
Filomat 38:22 (2024), 7831–7845
https://doi.org/10.2298/FIL2422831P

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. The purpose of this paper is to study Hom-algebroids, among them left symmetric Hom-
algebroids and symplectic Hom-algebroids by providing some characterizations and geometric interpre-
tations. Therefore, we introduce and study para-Kähler Hom-Lie algebroids and show various properties
and examples including these structures.

Introduction

Symplectic geometry is the mathematical device to express classical mechanics, geometrical optics,
and thermodynamics problems. One gets a symplectic geometry by extracting the equation from the
variational principle. Hamiltonian dynamics equations get more straightforward with symplectic geometry,
as the ordinary geometry of linear spaces decreases the complexity of computations. This geometry has
applications to the theory of elementary particles, oceanographic and atmospheric sciences, condensed
matter, accelerator and plasma physics and other disciplines at the classical and quantum levels [1].

Hom-type algebras were motivated by σ-deformations of some algebras of vector fields like Witt and
Virasoro algebras. The first instances appeared in papers by physicists, where it was noticed that the
obtained structures satisfy modified Jacobi condition. The main feature of Hom-type algebras is that usual
identities are twisted by a structure map (a homomorphism).

Hom-Lie algebroids were first studied by Laurent-Gengoux and Teles in [7], they mainly showed a
one-to-one correspondence with Hom-Gerstenhaber algebras. Then Cai, Liu and Sheng, in [4], changed
slightly the definition and introduced various related structures. They showed that there is a natural
Hom-Lie algebroid structure on the pullback bundle of a Lie algebroid with respect to a diffeomorphism
φ : M→M. Moreover they introduced the notion of Hom-Poisson tensor on C∞(M) and showed that there
is a Hom-Lie algebroid structure on φ!T∗M associated to Hom-Poisson structure, providing an interesting
geometric interpretation. They also consider dual structures and discuss Hom-Lie bialgebroids. See also
[9, 10] for more recent results. In [13], Mandal and Kumar Mishra studied adjoint functors between the
category of Hom-Gerstenhaber algebras and the category of Hom-Lie-Rinehart algebras, some geometric
applications and cohomology.
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The aim of this paper is to make some geometric developments of these structures. We recall in Section 1
basic definitions. In Section 2, we introduce Hom-algebroids and left symmetric Hom-algebroids. Also, we
deal with symplectic Hom-algebroids and show that there exists a Hom-connection, called left symmetric
connections, which induces a left symmetric Hom-algebroid structure. Moreover we describe Hom-Levi-
Cevita connections for which we provide some properties. The last section includes the main results of
this paper. First, we introduce and provide examples of almost product, para-complex and para-Hermitian
structures on Hom-Lie algebroids. Then consider para-Kähler Hom-Lie algebroids, discuss their properties
and relationships with various structures.

1. Preliminaries

A Hom-algebra (V, ·, ϕV) consists of a linear space V, a bilinear map · : V × V → V and an algebra
morphism ϕV : V → V. Also a Hom-Lie algebra is a triple (g, [·, ·]g, ϕg) consisting of a linear space g, a
bilinear map [·, ·]g : g × g→ g and an algebra morphism ϕg : g→ g such that

[u, v]g = −[v,u]g, ⟲u,v,w [ϕg(u), [v,w]] = 0,

for any u, v,w ∈ g. This algebra is called regular if ϕg is non-degenerate.
A representation of a Hom-Lie algebra (g, [·, ·]g, αg) is a triple (V,A, ρ) where V is a vector space, A ∈ 1l(V)

and ρ : g→ 1l(V) is a linear map such that for any u, v ∈ g, satisfying{
ρ(αg(u)) ◦ A = A ◦ ρ(u),
ρ([u, v]g) ◦ A = ρ(αg(u)) ◦ ρ(v) − ρ(αg(v)) ◦ ρ(u).

Let A → M be a vector bundle of rank n. Denote by Γ(A) the C∞(M)-module of sections of A → M. A
Hom-bundle is a triple (A→ M, φ, ϕA) consisting of a vector bundle A→ M, a smooth map φ : M→ M and
a linear map ϕA : Γ(A)→ Γ(A) satisfying

ϕA( f X) = φ∗( f )ϕA(X),

for any X ∈ Γ(A) and f ∈ C∞(M) (in this case, ϕA is called a linear φ∗-function). If φ is a diffeomorphism
and ϕA is an invertible map, then the Hom-bundle (A → M, φ, ϕA) is called invertible. Considering φ!TM
as a pullback bundle of φ over M and Adφ∗ : Γ(φ!TM)→ Γ(φ!TM) given by

Adφ∗ (X) = φ∗ ◦ X ◦ (φ∗)−1,

for any X ∈ Γ(φ!TM), then the triple (Γ(φ!TM), φ,Adφ∗ ) is an example of Hom-bundles. Note that Γ(φ!TM)
can be identified with Derφ∗,φ∗ (C∞(M)), i.e.

X( f1) = X( f )φ∗(1) + φ∗( f )X(1), ∀X ∈ Γ(φ!TM),∀ f , 1 ∈ C∞(M).

As the linear map ϕA : Γ(A) → Γ(A) can be extended to a linear map from Γ(∧kA) to Γ(∧kA) for which we
use the same notation ϕA, i.e., ϕA(X) = ϕA(X1)∧ . . .∧ ϕA(Xk), for all X = X1 ∧ . . .∧Xk ∈ Γ(∧kA). Let A be an
invertible Hom-bundle. We denote the inverses of φ and ϕA by φ−1 and ϕ−1

A , respectively. In this case, it is
easy to see that (A→M, φ−1, ϕ−1

A ) is a Hom-bundle. Taking ϕ†A : Γ(∧kA∗)→ Γ(∧kA∗) defined by

(ϕ†A(ξ))(X) = φ∗ξ(ϕ−1
A (X)), ∀X ∈ Γ(∧kA), ξ ∈ Γ(∧kA∗),

we get the hom-bundle (∧kA∗ →M, φ, ϕ†A) [4].
A bundle map ρ : A → B between two Hom-bundles (A → M, φ, ϕA) and (B → M, φ, ϕB) is called a

Hom-bundles morphism if the following condition holds

ρ ◦ ϕA =ϕB ◦ ρ.
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Example 1.1. [18] Let (E → M, φ, ϕE) be an invertible Hom-bundle. The zero-order and first-order differential
operators on E are defined, respectively by

End(E) = {D : Γ(E)→ Γ(E)|D( f X) = φ∗( f )D(X), ∀X ∈ Γ(E),∀ f ∈ C∞(M)},

and

Di f f 1(E) = {D : Γ(E)→ Γ(E)|[D, f ] ∈ End(E), ∀ f ∈ C∞(M)},

where
[D, f ](X) = D( fϕ−1

E (X)) − φ∗( f )D(ϕ−1
E X).

It is known that (Di f f 1(E), φ,AdϕE ) is a Hom-bundle, where AdϕE (D) = ϕE ◦ D ◦ ϕE
−1, for all D ∈ Di f f 1(E).

Considering D(E) = σ−1(F (φ!TM)), where σ : Di f f 1(E) → HomC∞(M)((φ!TM)∗,End(E)) is a vector bundles
morphism defined by

σ(D)( f d1)(X) = φ∗( f )[D, 1]ϕE(X), ∀D ∈ Di f f 1(E), ∀X ∈ Γ(φ!TM),

and F : φ!TM→ HomC∞(M)((φ!TM)∗,End(E)) given by

FX(ω)(Y) = ω(X)ϕE(Y), ∀ω ∈ Γ(φ!T∗M), ∀Y ∈ Γ(E),

(D(E), φ,AdϕE ) is a Hom-bundle.

Definition 1.2. [4] A Hom-Lie algebroid is a tuple (A, φ, ϕA, [·, ·]A, aA) such that (A→M, φ, ϕA) is a Hom-bundle,
(Γ(A), [·, ·]A, ϕA) is a Hom-Lie algebra on the space of section Γ(A), aA : A→ φ!TM is a bundle map called the anchor
map and if moreover, we have

[X, f Y]A = φ
∗( f )[X,Y]A + aA(ϕA(X))( f )ϕA(Y), ∀X,Y ∈ Γ(A), ∀ f ∈ C∞(M),

where aA : Γ(A)→ Γ(φ!TM) is the representation of Hom-Lie algebra (Γ(A), [·, ·]A, ϕA) on C∞(M) with respect to φ∗

induced by the anchor map.

Example 1.3. [4] Let M be a smooth manifold and φ : M→M be a diffeomorphism. (φ!TM, φ,Adφ∗ , [·, ·]φ∗ , Id) is a
Hom-Lie algebroid, where [·, ·]φ∗ is given by

[X,Y]φ∗ = φ∗ ◦ X ◦ (φ∗)−1
◦ Y ◦ (φ∗)−1

− φ∗ ◦ Y ◦ (φ∗)−1
◦ X ◦ (φ∗)−1,

for any X,Y ∈ Γ(φ!TM).

Example 1.4. [18] Considr the Hom-bundle (D(E), φ,AdϕE ) introduced in Example 1.1. Setting a
D(E) = σ|D(E) , for

every D ∈ D(E) there exists X = a
D(E) (D) ∈ Γ(φ!TM) such that

D( f Y) = φ∗( f )D(Y) + a
D(E) (D)( f )ϕE(Y), ∀ f ∈ C∞(M),Y ∈ Γ(E). (1)

Then (Γ(D(E)),AdϕE , [·, ·]D(E) ) is a Hom-Lie algebra where

[D1,D2]
D(E) = ϕE ◦D1 ◦ ϕ

−1
E ◦D2 ◦ ϕ

−1
E − ϕE ◦D2 ◦ ϕ

−1
E ◦D1 ◦ ϕ

−1
E , (2)

for any D1,D2 ∈ D(E). In addition, (D(E), φ,AdϕE , [·, ·]D(E) , aD(E) = σ) forms a Hom-Lie algebroid.

A subspace B ⊂ A is a Hom-Lie subalgebroid of (A, φ, ϕA, [·, ·]A, aA) if ϕA(B) ⊂ B and

[X,Y]A ∈ Γ(B), ∀X,Y ∈ Γ(B).
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In the sequel, we always assume that the Hom-bundle (A → M, φ, ϕA) is invertible. The operator dA :
Γ(∧qA∗)→ Γ(∧q+1A∗) defined by

dA f (X) = aA(X) f ,

dAω(X1, . . . ,Xq+1) =
q+1∑
i=1

(−1)i+1aA(Xi)ω(ϕ−1
A (X1), . . . , ̂ϕ−1

A (Xi), . . . , ϕ−1
A (Xq+1))

+
∑
i< j

(−1)i+ jϕ†A(ω)([ϕ−1
A (Xi), ϕ−1

A (X j)]A,X1, . . . , X̂i, . . . , X̂ j, . . . ,Xq+1),

for any X,X1, · · · ,Xq+1 ∈ Γ(A), is called the exterior differentiation operator for the exterior differential algebra of
the Hom-Lie algebroid (A, φ, ϕA, [·, ·]A, aA). Let p, q > 0. The operator

Γ(∧pA) × Γ(∧qA)
[·,·]A

−−−−−−−−→ Γ(∧p+q−1A) ,

given by

[X1 ∧ . . . ∧ Xp,Y1 ∧ . . . ∧ Yq]A =(−1)p+1
p∑

i=1

q∑
j=1

(−1)i+ j[Xi,Y j]A ∧ ϕA(X1) ∧ . . .∧

∧ ϕ̂A(Xi) ∧ . . . ∧ ϕA(Xp) ∧ ϕA(Y1) ∧ . . . ∧ ϕ̂A(Y j) ∧ . . . ∧ ϕA(Yq), (3)

is called Hom-Schouten bracket. The Hom-Schouten bracket satisfies the following conditions

1. [X,Y]A = −(−1)(p−1)(q−1)[Y,X]A,

2. [X,Y ∧ Z]A = [X,Y]A ∧ ϕA(Z) + (−1)(p−1)qϕA(Y) ∧ [X,Z]A,

where X ∈ Γ(∧pA),Y ∈ Γ(∧qA) and Z ∈ Γ(∧rA). For any X ∈ Γ(A), the operator

LX : Γ(∧pA)→ Γ(∧pA),

given by LX(Y) = [X,Y]A is called the Lie derivative. Let X ∈ L(A). The operator LX : Γ(∧A∗) → Γ(∧A∗)
defined by

LX( f ) = aA(ϕA(X))( f ),

LXω(X1, · · · ,Xq) = aA(ϕA(X))ω(ϕ−1
A (X1), · · · , ϕ−1

A (Xq)) −
q∑

i=1

ϕ†A(ω)(X1, · · · , [X, ϕ−1
A (Xi)]A, · · · ,Xq),

for any f ∈ C∞(M), ω ∈ Γ(∧qA∗) and X1, · · · ,Xq ∈ Γ(A), is called the covariant Lie derivative with respect to the
element X.

Let (A, φ, ϕA, [·, ·]A, aA) be a finite-dimensional Hom-Lie algebroid and ⟨·, ·⟩ be a bilinear symmetric non-
degenerate form on A. We say that A admits a pseudo-Riemannian metric ⟨·, ·⟩ if the following equation is
satisfied

⟨ϕA(X), ϕA(Y)⟩ = φ∗⟨X,Y⟩, ∀X,Y ∈ Γ(A). (4)

In this case (A, φ, ϕA, [·, ·]A, aA, ⟨·, ·⟩) is called a pseudo-Riemannian Hom-Lie algebroid.
Assume that (A, φ, ϕA, [·, ·]A, aA) is a Hom-Lie algebroid. An A-connection on a Hom-bundle (E →

M, φ, ϕE) is an operator

∇ : Γ(A) × Γ(E)→ Γ(E),

satisfying:
i) ∇X+YZ = ∇XZ + ∇YZ, iii) ∇X(Z′ + Z) = ∇XZ′ + ∇XZ,
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ii) ∇ f XZ = φ∗( f )∇XZ, iv) ∇X( f Z) = φ∗( f )∇XZ + aA(ϕA(X))( f )ϕE(Z),
for any f ∈ C∞(M),X,Y ∈ Γ(A),Z′,Z ∈ Γ(E). The map

Γ(A) × Γ(A) T
−→ Γ(A)

(X,Y) −→ T(X,Y)
,

defined by

T(X,Y) = ∇XY − ∇YX − [X,Y]A ,

for any X,Y ∈ Γ(A), is called the torsion associated to the A-connection ∇. If T = 0, then ∇ is said to be
torsion-free. It is known that if ϕA is an isomorphism, then there exists a unique A-connection ∇ on the
Hom-bundle (A→M, φ, ϕA) such that:

[X,Y]A =∇XY − ∇YX, (5)
aA(ϕA(X))⟨Y,Z⟩ =⟨∇XY, ϕA(Z)⟩ + ⟨ϕA(Y),∇XZ⟩, (6)

for any X,Y,Z ∈ Γ(A). This connection is called the Hom-Levi-Civita connection [18], which is given by
Koszul’s formula

2⟨∇XY, ϕA(Z)⟩ =aA(ϕA(X))⟨Y,Z⟩ + aA(ϕA(Y))⟨Z,X⟩ − aA(ϕA(Z))⟨X,Y⟩ (7)
+ ⟨[X,Y]A, ϕA(Z)⟩ + ⟨[Z,X]A, ϕA(Y)⟩ + ⟨[Z,Y]A, ϕA(X)⟩.

Let π ∈ Γ(∧2φ!TM) be bisection on a manifold M. If [π, π]φ!TM = 0 and Adφ∗ (π) = π, the bisection π is called
Hom-Poisson tensor. A manifold M equipped with a Hom-Poisson tensor π is said to be a Hom-Poisson
manifold, which denotes by (M, φ, π) [4].

Theorem 1.5. [4] Let (M, φ, π) be a Hom-Poisson manifold. Then (φ!TM, φ,Adφ∗ , [·, ·]
π♯
, π♯) is a Hom-Lie algebroid,

where [·, ·]
π♯

and the bundle map π♯ : φ!T∗M→ φ!TM are given by

[α, β]
π♯
= Lπ♯(α)β − Lπ♯(β)ω − dA(π

(
α, β
)
),

π♯(α)(β) = π(α, β),

for any α, β ∈ Γ(φ!T∗M).

Example 1.6. Consider a Hom-Poisson manifold (M, φ, π), we set E := φ!TM⊕φ!T∗M, where (φ!TM, φ,Adφ∗ ) and
(φ!T∗M, φ,Ad†φ∗ ) are Hom-bundles. We define the bracket and linear map Φ on E as

[(X, α), (Y, β)] = ([X,Y]φ∗ , [α, β]π♯ ),

Φ(X, α) = (Adφ∗ (X),Ad†φ∗ (α)),

where

[X,Y]φ∗ = φ∗ ◦ X ◦ (φ∗)−1
◦ Y ◦ (φ∗)−1

− φ∗ ◦ Y ◦ (φ∗)−1
◦ X ◦ (φ∗)−1,

[α, β]π♯ = Lπ♯(α)β − Lπ♯(β)ω − dA(π
(
α, β
)
),

for any X,Y ∈ Γ(φ!TM) and α, β ∈ Γ(φ!T∗M). Easily we see that

Φ[(X, α), (Y, β)] = [Φ(X, α),Φ(Y, β],
[Φ(X, α), [(Y, β), (z, γ)]] + c.p. = 0,
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where c.p. means the cyclic permutations of (X, α), (Y, β) and (z, γ). Thus (E, [·, ·],Φ) is a Hom-Lie algebra. Let
aE : E→ φ!TM be the bundle map defined by

aE(X, α) = (X, π♯(α)).

Then (E, φ,Φ, [·, ·], aE) is a Hom-Lie algebroid. If the metric ⟨·, ·⟩ is determined as

⟨(X, α), (Y, β)⟩ = α(Y) + β(X),

then we have

⟨Φ(X, α),Φ(Y, β)⟩ = φ∗(α(Y)) + φ∗(β(X)).

Hence (E, φ,Φ, [·, ·], aE, ⟨·, ·⟩) is a pseudo-Riemannian Hom-Lie algebroid.

Definition 1.7. Let (A, φ, ϕA, [·, ·]A, aA) be a Hom-Lie algebroid. We define the curvature tensor R of A as

R(X,Y) = ∇ϕA(X)∇Y − ∇ϕA(Y)∇X − ∇[X,Y]AϕA, (8)

where [X,Y]A = ∇XY − ∇YX, for any X,Y ∈ Γ(A). Moreover, A is called a flat Hom-Lie algebroid if R = 0.

Proposition 1.8. In a Hom-Lie algebroid (A, φ, ϕA, [·, ·]A, aA), we have

R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0,

for any X,Y,Z ∈ Γ(A). This equation is called Hom-Bianchi first identity.

Proof. If we consider X,Y,Z ∈ Γ(A), then we have

0 = [ϕA(X), [Y,Z]A]A + [ϕA(Y), [Z,X]A]A + [ϕA(Z), [X,Y]A]A,

which gives

0 =∇ϕA(X)[Y,Z]A − ∇[Y,Z]AϕA(X) + ∇ϕA(Y)[Z,X]A − ∇[Z,X]AϕA(Y) + ∇ϕA(Z)[X,Y]A − ∇[X,Y]AϕA(Z)
=∇ϕA(X)∇YZ − ∇ϕA(X)∇ZY − ∇[Y,Z]AϕA(X) + ∇ϕA(Y)∇ZX − ∇ϕA(Y)∇XZ − ∇[Z,X]AϕA(Y)
+ ∇ϕA(Z)∇XY − ∇ϕA(Z)∇YX − ∇[X,Y]AϕA(Z) = R(X,Y)Z + R(Y,Z)X + R(Z,X)Y.

2. Hom-algebroids and left symmetric structures of Hom-algebroids

In this section, we introduce Hom-algebroids and left symmetric Hom-algebroids. Also, we deal
with symplectic Hom-Lie algebroids and show that one may associate natural connections defined by the
symplectic structure and that lead to left symmetric Hom-algebroids. They are called Hom-left symmetric
connections.

Definition 2.1. A Hom-algebroid structure on a Hom-bundle (A→M, φ, ϕA) is a pair consisting of a Hom-algebra
structure (Γ(A), ·A, ϕA) on the space of sections Γ(A) and a bundle morphism aA : A→ φ!TM, called the anchor, such
that the following conditions are satisfied

X ·A ( f Y) = φ∗( f )(X ·A Y) + aA(ϕA(X))( f )ϕA(Y),
( f X) ·A Y = φ∗( f )(X ·A Y),
φ∗ ◦ aA(X) = aA(ϕA(X)) ◦ φ∗,

(9)

for any X,Y ∈ Γ(A) and f ∈ C∞(M). We denote a Hom-algebroid by (A, φ, ϕA, ·A, aA).
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Definition 2.2. A Hom-algebroid (A, φ, ϕA, ·A, aA) is called left symmetric if

assϕA (X,Y,Z) = assϕA (Y,X,Z),

where

assϕA (X,Y,Z) = (X ·A Y) ·A ϕA(Z) − ϕA(X) ·A (Y ·A Z),

for any X,Y,Z ∈ Γ(A). In this case, the product ·A is called a Hom-left symmetric product on the Hom-bundle
(A→M, φ, ϕA).

Example 2.3. A left symmetric Hom-algebroid over a one-point set with the zero anchor, is a Hom-left-symmetric
algebra [15].

Definition 2.4. A symplectic Hom-Lie algebroid is a Hom-Lie algebroid (A, φ, ϕA, [·, ·]A, aA) endowed with a bilinear
skew-symmetric non-degenerate form ω which is a 2-Hom-cocycle, i.e.

ϕ†Aω = ω, dAω = 0. (10)

In this case, ω is called symplectic structure on A and (A, ω) is called a symplectic Hom-Lie algebroid.

The conditions (10) are equivalent to

aA(ϕA(X))ω(Y,Z) − aA(ϕA(Y))ω(X,Z) + aA(ϕA(Z))ω(X,Y) (11)
− ω([X,Y]A, ϕA(Z)) + ω([X,Z]A, ϕA(Y)) − ω([Y,Z]A, ϕA(X)) = 0, ∀X,Y,Z ∈ Γ(A).

Definition 2.5. A representation of a Hom-Lie algebroid (A, φ, ϕA, [·, ·]A, aA) on a Hom-bundle (E, φ, ϕE) (shortly
E) with respect to a linear φ∗-function map µ : Γ(E) → Γ(E) is a Hom-bundle map ρ : A → D(E) such that for all
X,Y ∈ Γ(A), the following equalities are satisfied

a
D(E) ◦ ρ = aA ◦ ϕA,
ρ(ϕA(X)) ◦ µ = µ ◦ ρ(X),
ρ([X,Y]A) ◦ µ = ρ(ϕA(X)) ◦ ρ(Y) − ρ(ϕA(Y)) ◦ ρ(X).

(12)

We denote a representation of A by (E;µ, ρ) [17].

Let (E∗, φ, ϕ†E) be the dual Hom-bundle of the Hom-bundle (E, φ, ϕE), then the dual map of ρ is the map
ρ̃ : A→ D(E∗) given by

≺ ρ̃(X)(ξ),Y ≻= aA(ϕA(X))(≺ ξ, µ−1(Y) ≻) − φ∗ ≺ ξ, ρ(ϕ−1
A (X))(µ−2(Y)) ≻, (13)

for any X ∈ Γ(A),Y ∈ Γ(E) and ξ ∈ Γ(E∗), we denote (ρ(X)(ξ))(Y) by ≺ ρ̃(X)(ξ),Y ≻. Moreover, it is easy to
see that ρ̃ is a representation of (A, φ, ϕA, [·, ·]A, aA) on the Hom-bundle (E∗, φ, ϕ†E) with respect to µ†.

Corollary 2.6. If L = ρ̃, then (A;ϕA,L) and (A∗;ϕ†A, L̃) are representations of A, where L and L̃ are Lie derivative
and covariant Lie derivative of A, respectively.

Theorem 2.7. Let (A, ω) be a symplectic Hom-Lie algebroid. Then the map ∇a : Γ(A) × Γ(A)→ Γ(A) given by

ω(∇a
XY, ϕA(Z)) = aA(ϕA(X))ω(Y,Z) − ω(ϕA(Y), [X,Z]A) − ω(ϕA(Y),∇ZX), (14)
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is an A-connection and satisfies

i) ω(∇a
XY − ∇a

YX − [X,Y]A, ϕA(Z)) = −(∇Zω)(X,Y),

ii) ω(∇a
ϕA(X)∇

a
YZ − ∇a

ϕA(Y)∇
a
XZ − ∇a

∇
a
XYϕA(Z) + ∇a

∇
a
YXϕA(Z), ϕ2

A(W))

= aA(ϕ2
A(X))aA(ϕA(Y))ω(Z,W) + ω(ϕ2

A(Z),∇[X,W]AϕA(Y)) + ω(ϕ2
A(Z),∇ϕA(Y)∇WY)

− aA(ϕ2
A(Y))aA(ϕA(X))ω(Z,W) − ω(ϕ2

A(Z),∇[Y,W]AϕA(X)) − ω(ϕ2
A(Z),∇ϕA(X)∇WX)

− aA(ϕ2
A(W))(∇Zω)(X,Y) + ω(ϕ2

A(Z),∇∇a
XY−∇a

YX−[X,Y]AϕA(W)) + (∇∇a
WZω)(ϕA(X), ϕA(Y))

− aA(ϕA(∇a
XY))ω(ϕA(Z), ϕA(W)) + ω(ϕ2

A(Z),∇ϕA(W)∇
a
XY) + aA(ϕA(∇a

YX))ω(ϕA(Z), ϕA(W))

− ω(ϕ2
A(Z),∇ϕA(W)∇

a
YX),

where ∇ is an torsion-free connection on A, for any X,Y,Z ∈ Γ(A).

Proof. It is easy to check that

ω(∇a
f XY, ϕA(Z)) =φ∗( f )ω(∇a

XY, ϕA(Z)),

ω(∇a
X f Y, ϕA(Z)) =φ∗( f )ω(∇a

XY, ϕA(Z)) + aA(ϕA(X))( f )φ∗(ω(Y,Z)).

Thus ∇a is an A-connection. Using (11) and (14), we obtain

ω(∇a
XY − ∇a

YX, ϕA(Z)) = aA(ϕA(X))ω(Y,Z) − aA(ϕA(Y))ω(X,Z)
+ ω([X,Z]A, ϕA(Y)) − ω([Y,Z]A, ϕA(X)) − ω(ϕA(Y),∇ZX) + ω(ϕA(X),∇ZY)
= −aA(ϕA(Z))ω(X,Y) + ω([X,Y]A, ϕA(Z)) − ω(ϕA(Y),∇ZX) + ω(ϕA(X),∇ZY).

On the other hand, we have

(∇Zω)(X,Y) = aA(ϕA(Z))ω(X,Y) − ω(∇ZX, ϕA(Y)) − ω(ϕA(X),∇ZY).

The above equations give us (i). Using (14), we get

ω(∇a
ϕA(X)∇

a
YZ, ϕ2

A(W)) =aA(ϕ2
A(X))ω(∇a

YZ, ϕA(W)) − ω(ϕA(∇a
YZ), ϕA[X,W]A) (15)

− ω(ϕA(∇a
YZ), ϕA(∇WX)),

which gives

ω(∇a
ϕA(X)∇

a
YZ, ϕ2

A(W)) =aA(ϕ2
A(X)){aA(ϕA(Y))ω(Z,W) − ω(ϕA(Z), [Y,W]A) − ω(ϕA(Z),∇WY)}

− aA(ϕ2
A(Y))ω(ϕA(Z), [X,W]A) + ω(ϕ2

A(Z), [ϕA(Y), [X,W]A]A

+ ω(ϕ2
A(Z),∇[X,W]AϕA(Y)) − aA(ϕ2

A(Y))ω(ϕA(Z),∇WX)

+ ω(ϕ2
A(Z), [ϕA(Y),∇WX]A) + ω(ϕ2

A(Z),∇∇WXϕA(Y)). (16)

Similarly

ω(∇a
ϕA(Y)∇

a
XZ, ϕ2

A(W)) =aA(ϕ2
A(Y)){aA(ϕA(X))ω(Z,W) − ω(ϕA(Z), [X,W]A) − ω(ϕA(Z),∇WX)}

− aA(ϕ2
A(X))ω(ϕA(Z), [Y,W]A) + ω(ϕ2

A(Z), [ϕA(X), [Y,W]A]A

+ ω(ϕ2
A(Z),∇[Y,W]A , ϕA(X)) − aA(ϕ2

A(X))ω(ϕA(Z),∇WY)

+ ω(ϕ2
A(Z), [ϕA(X),∇WY]A) + ω(ϕ2

A(Z),∇∇WYϕA(X)), (17)
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and

ω(∇a
∇

a
YXϕA(Z) − ∇a

∇
a
XYϕA(Z), ϕ2

A(W)) = − ω(ϕ2
A(Z), [ϕA(W), [X,Y]A]A) − aA(ϕ2

A(W))(∇Zω)(X,Y)

+ ω(ϕ2
A(Z),∇∇a

XY−∇a
YX−[X,Y]AϕA(W)) + (∇∇a

WZω)(ϕA(X), ϕA(Y))

− aA(ϕA(∇a
XY))ω(ϕA(Z), ϕA(W)) + ω(ϕ2

A(Z),∇ϕA(W)∇
a
XY)

+ aA(ϕA(∇a
YX))ω(ϕA(Z), ϕA(W)) − ω(ϕ2

A(Z),∇ϕA(W)∇
a
YX). (18)

On the other hand, we have

ω(ϕ2
A(Z), [ϕA(X), [Y,W]A]A + [ϕA(Y), [W,X]A]A + [ϕA(W), [X,Y]A]A) = 0. (19)

From (16)-(19), we get (ii).

Corollary 2.8. The connection ∇a in the Theorem 2.7 induces a left symmetric structure on the symplectic Hom-Lie
algebroid (A, ω) if and only if

aA(ϕ2
A(X))aA(ϕA(Y))ω(Z,W) + ω(ϕ2

A(Z),∇[X,W]AϕA(Y)) + ω(ϕ2
A(Z),∇ϕA(Y)∇WY)

− aA(ϕ2
A(Y))aA(ϕA(X))ω(Z,W) − ω(ϕ2

A(Z),∇[Y,W]AϕA(X)) − ω(ϕ2
A(Z),∇ϕA(X)∇WX)

− aA(ϕ2
A(W))(∇Zω)(X,Y) + ω(ϕ2

A(Z),∇∇a
XY−∇a

YX−[X,Y]AϕA(W)) + (∇∇a
WZω)(ϕA(X), ϕA(Y))

− aA(ϕA(∇a
XY))ω(ϕA(Z), ϕA(W)) + ω(ϕ2

A(Z),∇ϕA(W)∇
a
XY) + aA(ϕA(∇a

YX))ω(ϕA(Z), ϕA(W))

− ω(ϕ2
A(Z),∇ϕA(W)∇

a
YX) = 0.

Proof. From (ii) of Theorem 2.7, we have the assertion.

According to the above corollary, we consider ∇a as the Hom-left symmetric connection associated with
(A, ω).

Applying Theorem 2.7 and Corollary 2.8, we obtain the following:

Corollary 2.9. Let (A, ω) be a symplectic Hom-Lie algebroid. Then the following statements are equivalent:

1. ∇ω = 0;
2. ∇a = ∇;

Moreover, if ∇a is a Hom-left symmetric connection, i.e.,

∇
a
ϕA(X)∇

a
YZ − ∇a

ϕA(Y)∇
a
XZ − ∇a

∇
a
XYϕA(Z) + ∇a

∇
a
YXϕA(Z) = 0,

then A is flat.

3. Para-Kähler Hom-Lie algebroids

In this section, first we introduce almost product, para-complex and para-Hermitian structures on
Hom-Lie algebroids. Then consider para-Kähler Hom-Lie algebroids and discuss their properties.

Definition 3.1. An almost product structure on a Hom-Lie algebroid (A, φ, ϕA, [·, ·]A, aA), is an invertible linear
φ∗-function K : Γ(A)→ Γ(A) such that

(ϕA ◦ K)2 = IdÄéÄéA, ϕA ◦ K = K ◦ ϕA,

where IdA : Γ(A)→ Γ(A) is the identity map. We denote an almost product Hom-Lie algebroid by (A,K).
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Remark 3.2. From the condition (ϕA ◦ K)2 = IdA we get (ϕA ◦ K)2( f X) = f X, for all f ∈ C∞(M) and X ∈ Γ(A).
This equation gives us (φ∗)4( f )(ϕA ◦ K)2(X) = f X. Considering (ϕA ◦ K)2(X) = X in the last equation we obtain
(φ∗)4( f )X = f X which gives us (φ∗)4( f ) = f , for all f ∈ C∞(M). So, (φ∗)4 = IdC∞(M) is a necessary condition for the
first equation of Definition 3.1. Indeed, (φ∗)4 = IdC∞(M) is a necessary condition for the existence of an almost product
structure on a Hom-Lie algebroid.

Using Definition 3.1, one can write A as A = A1
⊕ A−1, such that

A1 := ker(ϕA ◦ K − IdA), A−1 := ker(ϕA ◦ K + IdA).

Also K is called an almost para-complex structure on A, if A1 and A−1 have the same dimension n (in this case
the dimension of A is even). We define the Nijenhuis torsion of ϕA ◦ K as follows

NϕA◦K(X,Y) = [(ϕA ◦ K)X, (ϕA ◦ K)Y]A − (ϕA ◦K)[(ϕA ◦ K)X,Y]A − (ϕA ◦K)[X, (ϕA ◦ K)Y]A + [X,Y]A, (20)

for all X,Y ∈ Γ(A). It easy to see that if (φ∗)2 = IdC∞(M), then NϕA◦K( f X,Y) = φ∗( f )NϕA◦K(X,Y), for any
f ∈ C∞(M), i.e., NϕA◦K is a bilinear φ∗-function. In the sequel we assume that (φ∗)2 = IdC∞(M). In addition,
for simplicity, we often set N := NϕA◦K. If N = 0, then the almost product (almost para-complex) structure
is called product (para-complex).

Remark 3.3. If ϕ2
A = IdA, then an almost product structure on a Hom-Lie algebroid (A, φ, ϕA, [·, ·]A, aA) induces an

almost product structure on the Hom-Lie algebra (Γ(A), ϕA, [·, ·]A) (see [14–16] for more details on almost product
structures). But an almost product structure on the Home-Lie algebra (Γ(A), ϕA, [·, ·]A) does not necessarily induce
an almost product structure on the Hom-Lie algebroid (A, φ, ϕA, [·, ·]A, aA) (because a R-linear function K : Γ(A)→
Γ(A) is not necessarily a linear φ∗-function). Therefore, an almost product structure on a Hom-Lie algebroid
(A, φ, ϕA, [·, ·]A, aA) can not be defined as an almost product structure on the Hom-Lie algebra (Γ(A), ϕA, [·, ·]A).
Also, if ϕ2

A = IdA, the concepts of Nijenhuis torsion and (almost-)para-complex structure on a Hom-Lie algebroid
(A, φ, ϕA, [·, ·]A, aA) induce the same concepts given in [15] on the Hom-Lie algebra (Γ(A), ϕA, [·, ·]A).

Example 3.4. Let M be a 2n-dimensional manifold endowed with an n-codimensional foliation F. Considering the
Hom-bundle (φ!TM, φ,Adφ∗ ), there is the decomposition φ!TM = φ!TF ⊕ φ!T⊥F where (φ!TF, φ,Adφ∗ ) is the Hom-
bundle (the pullback bundle of φ over the leaves of F) and (φ!T⊥F, φ,Adφ∗ ) is the transversal Hom-bundle of F. We
define the bracket on φ!TM as follows

[u, v]φ∗ = φ∗ ◦ u ◦ (φ∗)−1
◦ v ◦ (φ∗)−1

− φ∗ ◦ v ◦ (φ∗)−1
◦ u ◦ (φ∗)−1,

[ū, v̄]φ∗ = φ∗ ◦ ū ◦ (φ∗)−1
◦ v̄ ◦ (φ∗)−1

− φ∗ ◦ v̄ ◦ (φ∗)−1
◦ ū ◦ (φ∗)−1,

[u, v̄]φ∗ = 0,

for any u, v ∈ Γ(φ!TF), ū, v̄ ∈ Γ(φ!T⊥F). Since

Adφ∗ [(u, ū), (v, v̄)]φ∗ = [Adφ∗ (u, ū),Adφ∗ (v, v̄)]φ∗ ,
[Adφ∗ (u, ū), [(v, v̄), (z, z̄)]φ∗ ]φ∗ + c.p. = 0,

one has (φ!TF⊕φ!T⊥F, [·, ·]φ∗ ,Adφ∗ ) is a Hom-Lie algebra. Also we see that (φ!TF⊕φ!T⊥F, φ,Adφ∗ ⊕Adφ∗ , [·, ·]φ∗ , Id)
is a Hom-Lie algebroid. If the isomorphism K is given by

K(u) = Ad−1
φ∗ (u), K(ū) = −Ad−1

φ∗ (ū),

then using the above equations, we have

(K ◦ Adφ∗ )(u) = u = (Adφ∗ ◦ K)(u), (K ◦ Adφ∗ )(ū) = −ū = (Adφ∗ ◦ K)(ū).

Also, (K ◦ Adφ∗ )2 = Id. Therefore K is an almost product structure on φ!TM. Since φ!TF and φ!T⊥F have the same
dimension n, we also deduce that K is an almost para-complex structure on φ!TM. Moreover, K is a para-complex
structure on φ!TM because

N(u, v) = N(ū, v̄) = N(u, v̄) = 0.
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Definition 3.5. An almost para-Hermitian structure on a Hom-Lie algebroid (A, φ, ϕA, [·, ·]A, aA) is a pair (K, ⟨·, ·⟩)
consisting of an almost para-complex structure and a pseudo-Riemannian metric ⟨·, ·⟩, such that

⟨(ϕA ◦ K)X, (ϕA ◦ K)Y⟩ = −⟨X,Y⟩, ∀X,Y ∈ Γ(A). (21)

Moreover, If N = 0, then the pair (K, ⟨·, ·⟩) is called a para-Hermitian structure. In this case, (A,K, ⟨·, ·⟩) is said to be
a para-Hermitian Hom-Lie algebroid.

Definition 3.6. A para-Kähler Hom-Lie algebroid is an almost para-Hermitian Hom-Lie algebroid (A, φ, ϕA, [·, ·]A, aA,K, ⟨·, ·⟩)
such that ϕA ◦ K is invariant with respect to the Hom-Levi-Civita connection ∇, i.e.,

∇XϕA(K(Y)) = ϕA(K(∇XY)), ∀X,Y ∈ Γ(A). (22)

The above condition implies

∇ϕA(K(X))ϕA(K(Y)) = ϕA(K(∇ϕA(K(X))Y)), ∇XY = ϕA(K(∇XϕA(K(Y)))). (23)

Example 3.7. Assume that (E, φ,Φ, [·, ·], aE, ⟨·, ·⟩) is a pseudo-Riemannian Hom-Lie algebroid introduced in Example
1.6. If the invertible linear φ∗-function K : Γ(E)→ Γ(E) is defined by

K(X) = Ad−1
φ∗ (X), K(α) = −(Ad†φ∗ )

−1(α),

then we deduce that

(K ◦ Adφ∗ )(X) = X = (Adφ∗ ◦ K)(X), (K ◦ Ad†φ∗ )(α) = −α = (Ad†φ∗ ◦ K)(α),

(K ◦ Adφ∗ )2(X) = X, (K ◦ Ad†φ∗ )
2(α) = α.

Therefore K is an almost product structure on E. As φ!TM and φ!T∗M have the same dimension n, thus K is an
almost para-complex structure on E. Also, we have

N(X,Y) = N(α, β) = N(X, α) = 0,

that is K is a para-complex structure on E. It is easy to check that

⟨(K ◦ Adφ∗ )(X), (K ◦ Adφ∗ )(Y)⟩ =0 = ⟨X,Y⟩,

⟨(K ◦ Ad†φ∗ )(α), (K ◦ Ad†φ∗ )(β)⟩ =0 = ⟨α, β⟩,

⟨(K ◦ Adφ∗ )(X), (K ◦ Ad†φ∗ )(α)⟩ = − α(X) = −⟨X, α⟩,

and so (E, φ,Φ, [·, ·], aE, ⟨·, ·⟩,K) is a para-Hermitian Hom-Lie algebroid. From Koszul’s formula given by (7), we get

∇XY =
1
2

[X,Y]φ∗ , ∇αβ =
1
2

[α, β]π♯ , ∇αX = ∇Xα = 0.

It is easy to see that the Hom-Levi-Civita connection computed above satisfies in (22). Thus
(E, φ,Φ, [·, ·], aE, ⟨·, ·⟩,K) is a para-Kähler Hom-Lie algebroid.

Proposition 3.8. Let (A, φ, ϕA, [·, ·]A, aA,K, ⟨·, ·⟩) be a para-Kähler Hom-Lie algebroid. If we consider

Ω(X,Y) = ⟨(ϕA ◦ K)X,Y⟩, ∀X,Y ∈ Γ(A), (24)

then (A,Ω) is a symplectic Hom-Lie algebroid.
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Proof. It turns out that (4) and (24) imply ϕ†AΩ = Ω, because

Ω(ϕA(X), ϕA(Y)) =⟨(ϕA ◦ K)ϕA(X), ϕA(Y)⟩ = φ∗⟨(K ◦ ϕA)X,Y⟩ = φ∗⟨(ϕA ◦ K)X,Y⟩
=φ∗Ω(X,Y).

Applying (11) and (24), we obtain

Ω([X,Y]A, ϕA(Z)) +Ω([Y,Z]A, ϕA(X)) +Ω([Z,X]A, ϕA(Y)) − aA(ϕA(X))Ω(Y,Z) (25)
+ aA(ϕA(Y))Ω(X,Z) − aA(ϕA(Z))Ω(X,Y)
= −⟨[X,Y]A, (ϕA ◦ K)(ϕA(Z))⟩ − ⟨[Y,Z]A, (ϕA ◦ K)(ϕA(X))⟩
− ⟨[Z,X]A, (ϕA ◦ K)(ϕA(Y))⟩ − aA(ϕA(X))Ω(Y,Z) + aA(ϕA(Y))ω(X,Z) − aA(ϕA(Z))Ω(X,Y)
= −⟨∇XY, (ϕA ◦ K)(ϕA(Z))⟩ + ⟨∇YX, (ϕA ◦ K)(ϕA(Z))⟩ − ⟨∇YZ, (ϕA ◦ K)(ϕA(X))⟩
+ ⟨∇ZY, (ϕA ◦ K)(ϕA(X))⟩ − ⟨∇ZX, (ϕA ◦ K)(ϕA(Y))⟩ + ⟨∇XZ, (ϕA ◦ K)(ϕA(Y))⟩
− aA(ϕA(X))Ω(Y,Z) + aA(ϕA(Y))Ω(X,Z) − aA(ϕA(Z))Ω(X,Y),

for any X,Y,Z ∈ Γ(A). Using (6) and (23), we conclude

⟨∇XY, (ϕA ◦ K)(ϕA(Z))⟩ = ⟨(ϕA ◦ K)(∇X(ϕA ◦ K)(Y)), (ϕA ◦ K)(ϕA(Z))⟩
= −⟨∇X(ϕA ◦ K)(Y), ϕA(Z)⟩ = −aA(ϕA(X))Ω(Y,Z) + ⟨∇XZ, ϕA(ϕA ◦ K)(Y)⟩.

Setting the above equation in (25), we get the assertion i.e., dAΩ = 0.

Proposition 3.9. Let (A = A1
⊕ A−1, φ, ϕA, [·, ·]A, ⟨·, ·⟩,K) be a para-Kähler Hom-Lie algebroid. Then

i) Nijenhuis torsion N is zero,
ii) A1 and A−1 are subalgebroids isotropic with respect to ⟨·, ·⟩, and Lagrangian with respect to Ω,
iii) ∇XΓ(A1) ⊂ Γ(A1) and ∇XΓ(A−1) ⊂ Γ(A−1), for any X ∈ Γ(A) (∇ is the Hom-Levi-Civita connection),
iv) for any X ∈ Γ(A1), ϕA(X) ∈ Γ(A1) and for any X̄ ∈ Γ(A−1), ϕA(X̄) ∈ Γ(A−1) i.e.,

ϕA(X + X̄) = ϕA1 (X) + ϕA−1 (X̄),

v) (A,K, ⟨·, ·⟩) is a para-Hermitian Hom-Lie algebroid,
vi) A−1

≃ (A1)∗ ((A1)∗ is the dual space of A1) and the endomorphisms ϕA−1 and (ϕA1 )† are the same.

Proof. Let X,Y ∈ Γ(A). Then using (23), we obtain

N(X,Y) =[(ϕA ◦ K)(X), (ϕA ◦ K)(Y)]A − (ϕA ◦ K)[(ϕA ◦ K)(X),Y]A

− (ϕA ◦ K)[X, (ϕA ◦ K)(Y)]A + [X,Y]A

=∇ϕA(K(X))ϕA(K(Y)) − ∇ϕA(K(Y))ϕA(K(X)) − ∇ϕA(K(X))ϕA(K(Y))
+ ∇YX − ∇XY + ∇ϕA(K(Y))ϕA(K(X)) + ∇XY − ∇YX = 0,

which gives (i). For any X,Y ∈ Γ(A1), we have ⟨(ϕA ◦ K)(X), (ϕA ◦ K)(Y) = ⟨X,Y⟩. On the other hand, since
ϕA ◦ K is skew-symmetric with respect to ⟨·, ·⟩, we conclude that ⟨X,Y⟩ = 0. Similarly, ⟨X̄, Ȳ⟩ = 0, for any
X̄, Ȳ ∈ Γ(A−1). Hence, A1 and A−1 are isotropic with respect to ⟨·, ·⟩. Now we show that A1 is a Lagrangian
subspace of A with respect to Ω. Assume X ∈ Γ(A1). We have Ω(X,Y) = 0, for any Y ∈ Γ(A1), which means
that X ∈ Γ(A1)⊥ and thus A1

⊆ (A1)⊥. Let 0 , X + X̄ ∈ (A1)⊥ such that X ∈ Γ(A1) and X̄ ∈ Γ(A−1). Then,
we have 0 = Ω(X + X̄,Y) = Ω(X,Y) + Ω(X̄,Y), for all Y ∈ Γ(A1). As Ω(X,Y) = 0, it yields Ω(X̄,Y) = 0. On
the other hand, since Ω(X̄, Ȳ) = 0, for any Ȳ ∈ Γ(A−1), we deduce Ω(X̄,Y + Ȳ) = 0, hence X̄ = 0. Therefore
(A1)⊥ ⊆ A1 and consequently (A1)⊥ = A1. Similarly it follows that A−1 is a Lagrangian subspace of A with
respect toΩ. Therefore we have (ii). Using (23) we have (ϕA ◦K)(∇XY) = ∇XϕA(KY) = ∇XY, for all X ∈ Γ(A)
and Y ∈ Γ(A1). The above equation implies ∇XY ∈ Γ(A1). Similarly, ∇XȲ ∈ Γ(A−1) for any X ∈ Γ(A), which
gives us (iii). To prove (iv), since (K ◦ ϕA)(ϕA(X)) = (ϕA ◦ K ◦ ϕA)(X) = ϕA(X), for all X ∈ Γ(A1), we have
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ϕA(X) ∈ Γ(A1). Similarly, ϕA(X̄) ∈ Γ(A−1) for any X̄ ∈ Γ(A−1). To prove (v), using (i) and (ii) we have K
is a para-complex structure on (Γ(A), [·, ·]A, ϕA). Since ϕA ◦ K is skew-symmetric with respect to ⟨·, ·⟩, then
we have the assertion. To prove (vi), let X̄ ∈ Γ(A−1) and X̄∗ ∈ (Γ(A1)∗) such that ≺ X̄∗,Y ≻= ⟨X̄,Y⟩, for all
Y ∈ Γ(A1). Then we have map A−1

→ (A1)∗, X̄ → X̄∗, which is an isomorphism. If we consider X̄ ∈ Γ(A−1)
and X̄∗ be the corresponding element of it in Γ((A1)∗), then for any Y ∈ Γ(A1) we obtain

≺ (ϕA1 )†(X̄∗),Y ≻= φ∗ ≺ X̄∗, ϕ−1
A1 (Y) ≻= φ∗⟨X̄, ϕ−1

A1 (Y)⟩ = ⟨ϕA−1 (X̄),Y⟩ =≺ (ϕA−1 (X̄))∗,Y ≻,

which gives (ϕA1 )†(X̄∗) = (ϕA−1 (X̄))∗, where (ϕA−1 (X̄))∗ is the corresponding element of ϕA−1 (X̄) ∈ Γ(A−1) in
(A1)∗.

Lemma 3.10. Let (A, φ, ϕA, [·, ·]A, aA,K, ⟨·, ·⟩) be a para-Kähler Hom-Lie algebroid. Then

∇XY =∇a
XY, ∀X,Y ∈ Γ(A1),

∇X̄Ȳ =∇a
X̄Ȳ, ∀X̄, Ȳ ∈ Γ(A−1),

where ∇ is the Hom-Levi-Civita connection and ∇a is given in Theorem 2.7.

Proof. Since A is a symplectic Hom-Lie algebroid, then using (14) and (5), we get

0 =Ω(∇a
XY, ϕA(Z)) − aA(ϕA(X))Ω(Y,Z) +Ω(ϕA(Y), [X,Z]A) +Ω(ϕA(Y),∇ZX) (26)

=Ω(∇a
XY, ϕA(Z)) − aA(ϕA(X))Ω(Y,Z) +Ω(ϕA(Y),∇XZ),

for any Z ∈ Γ(A) and X,Y ∈ Γ(A1). Also, (4), (24) and parts (iii) and (iv) of Proposition 3.9 imply

Ω(ϕA(Y),∇XZ) = ⟨(ϕA ◦ K)(ϕA(Y)),∇XZ⟩ = ⟨ϕA(Y),∇XZ⟩ (27)
= aA(ϕA(X))Ω(Y,Z) − ⟨ϕA(Z),∇XY⟩ = aA(ϕA(X))Ω(Y,Z) −Ω(∇XY, ϕA(Z)).

Setting (27) in (26) and using the non-degenerate property ofΩ and ϕA, we have ∇XY = ∇a
XY. Similarly, we

get the second relation.

Corollary 3.11. If (A, φ, ϕA, [·, ·]A, aA,K, ⟨·, ·⟩) is a para-Kähler Hom-Lie algebroid, then (Γ(A1),∇a, ϕA1 ) and (Γ(A−1),∇a, ϕA−1)
are Hom-left symmetric algebras if and only if A1 and A−1 are flat. Moreover, they induce Hom-Lie algebra structures
on Γ(A1) and Γ(A−1). Consequently, (A1, φ, ϕA1 , [·, ·]A1 , aA1 ) and (A−1, φ, ϕA−1 , [·, ·]A−1 , aA−1 ) are Hom-Lie algebroids.

In the sequel, we let A1 and A−1 be flat. As A−1
≃ (A1)∗, we denote the elements of A−1 by α, β, . . .. Also, to

simplify we use ϕ(A1)∗ instead of (ϕA1 )†. Considering (A, φ, ϕA, [·, ·]A, aA,K, ⟨·, ·⟩) as a para-Kähler Hom-Lie
algebroid, for any X ∈ Γ(A1), α ∈ (Γ(A1)∗), we let ∇X and ∇α be the Hom-Levi-Civita connection operators
on X and α, respectively.

Proposition 3.12. With the above notations, we have
i) (A1;ϕA1 ,∇) is a representation of the Hom-Lie algebroid A1 where ∇ : A1

→ D(A1) with X→ ∇X,
ii) ((A1)∗;ϕ(A1)∗ ,∇) is a representation of the Hom-Lie algebroid (A1)∗ where ∇ : (A1)∗ → D((A1)∗) with α→ ∇α.

Proof. Since A1 is the isotropic subspace and ∇XY − ∇YX = [X,Y]A1 , then using Theorem 2.7 we have

∇
a
ϕA1 (Y)∇

a
XZ − ∇a

ϕA1 (X)∇
a
YZ + ∇a

∇
a
XYϕA1 (Z) − ∇a

∇
a
YXϕA(Z) = 0, ∀X,Y,Z ∈ Γ(A1),

where ∇XY = ∇a
XY. The above equation implies

∇[X,Y]A1 ◦ ϕA1 = ∇ϕA1 (X) ◦ ∇Y − ∇ϕA1 Äé(Y) ◦ ∇X.

Also, we have ϕA1 (∇XY) = ∇ϕA1 (X)ϕA1 (Y) and

a
D(A1)

(∇X)( f ) = ∇X( f ) = aA1 (ϕA1 (X))( f ).

So (i) holds. Similarly, we obtain (ii).
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Proposition 3.13. Let (A, φ, ϕA, [·, ·], aA,K, ⟨·, ·⟩) be a para-Kähler Hom-Lie algebroid. Then (A1
⊕(A1)∗, φ, ϕA, [·, ·], a)

is a Hom-Lie algebroid, where
[X + α,Y + β] = [X,Y]A1 + ∇̃Xβ − ∇̃Yα,
ϕA(X + α) = ϕA1 (X) + ϕ(A1)∗ (α),
a(X + α) = aA(X),

(28)

for any X,Y ∈ Γ(A1) and α, β ∈ Γ((A1)∗).

Proof. Obviously, we see that

[X + α,Y + β] = −[Y + β,X + α].

As ((A1)∗, ϕ(A1)∗ , ∇̃) is a representation of Hom-Lie algebroid A1, we have

∇̃[Y,Z]A1 ◦ ϕ(A1)∗ = ∇̃ϕA1 (Y) ◦ ∇̃Z − ∇̃ϕA1 (Z) ◦ ∇̃Y.

Using (28) and the above equation, we obtain

[ϕA(X + α), [Y + β,Z + γ]] + c.p. = [ϕA1 (X) + ϕ(A1)∗ (α), [Y,Z]A1 + ∇̃Yγ − ∇̃Zβ] + c.p.

=
(
[ϕA1 (X), [Y,Z]A1 ]A1 + ∇̃ϕA1 (X)(∇̃Yγ − ∇̃Zβ) − ∇̃[Y,Z]A1ϕ(A1)∗ (α)

)
+ c.p.

= [ϕA1 (X), [Y,Z]] + c.p. + ∇̃ϕA1 (X)(∇̃Yγ − ∇̃Zβ) + ∇̃ϕA1 (Y)(∇̃Zα − ∇̃Xγ) + ∇̃ϕ
g1 (Z)(∇̃Xβ − ∇̃Yα)

− ∇̃ϕA1 (Y)∇̃Zα + ∇̃ϕA1 (Z)∇̃Yα − ∇̃ϕA1 (Z)∇̃Xβ + ∇̃ϕA1 (X)∇̃Zβ − ∇̃ϕA1 (X)∇̃Yγ + ∇̃ϕA1 (Y)∇̃Xγ = 0.

Therefore (A1
⊕ (A1)∗, [·, ·], ϕA) is a Hom-Lie algebra. Since aA is the representation of Hom-Lie algebroid

(A, φ, ϕA, [·, ·]A, aA), we have

φ∗ ◦ a(X + α) = φ∗ ◦ aA(X) = aA(ϕA(X)) ◦ φ∗ = φ∗ ◦ a(ϕA(X + α)),

and

a([X + α,Y + β]) ◦ φ∗ = a([X,Y]A + ∇̃Xβ − ∇̃Yα) ◦ φ∗

=aA([X,Y]A ◦ φ
∗ = aA(ϕA(X)) ◦ aA(Y) − aA(ϕA(Y)) ◦ aA(X)

=a(ϕA(X + α)) ◦ a(Y + β) − a(ϕA(Y + β)) ◦ a(X + α).

Definition 3.14. Let (A, φ, ϕA, [·, ·]A, aA) be a Hom-Lie algebroid and A∗ be the dual bundle of A. A phase space of
A is defined as a Hom-Lie algebroid (A⊕A∗, φ, ϕA ⊕ϕA∗ , [·, ·]A⊕A∗ , a) consisting of Hom-subalgebroids A, A∗ and the
natural skew-symmetry bilinear form ω on A ⊕ A∗ given by

ω(X + α,Y + β) =≺ β,XÄé ≻ − ≺ α,YÄé ≻, ∀X,Y ∈ Γ(A),∀α, β ∈ Γ(A∗), (29)

which is a symplectic form, ϕA∗ = ϕ†A.

Lemma 3.15. If (A, φ, ϕA, [·, ·]A, aA,K, ⟨·, ·⟩) is a para-Kähler Hom-Lie algebroid, then the Hom-Lie algebroid A1
⊕

(A1)∗ is a phase space of the Hom-Lie algebroid A1.

Proof. As the para-Kähler Hom-Lie algebroid A is a symplectic Hom-Lie algebroid, then we can write

Ω(X + α,Y + β) = ⟨(ϕA ◦ K)(X + α),Y + β⟩ = ⟨X − α,Y + β⟩ = − ≺ α,YÄé ≻ + ≺ β,XÄé ≻ .
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for any X,Y ∈ Γ(A1) and α, β ∈ Γ((A1)∗). Similar to the proof of Proposition 3.8, we can prove the following

Ω(ϕA(X + α), ϕA(Y + β)) = φ∗Ω(X + α,Y + β),

and

Ω([X + α,Y + β], ϕA(Z + γ)) + c.p. = 0.

Example 3.16. We consider the para-Kähler Hom-Lie algebroid (E, φ,Φ, [·, ·], aE, ⟨·, ·⟩,K) in Example 3.7. Define a
skew-symmetry bilinear form Ω on E as Ω(·, ·) = ⟨(Φ ◦ K)·, ·⟩, we obtain Ω((X, 0), (0, β)) = ⟨((Φ ◦ K)X, 0), (0, β)⟩ =
⟨(Adφ∗ ◦ Ad−1

φ∗ )X, β⟩ =≺ β,XÄé ≻. Similarly, it follows

Ω((0, α), (Y, 0)) = − ≺ α,YÄé ≻, Ω((X, 0), (Y, 0)) = Ω((0, α), (0, β)) = 0.

Also, Φ†ÄéΩ = Ω, because

Φ†ÄéΩ((X, α), (Y, β)) = φ∗Ω(Φ−1(X, α),Φ−1(Y, β)) = φ∗⟨Φ−1(Φ ◦ K)(X, α),Φ−1(Y, β)⟩

= φ∗⟨(Ad−1
φ∗ X,−(Ad†φ∗ )

−1α), (Ad−1
φ∗ Y, (Ad†φ∗ )

−1β)⟩ = − ≺ α,YÄé ≻ + ≺ β,XÄé ≻ .

As Adφ∗X ≺ β,Z ≻=≺ φ∗ ◦ X ◦ (φ∗)−1
◦ Z ◦ (φ∗)−1,Ad†φ∗ (β) ≻, thus

dΩ((X, 0), (0, β), (Z, 0)) = Adφ∗ (X)Ω((0, β), (Z, 0)) + Adφ∗ (Z)Ω((X, 0), (0, β))

+Ω([(X, 0), (Z, 0)],Ad†φ∗ (β)) −Ω([(0, β), (Z, 0)],Adφ∗ (X)) = 0.

In the same way, we get

dΩ((X, 0), (Y, 0), (Z, 0)) = dΩ((0, α), (0, β), (γ, 0)) = dΩ((0, α), (Y, 0), (γ, 0)) = 0,

i.e.,Ω is a symplectic form. Therefore (φ!TM⊕φ!T∗M, φ,Φ, [·, ·], aE) is a phase space of the Hom-Lie algebroid φ!TM.
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