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On the lattice of z◦-ideals (resp., z-ideals) and its applications
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Abstract. An ideal I of a commutative ring R is a z◦-ideal (resp., z-ideal) if, for each a ∈ I, the intersection
of all minimal prime ideals (resp., maximal ideals) containing a is contained in I. A ring R is termed a
WSA-ring if, for any two ideals I, J of R, where I∩ J = 0, we have (Ann(I)+Ann(J))◦ = R. It is observed that
for a reduced ring R, the lattice of z◦-ideals of R (Z◦Id(R)) is a co-normal lattice if and only if R is a WSA-ring.
This concept is then applied to characterize spaces X for which C(X) is a WSA-ring. In this context, a space
X is termed a WED-space if every two disjoint open sets can be separated by two disjoint Z-zero-sets (i.e.,
the interior of a zero-set). The class of WED-spaces contains the class of extremally disconnected spaces
and the class of perfectly normal spaces. It has been proven that C(X) is a WSA-ring if and only if X is
a WED-space, and also if and only if C∗(X) is a WSA-ring. Moreover, it has been demonstrated that the
lattice of z-ideals of a commutative ring R (ZId(R)) is a co-normal lattice if and only if R is an SA-ring, and
also if and only if the lattice of radical ideals of R (RId(R)) is a co-normal lattice.

1. Introduction

Throughout this paper, R denotes a commutative ring with identity. Almost all our rings are reduced,
which are the rings with no non-zero nilpotent elements. Let ZId(R) = {I : I is a z-ideal of R}. Additionally,
for an ideal K of R, we use Kz (resp., K◦) to denote the smallest z-ideal (resp., z◦-ideal) containing K. The
lattice (ZId(R),⊆) equipped with the operations I∨ J = (I+ J)z and I∧ J = I∩ J forms a fundamental structure.
Similarly, the set Z◦Id(R) = {I : I is a z◦-ideal of R} partially ordered by inclusion, also forms a lattice under
the operations I ∨ J = (I + J)◦ and I ∧ J = I ∩ J. The concept of z-ideal (resp., z◦-ideal) was originally
introduced by Khols [16] in the study of rings of continuous functions. After that, Mason in [18] and [19]
generalized these concepts in any commutative ring. Martınez and Zenk in [17] started the study of the
lattice of z-ideals. They proved that the lattice of z-ideals of the ring C(X) is a frame. They actually proved
that it is a coherently normal Yosida frame. Ighedo [14] extended the results of Martinez and Zenk to the
lattices of z-ideals of the ring RL of continuous real-valued functions on a completely regular frame. This
was further extended by Dube [10] to the lattices of z-ideals of an f -ring with bounded inversion. Recently,
Ighedo and McGovern [13] investigated many properties of this lattice in any commutative ring. Actually,
they characterize when the lattice ZId(R) is a Yosida frame.

In the present paper, we recall in section 2 the necessary background, and we fix notation. Section 3
is devoted to the lattice of z◦-ideals. Whenever R is a reduced ring, the lattice Z◦Id(R) is the one that was
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presented by Dube [9] as the lattice DId(R). We prove that for a z◦-ideal J of a reduced ring R and a family
{Iα : α ∈ S} of ideals of R, J ∩ (

∑
α∈S Iα)◦ = (

∑
α∈S(J ∩ Iα))◦ (Lemma 3.2), where for an ideal I of R, I◦ is the

smallest z◦-ideal containing it. This leads to the conclusion that Z◦Id(R) forms a frame when R is a reduced
ring. To study the lattice properties of Z◦Id(R), it suffices to assume R is reduced, as the lattices Z◦Id(R) and
Z◦Id(R/N(R)) are isomorphic. We define a ring R a WSA-ring if for any two ideals I, J of R with I ∩ J = 0,
(Ann(I) +Ann(J))◦ = R. Additionally, we designate a completely regular space X as a WED-space if every
pair of disjoint open sets can be separated by two disjoint Z-zero-sets (i.e., the interior of a zero-set). We
prove that a space X is a WED-space if and only if βX is a WED-space (Theorem 3.7). Using this result, we
establish that the ring C(X) is a WSA-ring if and only if the space X is WED which is also equivalent to the
C∗(X) is a WSA-ring (Theorem 3.8). Furthermore, we demonstrate that a reduced ring R is WSA if and only
if Z◦Id(R) is a co-normal lattice (Proposition 3.9). For a reduced ring R with property A, we prove that R is
a WSA-ring if and only if for each two ideals I, J of R, (Ann(I) + Ann(J))◦ = Ann(I ∩ J) (Proposition 3.11).
In Section 4, we extend the results to z-ideals, proving that for a z-ideal J of a ring R and a set {Iα : α ∈ S}
of ideals of R, J ∩ (

∑
α∈S Iα)z = (

∑
α∈S(J ∩ Iα))z (Lemma 4.2). Using this result, we reaffirm that the lattice

ZId(R) forms a frame. Additionally, for a semiprimitive ring R, we demonstrate that the lattice ZId(R) is
a co-normal lattice if and only if R is an SA-ring, which is also equivalent to the lattice RId(R) forming a
co-normal lattice (Theorem 4.4).

2. Background and notation

2.1. Rings

Let S be a subset of a ring R. We write Ann(S) for the annihilator of S in R. The ideal generated by S in
R is denoted by < S >. The radical of an ideal I of R is the ideal

√

I = {x ∈ R : xn
∈ I f or some n ∈N}.

Whenever I =
√

I, we say I is a radical ideal. It is well-known that

I is a radical ideal⇔ a2
∈ I implies a ∈ I.

The Jacobson radical of a ring R is denoted by J(R). It is well-know that J(R) is the intersection of all maximal
ideals of R. For each element a in a ring R, the intersection of all maximal ideals in R containing a is denoted
by Ma, an ideal I of R is a z-ideal if Ma ⊆ I for each a ∈ I, see [11, 7A]. Maximal ideals, minimal prime ideals
(in reduced rings) and annihilator ideals (in semiprimitive rings in which the intersection of all maximal
ideals is zero) and most of familiar ideals are z-ideals. Intersections of z-ideals are z-ideals. Hence the
smallest z-ideal containing an ideal I of R always exists and it is denoted by Iz. We refer the reader to Mason
[18] for more details and characterizations of ideal Iz in commutative rings and in C(X), the ring of all real
valued continuous functions on a completely regular Hausdorff space X.

The following lemma is well-known and is needed in the sequel.

Lemma 2.1. The following statements hold.

(1) If P is minimal in the class of prime ideals containing a z-ideal I, then P is a z-ideal.

(2) If I, J are two ideals in R, then (I ∩ J)z = Iz ∩ Jz.

Proof. (1) See [18, Theorem 1.1] for Part (1).
(2) Trivially (I ∩ J)z ⊆ Iz ∩ Jz. To see the reverse inclusion, let a ∈ Iz ∩ Jz. Since (I ∩ J)z is a z-ideal, so it is

an intersection of minimal prime ideals over it, each of which is a z-ideal. Let P be a prime ideal contains
(I ∩ J)z. Then P ⊇ I or P ⊇ J. Thus P ⊇ Iz or P ⊇ Jz. This shows that a ∈ P. So we are done.
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An ideal I of R is called a zo-ideal if for each a ∈ I, Pa ⊆ I, where Pa is the intersection of all minimal
prime ideals of R containing a. Important z◦-ideals in any ring are minimal prime ideals. An intersection
of z◦-ideals is a z◦-ideal. Hence the nilradical of R (i.e, N(R)) which is the intersection of all minimal prime
ideals of R, is a z◦-ideal. The smallest z◦-ideal containing a proper ideal I is denoted by I◦. It is well-known
that whenever I is an ideal of C(X), (see [4]),

I◦ = { f ∈ C(X) : ∃1 ∈ I with int Z(1) ⊆ int Z( f )}.

It is important to mention that for a proper ideal I of a ring R we may have I◦ = R. For example, consider
an ideal I of C(X) containing some f such that int Z( f ) = ∅ (i.e., f is a non-zero-divisors). Then I◦ = C(X).

The following lemma also is needed in the sequel.

Lemma 2.2. Let R be a reduced ring.

(1) If I is a z◦-ideal in R, then every prime ideal, minimal over I is a prime z◦-ideal.

(2) A proper ideal I of R is a z◦-ideal if and only if it is an intersection of prime z◦-ideals.

(3) If I, J are two ideals of R, then (I ∩ J)◦ = I◦ ∩ J◦.

Proof. (1) See [4, Theorem 1.1.16].
(2) See [4, Corolarry 1.18]
(3) Always (I ∩ J)◦ ⊆ I◦ ∩ J◦. If (I ∩ J)◦ = R, then I◦ = R and J◦ = R, hence the equality holds. Now

let (I ∩ J)◦ be a proper ideal of R. Then it is an intersection of prime z◦-ideals containing it. Let a ∈ I◦ ∩ J◦
and P be a prime z◦-ideal containing (I ∩ J)◦. Then P containing I or P containing J. Thus a ∈ P. So we are
done.

In this paper, we use Max (R) (resp., Min (R)) for the spaces of maximal ideals (resp., minimal prime
ideals) of R with the hull-kernel topology.

2.2. Rings of continuous functions and topological concepts
In this paper, C(X) (C∗(X)) is the ring of all (bounded) real-valued continuous functions on a completely

regular Hausdorff space X. In fact, for every topological space X there exists a completely regular Hausdorff
space Y such that C(X) and C(Y) are isomorphic as two rings. So, whenever we speak about C(X), X is a
completely regular and Hasdorff space.
In studying relations between topological properties of a space X and algebraic properties of C(X), it is
natural to look at the subsets of X of the form f−1

{0}, for each f ∈ C(X). The set f−1
{0} is called the zero-set

of f and denoted by Z( f ). Any set that is a zero-set of some function in C(X) is called a zero-set in X. Thus,
Z is a mapping from the ring C(X) onto the set of all zero-sets in X. A coz f is the set X \Z( f ) which is called
the cozero-set of f . The set of all zero-sets in X is denoted by Z[X] and for each ideal I in C(X), Z[I] is the set
of all zero-sets of the form Z( f ), where f ∈ I. The space βX is known as the Stone-C̆ech compactification of X.
It is characterized as that compactification of X in which X is C∗-embedded as a dense subspace. The space
υX is the real-compactification of X, and X is C-embedded in this space as a dense subspace. For a completely
regular Hausdorff space X, we have X ⊆ υX ⊆ βX. For each Z( f ) ∈ Z[X], Zβ = Z( f β), where f β is the unique
continuous extension of f on βX.

2.3. Basic facts and definitions of lattices
Recall from [6], [8] and [22] that a lattice < L,∧,∨, 0, 1 > is called a normal lattice whenever it is a

distributive lattice and for all a, b ∈ L with a∧b = 0 there exist x, y ∈ L such that x∨y = 1 and x∧a = y∧b = 0.
We prefer to call these classes of lattices co-normal lattices, since in the frame literature the adjective normal
refers to the dual property. Trivially, every Boolean algebra is a co-normal lattice. To see more details about
lattices the reader is referred to [21].

A frame is a complete lattice L satisfying the distributivity law

(
∨

A) ∧ b =
∨
{a ∧ b : a ∈ A},

for any subset A of L and any b ∈ L.Our reference for frames and their homomorphisms is [20].
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3. On the lattice Z◦Id(R)

The set Z◦Id(R), partially ordered by inclusion forms a lattice with

I ∧ J = I ∩ J and I ∨ J = (I + J)◦, for I, J ∈ Z◦Id(R).

An ideal I of R is a d-ideal if Ann(a) ⊆ Ann(b) and a ∈ I, then b ∈ I. Since every z◦-ideal is a d-ideal, for
an ideal I of a ring R, we have I ⊆ Id ⊆ I◦, where Id is the smallest d-ideal containing I. When R is a reduced
ring, the class of d-ideals and the class of z◦-ideals coincide, as shown in [21, Proposition 2.8]. Consequently,
for each ideal I of a reduced ring R, I◦ = Id. Thus, when R is a reduced ring, the lattices Z◦Id(R) and DId(R)
are the same.

In [9], Dube extensively investigated the properties of the lattice DId(R) and demonstrated that it forms
a frame. In this section, we aim to provide alternative characterizations of this lattice and utilize them to
introduce novel classes of topological spaces.

Rings in which the sum of two z◦-ideals is a z◦-ideal are also important. We now turn to characterizing
them. We recall that the set of all basic z◦-ideals of R is {Pa : a ∈ R}.

Proposition 3.1. The following statements are equivalent.

(1) The sum of two z◦-ideals in R is a z◦-ideal.

(2) For each two ideals I and J of R, (I◦ + J◦)◦ = I◦ + J◦.

(3) The lattice Z◦Id(R) is a sublattice of the lattice of ideals of R.

(4) For each two families {Pa : a ∈ S} and {Pb : b ∈ K} of basic z◦-ideals,

(
∑
a∈S

Pa +
∑
b∈K

Pb)
◦
= (
∑
a∈S

Pa)
◦
+ (
∑
b∈K

Pb)
◦
.

Proof. (1)⇒ (2) Let I, J be two ideals of R. By hypothesis, I◦+ J◦ is a z◦-ideal of R and hence (I◦+ J◦)◦ = I◦+ J◦.
(2)⇒ (3) Consider two z◦-ideals I, J of R. Then by (2), I + J = I◦ + J◦ = (I◦ + J◦)◦. This shows I + J is a

z◦-ideal. So we are done.
(3) ⇒ (4) By hypothesis, (

∑
a∈S Pa)◦ + (

∑
b∈K Pb)◦ ∈ Z◦Id(R) and it contains

∑
a∈S Pa +

∑
b∈K Pb. Also, it is

clear that (
∑

a∈S Pa)◦ + (
∑

b∈K Pb)◦ ∈ Z◦Id(R) is contained in (
∑

a∈S Pa +
∑

b∈K Pb)
◦
. So we are done.

(4)⇒ (1) Let I, J be two z◦-ideals of R. Then I =
∑

a∈I Pa, J =
∑

b∈J Pb and,

I + J =
∑
a∈I

Pa +
∑
b∈J

Pb = (
∑
a∈I

Pa)◦ + (
∑
b∈J

Pb)◦ = (
∑
a∈I

Pa +
∑
b∈J

Pb)◦.

Lemma 3.2. For a z◦-ideal J of a reduced ring R and a set {Iα : α ∈ S} of ideals of R we have,

J ∩ (
∑
α∈S

Iα)◦ = (
∑
α∈S

(J ∩ Iα))◦.

Proof. We have J ∩ (
∑
α∈S Iα)◦ is a z◦-ideal containing

∑
α∈S Iα ∩ J. As (

∑
α∈S(Iα ∩ J))◦ is the smallest z◦-ideal

containing
∑
α∈S Iα ∩ J,

(
∑
α∈S

(Iα ∩ J))◦ ⊆ J ∩ (
∑
α∈S

Iα)◦.

We can assume (
∑
α∈S(Iα ∩ J))◦ is a proper ideal of R. Since (

∑
α∈S(Iα ∩ J))◦ is a z◦-ideal, so it is an intersection

of minimal prime ideals over it, each of which is a z◦-ideal. Now, let a ∈ (
∑
α∈S Iα)◦ ∩ J and P be a minimal

prime ideal over (
∑
α∈S(Iα ∩ J)◦. Then a ∈ J, a ∈ (

∑
α∈S Iα)◦ and P contains Iα ∩ J for each α ∈ S. If P ⊉ J, then

P ⊇ Iα, for all α ∈ S, hence P ⊇
∑
α∈S Iα. But P is a z◦-ideal, so P ⊇ (

∑
α∈S Iα)◦. This implies a ∈ P. Hence

a ∈ (
∑
α∈S(J ∩ Iα))◦.
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Lemma 3.2 implies Theorem 2.2 in [9] (i.e., Z◦Id(R) is a frame). In fact, if J and the family {Iα : α ∈ S} are
z◦-ideals of R, then we have,

J ∧ (
∨
α∈S

Iα) = J ∩ (
∑
α∈S

Iα)◦ = (
∑
α∈S

(J ∩ Iα))◦ =
∨
α∈S

(J ∧ Iα).

It is well-known that Z◦Id(R/H) � ↑H for every radical ideal H, hence Z◦Id(R/N(R)) � Z◦Id(R), because
N(R) is the bottom element of Z◦Id(R). Although this is well-known we provide a direct proof for this result.

Lemma 3.3. For a ring R, the two lattices Z◦Id(R) and Z◦Id(R/N(R)) are isomorphic.

Proof. (1) First we denote join and meet in R/N(R) by ∨′ and ∧′, respectively. It is easy to see that for two
z◦-ideals I1, I2 of R, we have

I1/N(R) ∨′ I2/N(R) = (I1 ∨ I2)/N(R) = (I1 + I2)◦/N(R) and

I1/N(R) ∧′ I2/N(R) = (I1 ∩ I2)/N(R).

These show two operations (∨′,∧′) on the lattice (Z◦Id(R/N(R)),⊆). Next, defineϕ : Z◦Id(R)→ Z◦Id(R/N(R))
by ϕ(I) = I/N(R). By the fact that for two z◦-ideals I1, I2 of R, we have I1 = I2 if and only if I1/N(R) = I2/N(R),
the map ϕ is well-defined and injective from Z◦Id(R) onto Z◦Id(R/N(R)). We also have,

ϕ(I1 ∨ I2) = ϕ((I1 + I2)◦) = (I1 + I2)◦/N(R) = I1/N(R) ∨′ I2/N(R) = ϕ(I1) ∨′ ϕ(I2),

ϕ(I1 ∧ I2) = ϕ(I1 ∩ I2) = (I1 ∩ I2)/N(R) = I1/N(R) ∧′ I2/N(R) = ϕ(I1) ∧′ ϕ(I2).

Thus ϕ is a lattice isomorphism.

The above result tells us that for the investigation of the lattice properties of Z◦Id(R), we can assume R
to be a reduced ring.

Definition 3.4. A ring R is called WSA if for each two ideals I and J of R where I ∩ J = 0, we have

(Ann(I) +Ann(J))◦ = R.

Recall from [7] that a ring R is an SA-ring if the sum of two annihilator ideals is an annihilator ideal.
According to Theorem 4.4 in [7], every reduced SA-ring is WSA. However, we will demonstrate that the
reverse is not necessarily true. To explore this further, we need to introduce the following topological
concept in the sequel.

Definition 3.5. A completely regular space X is called W. Extremally disconnected (briefly, WED-space) if
every two disjoint open sets can be separated by two disjoint Z-zero-sets (i.e., the interior of a zero-set).

Example 3.6. (1) Every extremally disconnected space is a WED-space. This follows from [11, 1H.2],
where it is established that in an extremally disconnected space, any two disjoint open sets are completely
separated, and hence, they are separated by two disjoint Z-zero-sets.

(2) Every perfectly normal space, such as a metric space X, is a WED-space. To see it, consider two
disjoint open sets A and B in X. Let cl A and cl B be the closures of A and B, respectively, which are two
zero-sets in X. We claim that int cl A ∩ int cl B = ∅. Assume, to the contrary, that x ∈ int cl A ∩ int cl B. Then,
there exist open sets U and V in X such that x ∈ U ⊆ cl A and x ∈ V ⊆ cl B. This implies V ∩ A , ∅, which
leads to a contradiction. Therefore, int cl A ∩ int cl B is empty, and A and B are contained in two disjoint
Z-zero-sets.

(3) If we considerRwith usual topology, it serves as an example of a WED-space that is not an extremally
disconnected space, as shown in Part (2).

Theorem 3.7. Let X be a completely regular Hausdorff space. Then X is a WED-space if and only if βX is a
WED-space.
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Proof. ⇒ Assume X is a WED-space. Let U,V be two disjoint open sets in βX. Then U ∩ X ∩ V ∩ X = ∅.
By hypothesis, there exist two disjoint Z-zero-sets intX Z1 and intX Z2 in X such that U ∩ X ⊆ intX Z1 and
V ∩ X ⊆ intX Z2. These imply U ⊆ clβX U = clβX(U ∩ X) ⊆ clβX Z1 and V ⊆ clβX V = clβX(V ∩ X) ⊆ clβX Z2.
Thus U ⊆ intβX clβX Z1 = intβX Zβ1 and V ⊆ intβX clβX Z2 = intβX Zβ2. On the other hand, intX Z1 ∩ intX Z2 = ∅

and X is dense in βX, hence intX Zβ1 ∩ intX Zβ2 = ∅. Therefore, U ⊆ intβX Zβ1 and V ⊆ intβX Zβ2 in βX , proving
the forward direction.
⇐ Assume βX is a WED-space. Let U,V be two disjoint open sets in X. Then there are two open

sets U1,V1 in βX such that U = U1 ∩ X and V = V1 ∩ X. Since U1 and V1 are disjoint in βX (as U,V are
disjoint in X and X is dense in βX), by the hypothesis, there exist two disjoint Z-zero-sets intβX Zβ1 and
intβX Zβ2 in βX such that U1 ⊆ intβX Zβ1 and V1 ⊆ intβX Zβ2. Thus, U = U1 ∩ X ⊆ intβX Zβ1 ∩ X = intX Z1 and
V = V1 ∩ X ⊆ intβX Zβ2 ∩ X = intX Z2. Furthermore,

intX Z1 ∩ intX Z2 = intβX Zβ1 ∩ intβX Zβ2 ∩ X = ∅.

This completes the proof.

The next result shows that C(R) is a WSA-ring which is not an SA-ring.

Theorem 3.8. Let X be a completely regular Hausdorff space. The following statements are equivalent.

(1) C(X) is a WSA-ring.

(1) The space X is a WED-space.

(1) C∗(X) is a WSA-ring.

Proof. (1)⇒ (2) Let A,B be two disjoint open sets in X. As X is a completely regular space, there are two
subsets S,H of C(X) such that

A =
⋃
f∈S

(X \ Z( f )) and B =
⋃
1∈H

(X \ Z(1)).

Consider the two ideals I and J, where I =< S > and J =< H >, respectively. Then A∩B = ∅ implies I∩ J = 0.
Since f ∈ I ∩ J follows X \ Z( f ) ⊆ A ∩ B, i.e., f = 0. By the hypothesis, (Ann(I) + Ann(J))◦ = C(X). This
shows that there exists a non-zero-divisor element f ∈ Ann(I) + Ann(J). Hence there are h ∈ Ann(I) and
k ∈ Ann(J) such that f = h + k and int Z(h) ∩ int Z(k) = ∅. h ∈ Ann(I) and k ∈ Ann(J) imply A ⊆ Z(h) and
B ⊆ Z(k), respectively. So we are done.

(2)⇒ (1) Let I and J be two ideals of C(X) with I ∩ J = 0. Put

A =
⋃
f∈I

(X \ Z( f )) and B =
⋃
1∈J

(X \ Z(1)).

The equality I ∩ J = 0 implies A ∩ B = ∅. By the hypothesis, there are two zero-sets Z( f ),Z(1) ∈ Z[X] such
that

A ⊆ int Z( f ), B ⊆ int Z(1) and int Z( f ) ∩ int Z(1) = ∅.

A ⊆ int Z( f ) implies f ∈ Ann(I) and B ⊆ int Z(1) implies 1 ∈ Ann(J). On the other hand, int Z( f )∩int Z(1) = ∅
implies f 2 + 12 is a non-zero-divisor element in Ann(I) +Ann(J). Therefore (Ann(I) +Ann(J))◦ = C(X).

(3)⇔ (4) As C∗(X) is isomorphic to C(βX), this follows from Theorem 3.7 and (1)⇔(2).

Now we want to characterize the co-normality of the lattice Z◦Id(R) (DId(R)) in the class of reduced
rings.
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Proposition 3.9. Let R be a reduced ring. Then the lattice Z◦Id(R) is co-normal if and only if R is a WSA-ring.

Proof. ⇒ Let I, J be two ideals of R with I ∩ J = 0. Then I◦ ∩ J◦ = (I ∩ J)◦ = 0◦ = 0, since R is a reduced ring.
By the hypothesis, there are two z◦-ideals I1, J1 such that I1 ∨ J1 = R, I◦ ∩ I1 = 0 and J◦ ∩ J1 = 0. The first
equality shows that (I1 + J1)◦ = R and the others show

I1 ⊆ Ann(I◦) ⊆ Ann(I) and J1 ⊆ Ann(J◦) ⊆ Ann(J).

This implies that

(I1 + J1)◦ ⊆ (Ann(I) +Ann(J))◦.

Thus (Ann(I) +Ann(J))◦ = R.
⇐ Consider two z◦-ideals I, J of R with I ∩ J = 0. Then by the hypothesis,

(Ann(I) +Ann(J))◦ = R.

Put I1 = Ann(I) and J1 = Ann(J). Then I1, J1 are two z◦-ideals of R, I∩I1 = 0, J∩J1 = 0 and I1∨J1 = (I1+J1)◦ = R.
This shows Z◦Id(R) is a co-normal lattice.

From Theorem 3.8 and Proposition 3.9, we have the next result.

Corollary 3.10. Let X be a completely regular Hausdorff space. Then Z◦Id(C(X)) is co-normal if and only if X is a
WED-space.

Recall from [12], a ring R satisfies property A if each f.g. ideal of R consisting of zero divisors has a
nonzero annihilator. Noetherian rings, C(X), Zero-dimensional rings (each prime ideal is maximal), the
polynomial ring R[x] and rings whose classical ring of quotients are regular are examples of rings with the
property A.

Proposition 3.11. Let R be a reduced ring with property A. Then R is a WSA-ring if and only if for each pair of
ideals I, J of R, (Ann(I) +Ann(J))◦ = Ann(I ∩ J).

Proof. The necessity is obvious. Now, let R be a WSA-ring and I, J be two ideals of R. Trivially, we have
(Ann(I) +Ann(J))◦ ⊆ Ann(I ∩ J). Let x ∈ Ann(I ∩ J) = Ann(IJ). Then xIJ = 0. This shows that xI ∩ J = 0. By
the hypothesis,

(Ann(xI) +Ann(J))◦ = R.

According to [3, Theorem 1.21], there exists a non-zero-divisor element a + b in Ann(xI) + Ann(J), where
a ∈ Ann(xI) and b ∈ Ann(J). This implies

ax + bx ∈ Ann(I) +Ann(J) ⊆ (Ann(I) +Ann(J))◦.

Since Ann(a + b) = 0, we have Ann(ax + bx) = Ann(x). Thus, x ∈ (Ann(I) +Ann(J))◦. Therefore, the proof is
complete.

4. On the lattice of z-ideals in a commutative ring

Rings in which the sum of two z-ideals is a z-ideal are important (e.g., C(X)). We now turn to character-
izing them. We recall that the set of all basic z-ideals of R is {Ma : a ∈ R}.

Proposition 4.1. The following statements are equivalent.

(1) The sum of two z-ideals in R is a z-ideal.
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(2) For each I, J ⊴ R, (Iz + Jz)z = Iz + Jz.

(3) The lattice ZId(R) is a sublattice of the lattice of ideals of R.

(4) For every two families {Ma : a ∈ S} and {Mb : b ∈ K} of basic z-ideals,

(
∑
a∈S

Ma +
∑
b∈K

Mb)z = (
∑
a∈S

Ma)z + (
∑
b∈K

Mb)z .

Proof. The proof is similar to the proof of Proposition 3.1.

The lattice RId(R) of radical ideals of R, ordered by inclusion, constitutes a coherent frame (refer to [5]).
In this frame, the meet operation corresponds to intersection, and the join operation is defined as the radical
of the sum.

In [13], Ighedo and McGovern provided a characterization of various properties of the lattice of z-ideals
using the tools of frame and locale theory. In this context, we offer direct proofs for some of these properties.
Additionally, we establish results for the lattice RId(R). To support these results, the following lemma is
required.

Lemma 4.2. For a ring R the following statements hold.

(1) For a z-ideal J of R and a set {Iα : α ∈ S} of ideals of R,

J ∩ (
∑
α∈S

Iα)z = (
∑
α∈S

(J ∩ Iα))z.

(2) For a radical ideal J of R and a set {Iα : α ∈ S} of ideals of R,

J ∩
√∑

α∈S

Iα =
√∑

α∈S

(J ∩ Iα).

Proof. (1) We have J ∩ (
∑
α∈S Iα)z is a z-ideal containing

∑
α∈S Iα ∩ J. As (

∑
α∈S(Iα ∩ J))z is the smallest z-ideal

containing
∑
α∈S Iα ∩ J,

(
∑
α∈S

(Iα ∩ J))z ⊆ J ∩ (
∑
α∈S

Iα)z.

We can assume (
∑
α∈S(Iα ∩ J))z is a proper ideal. Since (

∑
α∈S(Iα ∩ J))z is a z-ideal, so it is an intersection of

minimal prime ideals over it, each of which is a z-ideal. Now, let a ∈ (
∑
α∈S Iα)z ∩ J and P be a minimal

prime ideal over (
∑
α∈S(Iα ∩ J)z. Then a ∈ J, a ∈ (

∑
α∈S Iα)z and P contains Iα ∩ J for each α ∈ S. If P ⊉ J, then

P ⊇ Iα, for all α ∈ S, hence P ⊇
∑
α∈S Iα. But P is a z-ideal, so P ⊇ (

∑
α∈S Iα)z. This implies a ∈ P. Hence

a ∈ (
∑
α∈S(J ∩ Iα))z.

(2) The proof is similar to the proof of Part (1).

Lemma 4.2 implies Theorem 3.1 in [13] (i.e., ZId(R) is a frame). In fact, if J and the family {Iα : α ∈ S} are
z-ideals of R, then we have,

J ∧ (
∨
α∈S

Iα) = J ∩ (
∑
α∈S

Iα)z = (
∑
α∈S

(J ∩ Iα))z =
∨
α∈S

(J ∧ Iα).

Similarly, we can apply Part 2 of Lemma 4.2 to show that RId(R) is a frame, see also [5].
It is well-known that ZId(R/H) � ↑H for every radical ideal H, hence

ZId(R/J(R)) � ZId(R).

Because J(R) is the bottom element of ZId(R). Although this is well-known, we provide a direct proof for
this result. Hence, to investigate the lattice properties of ZId(R) (resp., RId(R)), we can consider R to be a
semiprimitive ring.
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Lemma 4.3. For a ring R the following statements hold.

(1) The two lattices ZId(R) and ZId(R/J(R)) are isomorphic.

(2) The two lattices RId(R) and RId(R/N(R)) are isomorphic.

Proof. (1) First we denote join and meet in R/J(R) by ∨′ and ∧′, respectively. It is easy to see that for two
z-ideals I1, I2 of R, we have

I1/J(R) ∨′ I2/J(R) = (I1 ∨ I2)/J(R) = (I1 + I2)z/J(R) and

I1/J(R) ∧′ I2/J(R) = (I1 ∩ I2)/J(R).

These show two operations (∨′,∧′) on the lattice (ZId(R/J(R)),⊆). Next, we define ϕ : ZId(R)→ ZId(R/J(R))
by ϕ(I) = I/J(R). By the fact that for two z-ideals I1, I2 of R, we have I1 = I2 if and only if I1/J(R) = I2/J(R),
the map ϕ is well-defined and injective from ZId(R) onto ZId(R/J(R)). We also have,

ϕ(I1 ∨ I2) = ϕ((I1 + I2)z) = (I1 + I2)z/J(R) = I1/J(R) ∨′ I2/J(R) = ϕ(I1) ∨′ ϕ(I2),

ϕ(I1 ∧ I2) = ϕ(I1 ∩ I2) = (I1 ∩ I2)/J(R) = I1/J(R) ∧′ I2/J(R) = ϕ(I1) ∧′ ϕ(I2).

Thus ϕ is a lattice isomorphism.
(2) Similar to the proof of (1), for two radical ideals I1, I2 of R, we have

I1/N(R) ∨′ I2/N(R) = (I1 ∨ I2)/N(R) =
√

(I1 + I2)/N(R) and

I1/N(R) ∧′ I2/N(R) = (I1 ∩ I2)/N(R).

These show two operations (∨′,∧′) on the lattice (RId(R/N(R)),⊆). Now, define ψ : RId(R) → RId(R/N(R))
by ψ(I) = I/N(R). We can see that I is a radical ideal of R if and only if I/N(R) is a radical ideal of R/N(R).
It also is easy to see that for two radical ideals I1, I2 of R, we have I1 = I2 if and only if I1/N(R) = I2/N(R).
Thus ψ is injective and surjective from RId(R) onto RId(R/N(R)). We also have,

ψ(I1 ∨ I2) = ψ(
√

I1 + I2) =
√

I1 + I2/N(R) = I1/N(R) ∨′ I2/N(R) = ψ(I1) ∨′ ϕ(I2),

ψ(I1 ∧ I2) = ψ(I1 ∩ I2) = (I1 ∩ I2)/N(R) = I1/N(R) ∧′ I2/N(R) = ψ(I1) ∧′ ψ(I2).

Thus ψ is a lattice isomorphism.

We now come to the characterization of the co-normality of the lattice ZId(R) (resp., RId(R)). Whenever
R is a reduced ring, it is proved in [7, Corollary 4.5] that R is an SA-ring if and only if R is a Baer ring.
We remind the reader that a lattice < L,∧,∨, 0, 1 > is co-normal whenever it is distributive and for all a, b ∈ L
with a ∧ b = 0 there exist x, y ∈ L such that x ∨ y = 1 and a ∧ x = b ∧ y = 0.

Theorem 4.4. For a semiprimitive ring R the following statements are equivalent.

(1) The lattice ZId(R) is a co-normal lattice.

(2) R is an SA-ring.

(3) The lattice RId(R) is a co-normal lattice.

Proof. (1)⇒ (2) Let I and J be two annihilator ideals of R and I ∩ J = 0. Notably, since R is a semiprimitive
ring, I and J are two z-ideals of R. This can be shown as follows:

I = Ann(Ann(I)) =
⋂

M∈Max (R) Ann(I)⊈M

M.
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This establishes that I is a z-ideal. Similarly, J is a z-ideal. According to the hypothesis, there exist z-ideals I1
and J1 in R with (I1 + J1)z = I1 ∨ J1 = R and I∩ I1 = 0 and J ∩ J1 = 0. The first equality implies I1 + J1 = R and
the other conditions imply I1 ⊆ Ann(I) and J1 ⊆ Ann(J), respectively. Hence Ann(I) +Ann(J) = R. Now, by
Corollary 4.9 in [7], R is an SA-ring.

(2)⇒ (3) Let I and J be two radical ideals with I ∩ J = 0. According to the hypothesis and Theorem 2.14
in [1], Ann(I)+Ann(J) = Ann(I ∩ J) = R. Set I1 = Ann(I) and J1 = Ann(J). Since R is a semiprimitive ring, I1

and J1 are two radical ideals, I ∩ I1 = 0, J ∩ J1 = 0 and I1 ∨ J1 =
√

Ann(I) +Ann(J) = R. Therefore, RId(R) is
a co-normal lattice.

(3)⇒ (1) Assume that I and J are two z-ideals and I ∩ J = 0. As I, J are two radical ideals, there are two
radical ideals I1 and J1 with I1 + J1 = R, I ∩ I1 = 0 and J ∩ J1 = 0, by the hypothesis. Thus (I1)z + (J1)z = R,
I ∩ (I1)z = (I ∩ I1)z = 0z = 0 and J ∩ (J1)z = (J ∩ J1)z = 0z = 0. So we are done.

It is well known fact, as established by [2, Theorem 3.5] and [23, Theorem 3.12], that C(X) is a Baer
ring if and only if X is an extremally disconnected space (i.e., the closure of every open set is open). This,
combined with Theorem 3.4, leads to the following result.

Corollary 4.5. The following statements are equivalent.

(1) The lattice ZId(C(X)) is a co-normal lattice.

(2) The space X is extremally disconnected.

(3) The lattice RId(C(X)) is a co-normal lattice.

Lemma 4.6. Let R,S be two rings and ϕ : R→ S be a ring isomorphism. The following statements hold.

(1) If a ∈ R, then ϕ(Ma) =Mϕ(a).

(2) If I is a z-ideal of R, then ϕ(I) is a z-ideal of S.

(3) If J is a z-ideal of S, then ϕ−1(J) is a z-ideal of R.

(4) If I is an ideal of R, then ϕ(Iz) = (ϕ(I))z.

Proof. (1) Let ϕ(x) ∈ ϕ(Ma), where x ∈ Ma. Consider a maximal ideal M in S, where ϕ(a) ∈ M. Then
a ∈ ϕ−1(M). Since ϕ−1(M) is a maximal ideal in R, x ∈ ϕ−1(M), i.e., ϕ(x) ∈ M. This shows ϕ(Ma) ⊆ Mϕ(a). To
show other inclusion, let y = ϕ(x) ∈ Mϕ(a). We must show that x ∈ Ma. Assume that M is a maximal ideal
in R containing a. Then ϕ(a) ∈ ϕ(M) and ϕ(M) is a maximal ideal in S. Hence ϕ(x) ∈ ϕ(M). This implies
x ∈ ϕ−1(ϕ(M) =M. Thus x ∈Ma.

(2) Let ϕ(a) ∈ ϕ(I), where a ∈ I. By the hypothesis, Ma ⊆ I. By Part (1), Mϕ(a) = ϕ(Ma) ⊆ ϕ(I).
(3) Suppose that x ∈ ϕ−1(J). Then ϕ(x) ∈ J. Thus ϕ(Mx) =Mϕ(x) ⊆ J. This implies Mx ⊆ ϕ−1(J).
(4) By Part (1) and the fact that ϕ is a ring isomorphism,

ϕ(Iz) = ϕ(
∑
x∈I

Mx) =
∑
x∈I

ϕ(Mx) =
∑

ϕ(x)∈ϕ(I)

Mϕ(x) = (ϕ(I))z.

The following result immediately follows from Proposition 6.3 of [13], since their functor ZId clearly
sends a ring isomorphism to an isomorphism in the category CohFrm. However, we provide a direct proof.

Theorem 4.7. Let R and S be two isomorphic rings. Then the two lattices ZId(R) and ZId(S) are isomorphic.
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Proof. Let ϕ : R→ S be a ring isomorphism. Define

φ : ZId(R)→ ZId(S), by φ(I) = ϕ(I) where I ∈ ZId(R).

By Lemma 4.6, φ is a well-defined and injective map. Now, let J ∈ ZId(S). Then ϕ−1(J) ∈ ZId(R), by Lemma
4.6. We have φ(ϕ−1(J)) = J. Demonstrating that φ is a surjective map. Consider two ideals I, J ∈ ZId(R).
Then we have the following equalities:

φ(I ∨ J) = φ((I + J)z) = ϕ((I + J)z) = (ϕ(I + J))z, by Lemma 4.6

= (ϕ(I) + ϕ(J))z = ϕ(I) ∨ ϕ(J) = φ(I) ∨ φ(J).

φ(I ∧ J) = φ(I ∩ J) = ϕ(I ∩ J) = ϕ(I) ∩ ϕ(J) = φ(I) ∧ φ(J).

So φ is a lattice isomorphism.

It is easy to see that if R is a semiprimitive ring, then

Id(R) = {Re : e is an idempotent of R}

partially ordered by inclusion is a lattice and for two idempotents e and f of R, we have eR∨′ f R = (e+ f−e f )R
and eR ∧′ f R = e f R.

Proposition 4.8. For a semiprimitive ring R the following statements are equivalent.

(1) The lattice ZId(R) is a Boolean algebra.

(2) Two lattices < ZId(R),∨,∧ > and < Id(R),∨′,∧′ > coincide.

(3) Every maximal ideal of R is generated by an idempotent.

(4) R is a semisimple ring.

Proof. (1)⇒ (2) Initially, we demonstrate that two sets ZId(R) and Id(R) are equal. By the hypothesis, each
element of Id(R) is a z-ideal. Let I be a z-ideal. By Part (1), there is a z-ideal J such that I∩ J = 0 and I+ J = R.
Thus I = eR for some idempotent e of R. Therefore the two sets coincide. Now, let I and J be two z-ideals of
R. Then I = eR and J = f R for some idempotents e, f ∈ R. Thus I ∨′ J = (e + f − e f )R. It is easy to see that
(e + f − e f )R is the smallest z-ideal containing eR + f R. Hence

I ∨′ J = (I + J)z = I ∨ J.

We also have

I ∧′ J = eR ∧′ f R = e f R = eR ∩ f R = I ∩ J = I ∧ J.

Suppose that eR and f R are two elements of Id(R). Hence

eR ∨ f R = (eR + f R)z = (e + f − e f )R = eR ∨′ f R.

And

eR ∧ f R = eR ∩ f R = e f R = eR ∧′ f R.

Thus, we have shown that they are equal as two lattices.
(2)⇒(3) Trivial.
(3) ⇒ (4) By Theorem in [15], R is a finite direct sum of simple rings. Since R is commutative, every

simple ring is a field, implying R is a finite direct sum of fields, i.e., R is a semisimple ring.
(4)⇒ (1) By the hypothesis, there exist finitely number fields F1,F2, ...,Fn such that R is isomorphic to

F1 × F2 × ...× Fn. Theorem 4.7 implies two lattices ZId(R) and ZId(F1 × F2 × ...× Fn) are isomorphic. Trivially,
every ideal of F1 × F2 × ... × Fn is a z-ideal. On the othe hand, it is easy to calculate that every ideal of
F1 × F2 × ... × Fn has a complement. Thus, ZId(R) is a Boolean algebra.
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We apply Theorem 4.7 for the ring of continuous function in the next result.

Corollary 4.9. Let X,Y be two completely regular Hausdorff spaces.

(1) If X and Y are two homeomorphic spaces, then ZId(C(X)) and ZId(C(Y)) are two isomorphic lattices.

(2) The two lattices ZId(C(X)) and ZId(C(υX)) are isomorphic.

(3) The two lattices ZId(C∗(X)) and ZId(C(βX)) are isomorphic.

Proof. (1) If X and Y are two homeomorphic spaces, then C(X) and C(Y) are isomorphic rings and hence
ZId(C(X)) and ZId(C(Y)) are two isomorphic lattices, by Theorem 4.7.

(2) Since C(X) and C(υX) are two isomorphic rings, it follows from Theorem 4.7.
(3) The two rings C∗(X) and C(βX) are isomorphic, so ZId(C∗(X)) and ZId(C(βX)) are two isomorphic

lattices, by Theorem4.7.
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