotent.*
- (4) *R is a semisimple ring.*

Proof. (1) \Rightarrow (2) Initially, we demonstrate that two sets *ZId*(*R*) and *Id*(*R*) are equal. By the hypothesis, each element of $Id(R)$ is a *z*-ideal. Let *I* be a *z*-ideal. By Part (1), there is a *z*-ideal *J* such that $I \cap J = 0$ and $I + J = R$. Thus *I* = *eR* for some idempotent *e* of *R*. Therefore the two sets coincide. Now, let *I* and *J* be two *z*-ideals of *R*. Then *I* = eR and *J* = fR for some idempotents $e, f \in R$. Thus *I* ∨' *J* = $(e + f - ef)R$. It is easy to see that $(e + f - e f)R$ is the smallest *z*-ideal containing $eR + fR$. Hence

$$
I \vee' J = (I + J)_z = I \vee J.
$$

We also have

$$
I \wedge' J = eR \wedge' fR = e fR = eR \cap fR = I \cap J = I \wedge J
$$

Suppose that *eR* and *f R* are two elements of *Id*(*R*). Hence

$$
eR \vee fR = (eR + fR)_z = (e + f - ef)R = eR \vee' fR.
$$

And

$$
eR \wedge fR = eR \cap fR = efR = eR \wedge' fR.
$$

Thus, we have shown that they are equal as two lattices.

 (2) ⇒ (3) Trivial.

(3) ⇒ (4) By Theorem in [15], *R* is a finite direct sum of simple rings. Since *R* is commutative, every simple ring is a field, implying *R* is a finite direct sum of fields, i.e., *R* is a semisimple ring.

(4) \Rightarrow (1) By the hypothesis, there exist finitely number fields $F_1, F_2, ..., F_n$ such that *R* is isomorphic to $F_1 \times F_2 \times ... \times F_n$. Theorem 4.7 implies two lattices *ZId(R)* and *ZId(F₁* × *F₂* $\times ... \times F_n$) are isomorphic. Trivially, every ideal of $F_1 \times F_2 \times ... \times F_n$ is a *z*-ideal. On the othe hand, it is easy to calculate that every ideal of $F_1 \times F_2 \times ... \times F_n$ has a complement. Thus, *ZId(R)* is a Boolean algebra. \Box

We apply Theorem 4.7 for the ring of continuous function in the next result.

Corollary 4.9. *Let X*,*Y be two completely regular Hausdor*ff *spaces.*

(1) *If X and Y are two homeomorphic spaces, then ZId*(*C*(*X*)) *and ZId*(*C*(*Y*)) *are two isomorphic lattices.*

(2) *The two lattices ZId*(*C*(*X*)) *and ZId*(*C*(υ*X*)) *are isomorphic.*

(3) *The two lattices* $ZId(C^*(X))$ *and* $ZId(C(\beta X))$ *are isomorphic.*

Proof. (1) If *X* and *Y* are two homeomorphic spaces, then *C*(*X*) and *C*(*Y*) are isomorphic rings and hence *ZId*(*C*(*X*)) and *ZId*(*C*(*Y*)) are two isomorphic lattices, by Theorem 4.7.

(2) Since *C*(*X*) and *C*(υ*X*) are two isomorphic rings, it follows from Theorem 4.7.

(3) The two rings *C* ∗ (*X*) and *C*(β*X*) are isomorphic, so *ZId*(*C* ∗ (*X*)) and *ZId*(*C*(β*X*)) are two isomorphic lattices, by Theorem 4.7. \square

Acknowledgments

The authors are grateful to the referee for suggestions that have led to a much improved paper.

References

- [1] A. R. Aliabad, N. Tayarzadeh, A. Taherifar, α*-Baer rings and some related concepts via C*(*X*), Quaest. Math. **39** (2016), 401–419.
- [2] F. Azarpanah, O. A. S. Karamzadeh *Algebraic characterization of some disconnected spaces*, Ital. J. Pure Appl. Math. **12** (2002), 155–168.
- [3] F. Azarpanah, O. A. S. Karamzadeh, A. R. Aliabad. *On ideals consisting entirely of zero-divisors*, Commun. Algebra. **28** (2000), 1061–1073.
- [4] F. Azarpanah O. A. S. Karamzadeh, A. R. Aliabad. *On z -ideals in C*(*X*), Fund. Math. **160** (1999), 15–25.
- [5] B. Banaschewski *Gelfand and exchange rings: their spectra in pointfree topology*. Arabian J. Sci. Engin. **25** (2000), 3–22.
- [6] W. Bielas, A. Blaszczyk, *Topological representation of lattice homomorphisms*, Topol. Appl. **196** (2015), 362–378.
- [7] G. F. Birkenmeier, M. Ghirati, A. Taherifar, When is a sum of annihilator ideals an annihilator ideal?. Commun. Algebra. **43** (2015), 2690–2702.
- [8] W. H. Cornish, *Normal lattices*, J. Austral. Math. Soc. **14** (1972), 200–215.
- [9] T. Dube, *Rings in which the sums of d-ideals are d-ideals*, J. Korean Math. Soc. **56** (2019), 539–558.
- [10] T. Dube, *A note on lattices of z-ideals of f -rings*, New York J. Math. **22** (2016), 351–361.
- [11] L. Gillman, M. Jerison, *Rings of Continuous Functions*, Springer, 1976.
- [12] J. A. Huckaba, *Commuiotive ring with zero divisors*, Marcel-Dekker Inc, 1988.
- [13] O. Ighedo, W. W. M. McGovern, *On the lattice of z-ideals of a commutative ring*, Topol. Appl. **273** (2020), Art. ID 106969.
- [14] O. Ighedo, *Concerning ideals of pointfree function rings*, PhD thesis, Univ. South Africa, 2014.
- [15] O. A. S. Karamzadeh, M. Motamedi. *A note on rings in which every maximal ideal is generated by a central identpotent*. Proc. Japan Acad. Ser. A **58** (1982), 124.
- [16] C. W. Kohls, *Ideals in rings of continuous functions*, Fund. Math. **45** (1957), 28–50.
- [17] J. Martinez, E. R. Zenk. *Yosida frames*, J. Pure Appl. Algebra **204** (2006), 472–492.
- [18] G. Mason, *Prime z-ideals of C*(*X*) *and related rings*, Canad. Math. Bull. **23** (1980), 437–443.
- [19] G. Mason, *z-ideals and prime ideals*, J. Algebra **26** (1973), 280–297.
- [20] J. Picado, A. Pultr, *Frames and Locales: topology without points*. Frontiers in Mathematics, Springer, Basel, 2012.
- [21] S. A. Steinberg, *Lattice ordered ring's and modules*, Springer, New York-Dordrecht-Heidelberg, ISBN 978-1-4419-1720-1.
- [22] A. Taherifar, M. R. Ahmadi Zand, *Topological reperesentation of some lattices of ideals and their applications*, Math. Slovaca **74**(2) (2024), 281–292.
- [23] A. Taherifar, *Some new classes of topological spaces and annihilator ideals*, Topol. Appl. **165** (2014), 84–97.