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Abstract. In the present study, the concept of a new type of contraction namely ψ1–interpolative Hardy–
Rogers contraction is introduced which is a unification of g-interpolation and Hardy-Rogers contraction. By
utilizing this concept, unique results of the existence of fixed points in the extent of rectangular quasi–partial
b–metric space are proved. The validity of the obtained results is verified with the help of comparative
examples with vivid representations. The existence of a solution to the Fredholm integral equation is also
provided here via a fixed point for such mappings.

1. Introduction

The theory of fixed point first emerged in the solution of differential equations in 1837 when Liouville[28]
solved such equations by applying successive approximation. Later on, in the year 1890, Picard[27] in-
troduced the applicability of the acclaimed method and developed solutions of corresponding differential
equations. In 1906, Frechet[11] defined the metric space by observing the notion of distance between the
points and their images. After that, Banach[6] in 1922, derived the most prominent technique to prove a
fixed point theorem in complete metric space. This theorem is characterized by the Banach Contraction
Principle which evidenced an imperative role in nonlinear functional analysis. Numerous generaliza-
tions were given by means of different types of contractive mappings such as Chatterjea[9], Bhaktin[7],
and Czerwik[8]. Among these generalizations, one of the propitious theorems was given by Kannan[15]
in 1968, in which the continuity condition was removed from the contraction map to obtain a fixed point. i.e.,

Theorem 1.1 ([15]). Let (X, d) be a complete metric space and a self map T : X → X be a Kannan contraction
mapping. i.e.,

d(Tσ,Tη) ≤ ϱ[d(σ,Tσ) + d(η,Tη)]

for all σ, η ∈ X, where ϱ ∈ [0, 1
2 ). Then T admits a unique fixed point in X.
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Karapınar gave the definition of interpolative contraction to investigate the metric fixed point theory in
2018.i.e.

Theorem 1.2 ([17]). Let (X, d) be a metric space, a self-mapping T : X→ X is said to be an interpolative Kannan-type
contraction map if there exists a constant ϱ ∈ (0,1) and α ∈ (0,1) such that

d(Tσ,Tη) ≤ ϱ[d(σ,Tσ)]α · [d(η,Tη)]1−α

for all σ, η ∈ X \ Fix(T), where Fix(T) = {z ∈ X : Tz = z}.

Along the line, one more result was established by Karapinar[19] on Hardy–Rogers contraction map.i.e.,

Theorem 1.3 ([19]). Let (X, d) be a metric space. If the self-mapping T : X → X is an interpolative Hardy–Rogers
type contraction i.e., there exist ρ ∈ [0, 1) and α, β, γ ∈ (0, 1) with α + β + γ < 1, such that

d(Tσ,Tη) ≤ ρ[d(σ, η)]β[d(σ,Tσ)]α · d(η,Tη)]γ

·

[1
2

(d(σ,Tη) + d(η,Tσ))
]1−α−β−γ

for all σ, η ∈ X \ Fix(T),

then T has a fixed point in X.

A new refinement was done in 2019 by Gaba et.al.[14] as the inequality in Theorem 1.2 increases the degree
of freedom of the powers appearing on the right-hand side in the framework of standard metric spaces. It
is observed that the aforementioned result satisfies the contractive condition for all σ, η ∈ X with σ , Tσ. In
this case, if T has a fixed point in X then it will be a constant map, and therefore T has a unique fixed point
trivially. To remove such triviality, the contraction condition with σ, η ∈ X \Fix(T), where Fix(T) is the set of
all fixed points of T is preassumed which leads to obtain non-unique fixed points and possesses more than
one fixed point. Motivated by interpolation theory Debnath et.al.[10] and Aydi et.al.[5] presented results
on set valued interpolative maps and ω–interpolative maps. One of the interesting results appears when
Karapinar[18] indicated the gap in the proof of the uniqueness in Theorem 1.2. In the last decade, the notion
of multivalued interpolative contractions via an auxiliary function called as simulation function came into
existence. See [20, 22, 24] which given numerous applications in data dependence and homotopy.

In 2000, the concept of rectangular metric space was introduced by Branciari [1] in which quadrilateral
inequality is used. Suzuki [3] in his research discovered that the comparison of topological properties of the
standard metric space and the rectangular metric space is not feasible. The generalized results in b-metric
space as graphical b–metric space provided by Younis[32] and b–Branciari by Samani[29, 30] are the promi-
nent results in fixed point theory. Recently, Karapinar[21, 23] established some new fixed point theorems
for Meir-keeler modified versions in the context of interpolative theory. Subsequently, other interesting
versions of the Banach are presented by [2, 13, 25, 26, 31].

Throughout this paper, we have denotedN the set of all positive integers, and rqpb denotes the rectan-
gular quasi–partial b–metric space.

2. Preliminaries

In this section, we present the basic definitions and results that are required to obtain the main results.

Definition 2.1 ([1]). A rectangular metric on a non-empty set X is a function r : X ×X → R+ such that for all
σ, υ ∈ X and u, v ∈ X :

1. r(σ, η) = 0 iff σ = η (identification),
2. r(σ, η) = r(η, σ) (symmetry),
3. r(σ, η) ≤ r(σ,u) + r(u, v) + r(v, η) (quadrilateral inequality).
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(X, r) is called a rectangular metric space.

Definition 2.2 ([1]). Let (X, r) be a rectangular metric. Then

1. A sequence {σn} ⊂ X converges to σ ∈M if r(σ, σ) = lim
n→∞

r(σ, σn).

2. A sequence {σn} ⊂ X is called a Cauchy sequence if for every ε > 0, there exists a positive integer N = N(ε)
such that r(σn, σm) < ε for all n,m > N.

3. (X, r) is said to be a complete rectangular metric if each Cauchy sequence in X is convergent.

Example 2.3. Let X = R+. For the metric, r : X×X → R+ defined by r(σ, η) = (σ − η)2. Then, (X,r) is a complete
rectangular metric space.

Definition 2.4 ([12]). A rectangular quasi-partial b-metric on a non-empty set X is a function rqpb : X×X → R+

such that for some real number s ≥ 1 and all σ, η,u, v ∈ X:

1. rqpb(σ, σ) = rqpb(σ, η) = rqpb(υ, η)⇒ σ = η,
2. rqpb(σ, σ) ≤ rqpb(σ, η),
3. rqpb(σ, σ) ≤ rqpb(η, σ),
4. rqpb(σ, η) ≤ s[rqpb(σ,u) + rqpb(u, v) + rqpb(v, η)] − rqpb(u,u) − rqpb(v, v).

(X, rqpb) is called a rectangular quasi-partial b-metric space. The number s is called the coefficient of (X, rqpb).

Example 2.5. Let X =
[
0,
π
4k

]
equipped with the metric rqpb(σ, η) = sin k|σ−η|+σ for any (σ, η) ∈ X×X and k ≥ 2.

It is easy to verify that (X, rqpb) is a rectangular quasi-partial b-metric space. It has been observed that if rqpb(σ, σ) =
rqpb(σ, η) = rqpb(η, η), that is,
σ = sin k|σ − η| + σ = η, then (1) holds trivially for any (σ, η) ∈ X × X.
Furthermore, using the property of the sine function:

sin k|σ − η| ≥ 0 and sin k|σ − η| ≥ |σ − η| when |σ − η| ∈
[
0,
π
4k

]
, then

rqpb(σ, σ) = σ ≤ sin k|σ − η| + σ = rqpb(σ, η).
We have,

rqpb(σ, σ) = σ
= |σ − η + η|

≤ |σ − η| + |η|

≤ sin k|η − σ| + η
≤ rqpb(η, σ)

Moreover, for any σ, η,u, v ∈ X, |σ − u| ≤
π
4k
≤
π
2k

and [|σ − u| + |u − v| + |v − η|] ≤
π
2k

when

k(|σ − u| + |u − v| + |v − η|) ∈
[
0,
π
2k

]
, or

k(|σ − δ| + |δ − σ|) ≤
π
2

, and since sin σ is increasing on
[
0,
π
2

]
, we get the (4) of Definition 2.4 :

rqpb(σ, η) + rqpb(u,u) + rqpb(v, v) = sin k|σ − η| + σ + u + v
≤ sin k(|σ − u| + |u − v| + |v − η|) + σ + u + v
≤ k(|σ − u| + |u − v| + |v − η|) + σ + u + v
≤ k sin k|σ − u| + k sin k|u − v| + k sin k|v − η| + σ + u + v
= k(sin k|σ − u| + sin k|u − v| + sin k|v − η| + σ + u + v)
≤ s(rqpb(σ,u) + rqpb(u, v) + rqpb(v, η)) for all σ, η,u, v ∈ X

and s ≥ k, hence (X, rqpb) is a rectangular quasi-partial b-metric space with s ≥ k as shown in figure 1.
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Figure 1: The shaded region demonstrates the visualisation of the function rqpb(σ, η) = sin k|σ − η| + σ in X =
[
0,
π
4k

]
.

Definition 2.6 ([12]). Let (X, rqpb) be a rectangular quasi-partial b-metric space. Then, the following hold:

1. If rqpb (σ, η) =0, then σ = η.
2. If σ = η, then rqpb (σ, η) > 0 and rqpb (η, σ) > 0.

Definition 2.7. Let (X, rqpb) be a rectangular quasi-partial b-metric space. Then for x0 ∈ X, ϵ > 0, the rqpb − ball
with centre x0 and radius ϵ is defined as:

Brqpb (x0, ϵ) = {y ∈ X : rqpb(x0, y) < ϵ, rqpb(y, x0) < ϵ}.

Definition 2.8 ([12]). Let (X, rqpb) be a rectangular quasi-partial b-metric. Then:

1. A sequence {σn} ⊂ X converges to σ ∈ X if and only if rqpb(σ, σ) = lim
n→∞

rqpb(σ, σn).

2. A sequence {σn} ⊂ X is called a Cauchy sequence if and only if lim
n,m→∞

rqpb(σn, σm) exists.

3. A rectangular quasi-partial b-metric space (X, rqpb) is said to be complete if every Cauchy sequence {σn} ⊂ X
converges with respect to τrqpb to a point σ ∈ X such that

rqpb(σ, σ) = lim
n,m→∞

rqpb(σn, σm).

4. A mapping f : X→ X is said to be continuous at σ0 ∈ X if, for every ε > 0, there exists δ > 0 such that

f (B(σ0, δ)) ⊂ B( f (σ0), ε).

Definition 2.9. LetΨ be denoted as the set of all non-decreasing functionψ : [0,∞]→ [0,∞] such that
∑
∞

k=0 ψ
k(t) <

∞ for each t > 0. Then :

1. ψ(0) = 0,
2. ψ(t) < t for each t > 0.

Definition 2.10. Let σn be a sequence in a (X, rqpb). Consider 1, h : X → X are self mappings and σ ∈ X. σ is said
to be the coincidence point of pair 1, h if 1σ = hσ.

3. Main Results

In this section, the concept of Hardy-Rogers type interpolative contraction in rectangular quasi-partial b-metric
space is discussed. Here Φ denotes the set of functions ϕ : [0,∞)→ [0,∞) such that ϕ(t) < t for every t > 0.
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Theorem 3.1. Let (X, rqpb) be a complete rectangular quasi-partial b- metric space and T be a self–mapping on X
such that

rqpb(Tσ,Tη) ⩽ ϕ(
[
rqpb(σ, η)

]α . [rqpb(σ,T σ)
]β . [rqpb(η,T η)

]γ .
1
3s
[
rqpb(σ,T η) + rqpb(η,T σ)

]δ (1)

is satisfied for all σ, η ∈ X \ Fix(T) : where Fix(T) = {a ∈ X|Ta = a}, α, β, γ, δ ∈ (0, 1) such that α+ β+γ+ δ > 1 and
ϕ ∈ Φ.

If there exists σ ∈ X such that rqpb(σ,Tσ) < 1, then T has a fixed point in X.

Proof. Let σ0 ∈ X be arbitrary. Define a sequence σn by σn+1 = Tσn for all integers n, and we assume that
σn , Tσn, for all n. From equation 1, we have

rqpb(Tσn−1,Tσn) ⩽ ϕ(
[
rqpb(σn−1, σn)

]α . [rqpb(σn−1,Tσn−1)
]β . [rqpb(σn,Tσn)

]γ .
1
3s
[
rqpb(σn−1,Tσn) + rqpb(σn,Tσn−1)

]δ (2)

rqpb(σn, σn+1) ⩽ ϕ(
[
rqpb(σn−1, σn)

]α . [rqpb(σn−1, σn)
]β . [rqpb(σn, σn+1)

]γ .
1
3s
[
rqpb(σn−1, σn+1) + rqpb(σn, σn)

]δ . (3)

Since ϕ(t) < t for each t, equation 3 yields,

rqpb(σn, σn+1) < (
[
rqpb(σn−1, σn)

]α . [rqpb(σn−1, σn)
]β . [rqpb(σn, σn+1)

]γ .
1
3s
[
rqpb(σn, σn+1) + rqpb(σn, σn)

]δ
rqpb(σn, σn+1) < (

[
rqpb(σn−1, σn)

]α . [rqpb(σn−1, σn)
]β . [rqpb(σn, σn+1)

]γ .
1
3s
[
rqpb(σn, σn+1) + rqpb(σn, σn−1)

]δ ,
rqpb(σn, σn+1) < (

[
rqpb(σn−1, σn)

]α . [rqpb(σn−1, σn)
]β . [rqpb(σn, σn+1)

]γ .[
rqpb(σn, σn+1)

]δ . (4)

Suppose that rqpb(σn, σn−1) < rqpb(σn, σn+1)

1
3s

(rqpb(σn+2, σn+1) + rqpb(σn+1, σn) + (rqpb(σn, σn−1)) ≤ rqpb(σn, σn+1).

or

[rqpb(σn+1, σn)] ≤ ψ[rqpb(σn, σn−1)]

Therefore, we obtain [rqpb(σn+1, σn)] ≤ [rqpb(σn, σn−1)], which is a contradiction. Thus, we have

1
3s

(rqpb(σn+2, σn+1) + rqpb(σn+1, σn) + (rqpb(σn, σn−1)) ≤ rqpb(σn−1, σn).[
rqpb(σn, σn+1)

]1−γ−δ < [rqpb(σn−1, σn)
]α+β .

Now using the fact that rqpb(σ0, σ1) < 1, so there exists a real λ ∈ (0, 1) such that rqpb(σ0, σ1) ⩽ λ and
λ =

rqpb(σ0,σ1)+1
2

rqpb(σ1, σ2)(
[
rqpb(σ0, σ1)

] α+β
1−γ−δ ⩽ λ

α+β
1−γ−δ .
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By taking ϵ = α+β
1−γ−δ for all n,

rqpb(σn+1, σn) ⩽ rqpb(σn, σn−1)1+ϵ

rqpb(σn+1, σn) ⩽ λ(1+ϵ)n
,

where 0 < λ < 1 for n = 1, this is the inequality at the bottom. By induction

rqpb(σn+2, σn+1) ⩽ rqpb(σn+1, σn)1+ϵ ⩽ (λ(1+ϵ)n
)1+ϵ = λ(1+ϵ)(n+1)

Since (1 + ϵ)n ⩾ 1 + nϵ and since λ < 1.

rqpb(σn+1, σn) ⩽ λ1+nϵ = λn

for all n, where p = λϵ < 1. This implies :

rqpb(σn+k, σn) ⩽ λ(en+k−1 + en+k−2 + · · · + e
′

)

= λen(
1 − ek

1 − e
) = cpn,

where c = λen( 1−ek

1−e ) for some integer k, from which it follows that σn forms a Cauchy sequence in (X, rqpb)
and then it converge to some z ∈ X. Assume that z , Tz.

By letting σ = σn and η = z, we obtain for all n, which leads to rqpb(z,Tz) = 0. Then Tz = z. Thus T
has a fixed point in X.

In our next result, we will prove the existence of the fixed point using ψ1–interpolative Hardy–Rogers type
contraction in the framework of rqpb space.

Definition 3.2. Let (X, rqpb, s) be a rectangular quasi partial b–metric space and T, 1 : X −→ X be a self–mappings
on X. We say that T is ψ1–interpolative Hardy Rogers type contraction if there exists a continuous ψ ∈ Ψ and
α, β, γ ∈ (0, 1) such that

rqpb(Tσ,Tη) ⩽ ψ(
[
rqpb(1σ, 1η)

]α . [rqpb(1σ,T σ)
]β . [rqpb(1η,Tη)

]γ .
1
3s
[
rqpb(1σ,Tη) + rqpb(1η,Tσ)

]1−α−β−γ (5)

is satisfied for all σ, η ∈ X such that Tσ , 1σ,Tη , 1y and 1σ , 1η.

Theorem 3.3. Let (X, rqpb, s) be a complete rectangular quasi–partial b–metric space and T is a 1–interpolative
Hardy-Rogers type contraction. Suppose that Tσ ⊆ 1σ such that 1σ is closed. Then, T and g have a coincidence point
in X.

Proof. Let σ0 ∈ X, since Tσ ⊆ 1σ, we can define inductively a sequence σn such that σ0 = σ, and 1σn+1 = Tσn
for all integer n. If there exist n ∈ 0, 1, 2, 3, .. such that 1σn = Txn then σn is a coincidence point of g and T.
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Assume that 1σn , Tσn for all n. By equation 5, we obtain

rqpb(Tσn+1,Tσn) ⩽ ψ(
[
rqpb(1σn+1, 1σn)

]α . [rqpb(1σn+1,Tσn+1)
]β . [rqpb(1σn,Tσn)

]γ .
1
3s
[
rqpb(1σn+1,Tσn) + rqpb(1σn,Tσn+1)

]1−α−β−γ
⩽ ψ(
[
rqpb(Tσn,Tσn−1)

]α . [rqpb(Tσn,Tσn+1)
]β . [rqpb(Tσn−1,Tσn)

]γ .
1
3s
[
rqpb(Tσn,Tσn) + rqpb(Tσn−1,Tσn+1)

]1−α−β−γ
⩽ ψ((

[
rqpb(Tσn,Tσn−1)

]α . [rqpb(Tσn−1,Tσn)
]γ . [rqpb(Tσn,Tσn+1)

]β .
1
3s
[
srqpb(σn+1, σn+2) + srqpb(σn+2, σn) + srqpb(σn, σn−1)

]1−α−β−γ)

⩽ ψ((
[
rqpb(Tσn,Tσn−1)

]α . [rqpb(Tσn−1,Tσn)
]γ . [rqpb(Tσn,Tσn+1)

]β .[
rqpb(Tσn,Tσn−1)

]1−α−β−γ). (6)
Using the fact ψ(t) < t for each t > 0,

rqpb(Tσn+1,Tσn) ⩽ ψ(
[
rqpb(Tσn,Tσn−1)

]α . [rqpb(Tσn−1,Tσn)
]γ .[

rqpb(Tσn,Tσn+1)
]β . [rqpb(Tσn,Tσn−1)

]1−α−β−γ).
By equation 6, we have

⩽ (
[
rqpb(Tσn,Tσn−1)

]α . [rqpb(Tσn−1,Tσn)
]γ . [rqpb(Tσn,Tσn+1)

]β .[
rqpb(Tσn,Tσn+1)

]β . [rqpb(Tσn,Tσn−1)
]1−α−β−γ

(7)

[
rqpb(Tσn+1,Tσn)

]1−β ⩽ [rqpb(Tσn,Tσn−1)
]1−β .

rqpb(Tσn+1,Tσn) ⩽ rqpb(Tσn,Tσn−1) for all n ⩾ 1.

That is, the positive sequence {rqpb(Tσn+1,Tσn)} is monotone decreasing and consequently, there exists c ⩾ 0
such that limn→∞ rqpb(Tσn+1,Tσn) = c[

rqpb(Tσn,Tσn−1)
]1−β [rqpb(Tσn,Tσn+1)

]β ⩽ [rqpb(Tσn,Tσn−1)
]1−β [rqpb(Tσn,Tσn−1)

]β
= rqpb(Tσn,Tσn−1).

Therefore, with the equation together with the non-decreasing character of ψ, we get

rqpb(Tσn+1,Tσn) ⩽ ψ
[
rqpb(Tσn,Tσn−1)

]1−β . [rqpb(Tσn,Tσn+1)
]β

⩽ ψ
[
rqpb(Tσn,Tσn−1)

]
By repeating this arrangement, we get

rqpb(Tσn+1,Tσn) ⩽ ψ
[
rqpb(Tσn,Tσn−1

]
⩽ ψ2 [rqpb(Tσn,Tσn−1

]
⩽ · · · ⩽ ψn [rqpb(Tσ1,Tσ0

]
.

Taking n→∞ in equations and using the fact limn→∞ ψn(t) = 0 for each t > 0, we deduce that c = 0.
That is,

lim
n→∞

rqpb(Tσn+1,Tσn) = 0, (8)

We want to show that, Tσn is a cauchy sequence. Suppose on the contrary that there exists an ϵ > 0 and
subsequence {Tσmk } and {Tσnk } of {Tσn} such that nk is the smallest integers for which :

nk > mk > k, rqpb(Tσnk ,Tσnk ) ⩾ and rqpb(Tσnk−1 ,Tσmk ) < ϵ
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Consequently, we arrive

rqpb(1σnk , 1σmk ) =rqpb(Tσnk−1,Tσmk−1)
⩽ srqpb(Tσnk−1,Tσmk ) + rqpb(Tσmk ,Tσmk−1)
⩽ sϵ + srqpb(Tσmk ,Tσmk−1)

by the inequality above, we obtain

lim
k→∞

sup rqpb(Tσnk−1,Tσmk−1) = lim
k→∞

sup rqpb(1σnk , 1σmk )

⩽ sϵ

Substituting σ = σnk and η = σmk in equation 5,

ϵ ≤ rqpb(Tσnk ,Tσmk ) ⩽ ψ(
[
rqpb(1σnk , 1σmk )

]α . [rqpb(1σnk ,Tσnk )
]β . [rqpb(1σmk ,Tσmk )

]γ .
1
3s
[
rqpb(1σnk ,Tσmk ) + rqpb(1σmk ,Tσnk )

]1−α−β−γ (9)

⩽ ψ(
[
rqpb(Tσnk−1,Tσmk−1)

]α . [rqpb(Tσnk−1,Tσnk )
]β . [rqpb(Tσmk−1,Tσmk )

]γ .
1
3s
[
rqpb(Tσnk−1,Tσmk ) + rqpb(Tσmk−1,Tσnk )

]1−α−β−γ
(10)

Letting the limit as k→∞ in equation 10 and Definition 2.9,

ϵ ≤ lim
k→∞

sup rqpb(Tσnk ,Tσmk ) ≤ ψ(0) = 0.

Therefore ϵ = 0 which is a contradiction. Since Tσn and 1σn are Cauchy sequence. Let u ∈ X such that,

lim
n→∞

rqpb(Tσn,Tz) = lim
n→∞

rqpb(1σn+1, z) = 0.

As z ∈ 1X, there exist u ∈ X such that z = 1u. We shall prove that u is a coincidence point of g and T. By
equation 5

rqpb(Tσn,Tu) ⩽ ψ(
[
rqpb(1σn, 1u)

]α . [rqpb(1σn,Tσn)
]β . [rqpb(1u,Tu)

]γ .
1
3s
[
rqpb(1σn,Tu) + rqpb(1u,Tσn)

]1−α−β−γ
≤ (
[
rqpb(1σn, 1u)

]α . [rqpb(1σn,Tσn)
]β . [rqpb(1u,Tu)

]γ .
1
3s
[
rqpb(1σn,Tu) + rqpb(1u,Tσn)

]1−α−β−γ
(11)

Letting n→∞ in equation 11, we conclude that Tu = z = 1u.

Corollary 3.4. Let (X, rqpb, s) be a complete rectangular quasi partial b–metric space and T, 1 : X −→ X be a self–
mappings on X. Consider T is ψ1–interpolative Reich-Rus-Ćirić type contraction if there exists a continuous ψ ∈ Ψ
and α, β ∈ (0, 1) such that

rqpb(Tσ,Tη) ⩽ ψ(
[
rqpb(1σ, 1η)

]α . [rqpb(1σ,T σ)
]β . [rqpb(1η,Tη)

]
)1−α−β

is satisfied for all σ, η ∈ X such that Tσ , 1σ,Tη , 1y and 1σ , 1η. Suppose that Tσ ⊆ 1σ such that 1σ is closed.
Then, T and g have a coincidence point in X.
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The existence of a fixed point is simple to prove for continuous maps. The following example can justify
this result with a discontinuous map by visual illustration.

Example 3.5. Let us consider X = [0,∞) equipped with a complete rectangular quasi-partial b-metric as rqpb(σ, η) =
(σ − η)2 + σ.

We define two self mappings T and 1 as shown in Figure 2 on X as 1(σ) = σ for all σ ∈ X and

Tσ =

1 , σ ∈ [0, 3]
1
σ2 , σ ∈ (3,∞).

Figure 2: The intersection of T and g map at the point σ = 1 demonstrates the coincidence point on X = [0, 3].

T is a ψ1-interpolative Hardy–Rogers type contraction for α = 3
10 , β = 1

10 and γ = 4
10 . Taking ψ(t) = t

2 for all
t ∈ [0,∞). Consider the following cases:

Case 1: If (σ, η) = [0, 3] or σ = η for all σ ∈ [0,∞).It is obvious.
Case 2:If σ, η ∈ (3,∞) and σ , η. We have,

rqpb(Tσ,Tη) = (
1
σ2 −

1
η2 )2 +

1
σ2 ≤ 1. (12)

From equation 5,

=ψ(
[
rqpb(1σ, 1η)

]α . [rqpb(1σ,Tσ)
]β . [rqpb(1η,Tη)

]γ .
1
3s
[
rqpb(1σ,Tη) + rqpb(1η,Tσ)

]1−α−β−γ
=ψ(
[
rqpb(σ, η)

]α . [rqpb(σ,
1
σ2 )
]β
.

[
rqpb(η,

1
η2 )
]γ
.

1
3s

[
rqpb(σ,

1
η2 ) + rqpb(η,

1
σ2 )
]1−α−β−γ

=ψ(
[
(σ − η)2 + σ

]α
.
[
(σ −

1
σ2 )2 + σ

]β
.

[
(η −

1
η2 )2 + η

]γ
.

1
3s

[
(σ −

1
η2 )2 + σ + (η −

1
σ2 )2 + η

]1−α−β−γ
≥ 1

Thus, the inequality holds.

rqpb(Tσ,Tη) ⩽ ψ(
[
rqpb(1σ, 1η)

]α . [rqpb(1σ,T σ)
]β . [rqpb(1η,Tη)

]γ .
1
3s
[
rqpb(1σ,Tη) + rqpb(1η,Tσ)

]1−α−β−γ
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Figure 3: Dominance of right-hand side of equation 5 is visually checked in Figure 3. Thus the inequality holds for σ, η ∈ (3,∞).

Case 3:If σ ∈ [0, 3] \ {1} and η ∈ (3,∞). We have,

rqpb(Tσ,Tη) = (1 −
1
η2 )2 + 1 ≤ 1.79. (13)

From equation 5,

=ψ(
[
rqpb(1σ, 1η)

]α . [rqpb(1σ,Tσ)
]β . [rqpb(1η,Tη)

]γ .
1
3s
[
rqpb(1σ,Tη) + rqpb(1η,Tσ)

]1−α−β−γ
=ψ(
[
rqpb(σ, η)

]α . [rqpb(σ,
1
σ2 )
]β
.

[
rqpb(η,

1
η2 )
]γ
.

1
3s

[
rqpb(σ,

1
η2 ) + rqpb(η,

1
σ2 )
]1−α−β−γ

=ψ(
[
(σ − η)2 + σ

]α
.
[
(σ −

1
σ2 )2 + σ

]β
.

[
(η −

1
η2 )2 + η

]γ
.

1
3s

[
(σ −

1
η2 )2 + σ + (η −

1
σ2 )2 + η

]1−α−β−γ
≥ 1.79.

Hence, one is the coincidence point of g and T.

Figure 4: Dominance of right-hand side of equation 5 is visually checked in Figure 4. Thus inequality holds for σ ∈ [0, 3]\{1} and
η ∈ (3,∞). Here Figure 4 demonstrates at the point η = 1, mappings g and T satisfy 1σ = Tσ.
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4. Application in solving non-linear Fredholm integral equation

In this section, the existence of a unique solution for the non-linear Fredholm integral equation has
been proved. To apply our result, consider X = C[0, 1] to be a set of all real continuous functions on [a, b]
equipped with metric rqpb( f , 1)=| f − 1|=maxt∈[a,b] | f (t)− 1(t)| for all f , 1 ∈ C[a, b]. Then (X, rqpb) is a complete
rectangular quasi-partial b- metric space.
Let us consider the non-linear Fredholm integral equation:

σ(t) = v(t) + 1
b−a

t∫
0

K(t, s, σ(s)) ds (14)

for all t, s ∈ [a, b] and assume that K : [a, b]× [a, b]×X→ X and v : [a, b]→ R is a continuous function where
v(t) is a given function in X.

Theorem 4.1. Suppose (X, rqpb) be a rectangular quasi-partial b-metric space rqpb( f , 1) = | f −1| = maxt∈[a,b] | f (t)−
1(t)| for all f , 1 ∈ X and T, 1 : X→ X be an operator on X defined by

Tσ(t) = v(t) + 1
b−a

t∫
0

K(t, s, σ(s)) ds (15)

If there exist k ∈ [0, 1), α, β, γ ∈ (0, 1) with α+ β+γ ≤ 1 such that for all σ, η ∈ X, s, t ∈ [a, b] satisfying the following
inequality

0 ≤ K(t, s, σ(s)) − K(t, s, η(s)) ≤ kM(σ(s) − η(s))

where M = |1σ(s) − 1η(s)|α.|1σ(s) − Tσ(s)|β.|1η(s) − Tη(s)|γ. 1
3s (|1σ(s) − Tη(s)| + |1η(s) − Tσ(s)|)1−α−β−γ

Then the integral equation has a unique solution in X.

Proof. Since,

|Tσ(t) − Tη(t)| ≤
1
|b − a|

t∫
0

|K(t, s, σ(s)) − K(t, s, η(s))|ds (16)

≤
1
|b − a|

t∫
0

M|σ(s) − η(s)|ds

≤
k
|b − a|

t∫
0

(|1σ(s) − 1η(s)|α.|1σ(s) − Tσ(s)|β.|1η(s) − Tη(s)|γ.

1
3s

(|1σ(s) − Tη(s)| + |1η(s) − Tσ(s)|)1−α−β−γ)ds

rqpb(Tσ,Tη) =max
t∈[a,b]

|Tσ(t) − Tη(t)|

≤
k
|b − a|

max
t∈[a,b]

t∫
0

(|1σ(s) − 1η(s)|α.|1σ(s) − Tσ(s)|β.|1η(s) − Tη(s)|γ.

1
3s

(|1σ(s) − Tη(s)| + |1η(s) − Tσ(s)|)1−α−β−γ)ds

≤ kB(σ, η)

Thus X = C[a, b] is a complete metric space. Therefore all the conditions are satisfied by setting ψ(t)=kt
for all t ≥ 0, where k ∈ [0, 1) and the integral equation has a solution in X.
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[1] H. Aydi, C. M. Chen, E. Karapınar, Interpolative Reich-Rus-Ćirić Type Contractions via the Branciari Distance, Mathematics, 7(2019),
84. doi:10.3390/math7010084.
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