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Abstract. In this work concerned with the existence and blow up of solutions for m (x)− biharmonic
equation with variable exponent sources. Under appropriate conditions, we discuss the stationary problem
and potential wells. By using the Faedo-Galerkin method, we prove the global existence of the solution.
We also investigate the blow up of solutions with negative initial energy.

1. Introduction

In this work, we study the subsequent m(x)-biharmonic heat equation, with variable exponent, of the
form 

zt − ∆z + ∆2z + ∆2
m(x)z = |z|

p(x)−2 z, Q = Ω × (0,T) ,
z (x, t) = ∂

∂υz (x, t) = 0, ∂Q = ∂Ω × [0,T) ,
z (x, 0) = z0 (x) , Ω,

(1)

where ∆2
m(x)z is the m(x)-biharmonic operator and is defined by

∆2
m(x)z = ∆

(
|∆z|m(x)−2 ∆z

)
.

Ω is a bounded domain with smooth boundary ∂Ω in RN, υ is the outward normal on ∂Ω. The exponents
m (.) and p (.) are given measurable functions on Ω such that

2 ≤ m− ≤ m (x) ≤ m+ <
{
∞, if N ≤ 2,
2N

N−2 , if N > 2, (2)

and

max
{
2,m+

}
< p− ≤ p+ <

{
∞, if N ≤ 4,
2N

N−4 , if N > 4, (3)
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m− = ess infx∈Ωm (x) , m+ = ess supx∈Ωm (x) ,
p− = ess infx∈Ω p (x) , p+ = ess supx∈Ω p (x) .

Wu et al. [33] studied the subsequent semilinear parabolic equation

zt = ∆z + zp(x).

The authors showed that solution blows up in finite time when the initial energy is positive. In [4], the
same problem lower bounds for the time of blow up arre derived if the solutions blow up.

Qu et al. [27] studied the following fourth-order parabolic equation

ut + ∆
2u = |u|p(x) .

They established the asymptotic behavior of solutions. Also, Liu [17] proved the local existence and blow
up of solutions the same equation.

Han [16] studied the following fourth-order parabolic equation

ut + ∆
2u − ∇ f (∇u) = h (x, t,u) . (4)

The author showed that global existence and blow up in finite time of solutions are obtained when the
initial data satisfy different conditions.

Pişkin and Butakın, in [23] considered the following parabolic-type Kirchhoff equation with the variable
exponents(

1 + |u|p(x)−2
)

ut + ∆
2u −M

(
∥∇u∥2

)
∆u = |u|q(x)−2 u.

They established the global existence of solutions by Faedo-Galerkin method. Later they prove the decay
of solutions by Komornik’s inequality.

Chuong et al. [9] investigated the problem (5)

ut + ∆
2u − ∆p(x)u = |u|q(x)−2 u. (5)

The authors proved that global existence and nonexistence of global solutions to the Cahn-Hilliard equation
with variable exponent sources and arbitrary initial energy. Recently, the existence, nonexistence and decay
of solutions for the equation with variable exponents was studied by many authors, see for instance [1–
3, 6, 7, 10, 14, 19, 22, 24, 25, 30–32, 35, 38].

Fourth-order parabolic equations, such as those manifested in fourth-order partial differential equations,
are highly versatile in their ability to mathematically represent numerous fundamental physical phenomena.
Significantly, these equations prove to be particularly well-suited for elucidating the dynamic evolution of
epitaxial growth in nanoscale thin films, involving intricate surface diffusion and crystal growth processes,
as documented in works by [20, 29, 37] and references therein. The equation denoted by reference (4) is
commonly known as the classical Cahn-Hilliard equation, originating from the modeling of phase transi-
tions observed in binary systems, encompassing alloys, glasses, thin film epitaxy, and polymer mixtures.
For a more comprehensive understanding of this subject, one can consult the scholarly contributions of [8].
For detailed information on this topics, refer to the work of [8] and papers [12, 13, 18].

Motivated by previous papers, we prove the global existence and blow up of solutions with negative
initial energy by using the technique of [9].

This paper consists of four parts in addition to the introduction. In Part 2, we give the definition of the
variable exponent Lebesgue and Sobolev spaces. In Part 3 we investigate the equilibrium state of equation
(1) and establish the stable and unstable sets. In Part 4 of this paper focuses on the primary outcomes
related to the evolution problem. The proofs for these main results are provided in the subsequent sections
of the paper.
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2. Preliminaries

In this part, we give some notations, lemmas and preliminary results in order to state the main results
of this article. Which will be used thoughout this work. Let ∥.∥ and ∥.∥r denote usual L2 (Ω) norm and Lr (Ω)
norm, respectively. Furthermore 1 ≤ r ≤ ∞ and ⟨., .⟩ Let us define the standard inner product of the Hilbert
space L2 (Ω) as ⟨., .⟩ . Additionally, we represent the norm of H2

0 as ∥.∥H2
0
.

∥z∥H2
0
=

√
∥z∥22 + ∥∇z∥22 + ∥∆z∥22.

In [16], H2
0 is a Hilbert space with inner product

⟨z, v⟩H2
0
= ⟨∆z,∆v⟩ .

Laterly H2
0 is uniformly convex and the norm ∥.∥H2

0
is equivalent to the norm ∥∆ (.)∥2 because of Poincare’s

inequality.
Let us recall some established properties concerning the Lebesgue spaces and Sobolev spaces equipped

with variable exponents (see [11], [26]).
Let q : Ω → [1,∞] be a measurable function, where Ω is a bounded domain of RN. We define the

Lebesgue space with variable exponent q (.) by

Lq(x) (Ω) =
{
z : Ω→ R, z is measurable and ρq(.) (λz) < ∞, for some λ > 0

}
,

where

ρq(.) (z) =
∫
Ω

|z|q(x) dx.

Also endowed with the Luxemburg-type norm

∥z∥q(x) = inf

λ > 0 :
∫
Ω

∣∣∣∣ z
λ

∣∣∣∣q(x)
dx ≤ 1

 ,
Lq(x) (Ω) is a Banach space.

Lemma 2.1. [11]. Suppose that q ∈ P (Ω) holds.

min
{
∥z∥q

−

q(.) , ∥z∥
q+

q(.)

}
≤ ρ (z) ≤ max

{
∥z∥q

−

q(.) , ∥z∥
q+

q(.)

}
, for all z ∈ Lq(.) (Ω) .

For q+ < ∞, the dual space of Lq(.) (Ω) is identified with Lq′(.) (Ω) with the dual variable exponent q′ ∈ T (Ω) given by

1
q (x)

+
1

q′ (x)
= 1 for a.e. x ∈ Ω,

we have 1/∞ = 0.

The Hölder inequality in addition fulfills for variable Lebesgue spaces.

Lemma 2.2. (Hölder inequality, [11]). Assume that s, q, r ∈ T (Ω) hold.

∥zv∥s(.) ≤ 2 ∥z∥q(.) ∥v∥r(.) for all z ∈ Lq(.) (Ω) , v ∈ Lr(.) (Ω) ,

1
s (x)

=
1

q (x)
+

1
r (x)

for a.e. x ∈ Ω.
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Lemma 2.3. [11]. Suppose that q, r ∈ T (Ω) . If q (x) ≤ r (x) for a.e. x ∈ Ω, then the embedding Lr(.) (Ω) ↪→ Lq(.) (Ω)
is continuous. We next define variable exponent Sobolev spaces

W1,q(.) (Ω) =
{
z ∈ Lq(.) (Ω) such that ∇z exists and |∇z| ∈ Lq(.) (Ω)

}
.

This space is a Banach space with respect to the norm

∥z∥W1,q(.)(Ω) =
(
∥z∥2q(.) + ∥∇z∥2q(.)

)1/2
.

Furthermore, let W1,q(.)
0 (Ω) be the closure of C∞0 (Ω) in W1,q(.) (Ω) . The dual of W1,q(.)

0 (Ω) is defined as W−1,q(.)
0 (Ω),

by the similarly usual Sobolev spaces, where 1
q(.) +

1
q′(.) = 1.

3. Stationary State

In this part, we deal with the stationary solutions of (1) which solve the problem{
∆2z − ∆z + ∆2

m(x)z = |z|
p(x)−2 z in Ω,

z (x) = ∂
∂υz (x) = 0 on ∂Ω,

(6)

where m (x) and p (x) satisfy (2)-(3). The energy functional E and the Nehari functional I are defined as
follows:

E (z) =
1
2
∥∇z∥22 +

1
2
∥∆z∥22 +

∫
Ω

1
m (x)

|∆z|m(x) dx −
∫
Ω

1
p (x)

|z|p(x) dx.

I (z) = ∥∇z∥22 + ∥∆z∥22 +
∫
Ω

|∆z|m(x) dx −
∫
Ω

|z|p(x) dx.

Let E and I be functionals defined over H2
0 (Ω) . They belong to the class C1 in this space, and critical points

of E correspond to weak solutions of equation (6). Moreover, the functionals E and I can be bounded as
follows:

E (z) ≥
1
2
∥∇z∥22 +

1
2
∥∆z∥22 +

1
m+

∫
Ω

|∆z|m(x) dx −
1

p−

∫
Ω

|z|p(x) dx

=

(
1
2
−

1
p−

)
∥∇z∥22 +

(
1
2
−

1
p−

)
∥∆z∥22 +

(
1

m+
−

1
p−

) ∫
Ω

|∆z|m(x) dx +
1

p−
I (z) , (7)

where

E (z) ≤
1
2
∥∇z∥22 +

1
2
∥∆z∥22 +

1
m−

∫
Ω

|∆z|m(x) dx −
1

p+

∫
Ω

|z|p(x) dx

=

(
1
2
−

1
p+

)
∥∇z∥22 +

(
1
2
−

1
p+

)
∥∆z∥22 +

(
1

m−
−

1
p+

) ∫
Ω

|∆z|m(x) dx +
1

p+
I (z) , (8)

that is

E (z) =

(
1
2
−

1
p−

)
∥∇z∥22 +

(
1
2
−

1
p−

)
∥∆z∥22 +

∫
Ω

(
1

m (x)
−

1
p−

)
|∆z|m(x) dx

+

∫
Ω

(
1

p−
−

1
p (x)

)
|z|p(x) dx +

1
p−

I (z) . (9)
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Let z ∈ H2
0 (Ω) \ {0} and consider the fibering map λ 7→ j (λ) := E (λz) for λ > 0 given by

j (λ) =
λ2

2
∥∇z∥22 +

λ2

2
∥∆z∥22 +

∫
Ω

λm(x)

m (x)
|∆z|m(x) dx −

∫
Ω

λp(x)

p (x)
|z|p(x) dx.

Lemma 3.1. Suppose that (2)-(3) hold and z ∈ H2
0 (Ω)\{0} . limλ→0+ j (λ) = 0 and limλ→∞ j (λ) = −∞. There exists

a λ∗ = λ∗ (z) > 0 such that j (λ) reaches its maximum at λ = λ∗ and consequently, we have I (λ∗z) = 0. Additionally,
the following conditions hold based on the value of I (z) :

i. 0 < λ∗ < 1, if I (z) < 0,
ii. λ∗ = 1, if I (z) = 0, and
iii. λ∗ > 1, if I (z) > 0.

Proof. We obtain

j (λ) ≥
λ2

2
∥∇z∥22 +

λ2

2
∥∆z∥22 +min

{
λm− , λm+

} ∫
Ω

λm(x)

m (x)
|∆z|m(x) dx

−max
{
λm− , λm+

} ∫
Ω

λp(x)

p (x)
|z|p(x) dx,

and

j (λ) ≤
λ2

2
∥∇z∥22 +

λ2

2
∥∆z∥22 +max

{
λm− , λm+

} ∫
Ω

λm(x)

m (x)
|∆z|m(x) dx

−min
{
λm− , λm+

} ∫
Ω

λp(x)

p (x)
|z|p(x) dx.

This, along with p− > max {2,m+} and
∫
Ω

1
p(x) |z|

p(x) dx > 0, implies statement (i). Furthermore, for sufficiently

small λ > 0, we likewise have j (λ) > 0. In other words, there exists a λ∗ > 0 such that j (λ∗) = supλ>0 j (λ).
By Fermat’s Theorem, we have j′ (λ∗) = 0. This, leads to I (λ∗z) = 0 based on the relationship I (λz) = λ j′ (λ) .

Consequently, we establish the final statement of (ii). By employing the definition of I, we obtain:

0 = I (λ∗z)

= λ2
∗ ∥∇z∥22 + λ

2
∗ ∥∆z∥22 +

∫
Ω

λm(x)
∗ |∆z|m(x) dx −

∫
Ω

λp(x)
∗ |z|

p(x) dx

=
(
λ2
∗ − λ

p−
∗

)
∥∇z∥22 +

(
λ2
∗ − λ

p−
∗

)
∥∆z∥22 +

∫
Ω

(
λ2
∗ − λ

p−
∗

)
|∆z|m(x) dx

+

∫
Ω

(
λ2
∗ − λ

p−
∗

)
|z|p(x) dx + λp−

∗ I (z) ,

which can be represented as

λp−
∗ I (z) =

(
λp−
∗ − λ

2
∗

)
∥∇z∥22 +

(
λp−
∗ − λ

2
∗

)
∥∆z∥22 +

∫
Ω

(
λp−
∗ − λ

2
∗

)
|∆z|m(x) dx +

∫
Ω

(
λp−
∗ − λ

2
∗

)
|z|p(x) dx.

Since p− > max {2,m+} ,the above equality shows that 0 < λ∗ < 1, λ∗ = 1 and λ∗ > 1 provided that I (z) < 0,
I (z) = 0 and I (z) > 0, respectively. This concludes the proof.
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Let us introduce the Nehari manifold, which is associated with the energy functional E

N =
{
z ∈ H2

0 (Ω) \ {0} : I (z) = 0
}
.

Lemma 3.1 ensures thatN is non-empty. Consequently, we can establish a definition forN as follows:

d = inf
z∈N

E (z) . (10)

The subsequent lemma holds significant importance in the proofs of our main results, particularly for the
case of low initial energy.

Lemma 3.2. Let assumptions of (2)-(3) holds and z ∈ H2
0 (Ω) \ {0} . Then

E (z) −
1

p−
I (z) ≥

d

max
{
λ2
∗ , λ

m−
∗ , λ

p+
∗

} ,
where λ∗ is as in Lemma 3.1.

Proof. For any z ∈ H2
0 (Ω) \ {0} , by Lemma 3.1, there exists λ∗ ∈ (0,∞) such that I (λ∗z) = 0. By the definition

of d and replacing z by λ∗z in (9), one has

d ≤ E (λ∗z)

=

(
1
2
−

1
p−

)
λ2
∗ ∥∇z∥22 +

(
1
2
−

1
p−

)
λ2
∗ ∥∆z∥22

+

∫
Ω

λm(x)
∗

(
1

m (x)
−

1
p−

)
|∆z|m(x) dx −

∫
Ω

λp(x)
∗

(
1

p−
−

1
p (x)

)
|z|p(x) dx

≤ max
{
λ2
∗ , λ

m−
∗ , λ

p+
∗

}
.

[(
1
2
−

1
p−

)
∥∇z∥22 +

(
1
2
−

1
p−

)
∥∆z∥22

+

∫
Ω

(
1

m (x)
−

1
p−

)
|∆z|m(x) dx −

∫
Ω

(
1

p−
−

1
p (x)

)
|z|p(x) dx


= max

{
λ2
∗ , λ

m−
∗ , λ

p+
∗

} [
E (z) −

1
p−

I (z)
]
.

Consequently, this establishes the desired outcome. The proof is completed.

Lemma 3.3. Assume that (2)-(3) hold. Then we get
i) d = infz∈H2

0(Ω)\{0} supλ>0 E (λz) .
ii) d is a positive quantity.
iii) There exists z∗ ∈ N , z∗ (x) ≥ 0 a.e. in Ω so that E (z∗) = d.

Proof. For any z ∈ H2
0 (Ω) \ {0} , by Lemma 3.1 we get

sup
λ>0

E (λz) = E (λ∗z) . (11)

By definition ofN , it follows from Lemma 3.1 that λ∗z ∈ N . Thus

E (λ∗z) ≥ inf
z∈N

E (z) = d. (12)

Combining (11) and (12),

inf
z∈H2

0(Ω)\{0}
sup
λ>0

E (λz) ≥ d. (13)
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Furthermore, for any z ∈ N , by Lemma 3.1, one has λ∗ = 1,

sup
λ>0

E (λz) = E (z) . (14)

We remove from (13) and (14) that i) holds.
Next, we will prove statement ii). As shown in (3), the function p (x) satisfies the conditions, allowing

us to establish a continuous embedding of H2
0 (Ω) into Lp(.) (Ω) . Let Sp(.) denote the optimal embedding

constant, i.e.,

Sp(.) = sup
z∈H2

0(Ω)\{0}

∥z∥p(.)

∥∆z∥2
.

Let any z ∈ H2
0 (Ω) \ {0} such that I (z) ≤ 0.We observe that

∥∆z∥22 ≤

∫
Ω

|z|p(x) dx

≤ max
{
∥z∥p

−

p(.) , ∥z∥
p+

p(.)

}
≤ max

{
Sp−

p(.) ∥∆z∥p
−

2 ,S
p+

p(.) ∥∆z∥p
+

2

}
.

Next we have to show that ∥∆z∥2 > 0 and p− > 2. So we get

∥∆z∥2 ≥ δ1, (15)

where

δ1 = min
{

S
p−

2−p−

p(.) ,S
p+

2−p+

p(.)

}
.

Constant z ∈ N ,we have z ∈ H2
0 (Ω) \ {0} and I (z) = 0. By from (7) and (15), we get

E (z) ≥

(
1
2
−

1
p−

)
∥∇z∥22 +

(
1
2
−

1
p−

)
∥∆z∥22 +

(
1

m+
−

1
p−

) ∫
Ω

|∆z|m(x) dx +
1

p−
I (z)

≥

(
1
2
−

1
p−

) (
∥∇z∥22 + ∥∆z∥22

)
≥

(
1
2
−

1
p−

)
∥∆z∥22

≥

(
1
2
−

1
p−

)
δ2

1. (16)

Then by the definition d,we get

d ≥
(

1
2
−

1
p−

)
δ2

1 > 0.

As a consequently, we show iii). By (10) there exists. Let {zn}
∞

n=1 ⊂ N be a minimizing sequence of E
such that limn→∞ E (zn) = d. It is evident that |zn| ∈ N and E (|zn|) = E (zn) . Therefore, we may assume that
zn (x) ≥ 0 almost everywhere in Ω for all n ∈N∗.
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Since limn→∞ E (zn) = d and using (16), we deduce that {zn} is bounded in H2
0 (Ω) . As H2

0 (Ω) is reflexive,
the embeddings H2

0 (Ω) ↪→ W2,m(.)
0 (Ω) and H2

0 (Ω) ↪→ Lp(.) (Ω) are compact (by (2) and (3) ). Consequently,
there exists a subsequence of {zn} ,which we will still denote by {zn} and an element z∗ ∈ H2

0 (Ω) such that:

zn ⇀ z∗ weakly in H1
0 (Ω) ,

zn ⇀ z∗ weakly in H2
0 (Ω) ,

zn ⇀ z∗ strongly in W2,m(.)
0 (Ω) ,

zn ⇀ z∗ strongly in Lp(.) (Ω) ,
zn (x) → z∗ (x) a.e. in Ω.

Then we get z∗ (x) ≥ 0 a.e. in Ω and

∥∇z∗∥2 ≤ lim
n→∞

inf ∥∇zn∥2 ,

∥∆z∗∥2 ≤ lim
n→∞

inf ∥∆zn∥2 ,∫
Ω

|∆z∗|m(x) dx = lim
n→∞

∫
Ω

|∆zn|
m(x) dx,

∫
Ω

(
1

m (x)
−

1
p−

)
|∆z∗|m(x) dx = lim

n→∞

∫
Ω

(
1

m (x)
−

1
p−

)
|∆zn|

m(x) dx,

∫
Ω

|z∗|p(x) dx = lim
n→∞

∫
Ω

|zn|
p(x) dx,

∫
Ω

(
1

p−
−

1
p (x)

)
|z∗|p(x) dx = lim

n→∞

∫
Ω

(
1

p−
−

1
p (x)

)
|zn|

p(x) dx.

We use zn instead of z (9) and notice that zn ∈ N ,

d = lim
n→∞

inf E (zn)

≥

(
1
2
−

1
p−

)
∥∇z∗∥22 +

(
1
2
−

1
p−

)
∥∆z∗∥22

+

∫
Ω

(
1

m (x)
−

1
p−

)
|∆z∗|m(x) dx +

∫
Ω

(
1

p−
−

1
p (x)

)
|z∗|p(x) dx

= E (z∗) −
1

p−
I (z∗) . (17)

Assume that I (z∗) < 0. Then, according to Lemmas 3.1 and 3.2, there exists λ∗ ∈ (0, 1) so that

E (z∗) −
1

p−
I (z∗) ≥

d

max
{
λ2
∗ , λ

m−
∗ , λ

p+
∗

} > d.

This contradicts (17), and so

I (z∗) ≥ 0. (18)
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As zn ∈ N we get I (zn) = 0,which implies that

0 = lim
n→∞

inf I (zn)

= lim
n→∞

inf

∥∇zn∥
2
2 + ∥∆zn∥

2
2 +

∫
Ω

|∆zn|
m(x) dx −

∫
Ω

|zn|
p(x) dx


≥ ∥∇z∗∥22 + ∥∆z∗∥22 +

∫
Ω

|∆z∗|m(x) dx −
∫
Ω

|z∗|p(x) dx

= I (z∗) .

Combining with (18), we can deduce that I (z∗) = 0. Now, let’s demonstrate that z∗ ∈ N . To establish this,
we must demonstrate that z∗ , 0. Since zn ∈ N and (15), we can infer from:∫

Ω

|zn|
p(x) dx = ∥∇zn∥

2
2 + ∥∆zn∥

2
2 +

∫
Ω

|∆zn|
m(x) dx ≥ δ2

1.

Passing to the limit, we get∫
Ω

|z∗|p(x) dx ≥ δ2
1 > 0.

This leads to z∗ , 0. Consequently, z∗ ∈ N and therefore E (z∗) ≥ d. By (17) and I (z∗) = 0, we have E (z∗) ≤ d.
Hence E (z∗) = d. The proof is now complete.

Next, we introduce the stable setW and unstable setU which are analogous to the works of Sattinger
[28], Payne and Sattinger [21].

W =
{
z ∈ H2

0 (Ω) : E (z) < d, I (z) > 0
}
∪ {0} ,

U =
{
z ∈ H2

0 (Ω) : E (z) < d, I (z) < 0
}
.

We also introduce

N− =
{
z ∈ H2

0 (Ω) : I (z) < 0
}
, N+ =

{
z ∈ H2

0 (Ω) : I (z) > 0
}
,

and the open sub levels of E,

Ek =
{
z ∈ H2

0 (Ω) : E (z) < k
}
.

Furthermore, the variational characterization of d also implies that

Nk := N ∩ Ek , ∅ for all k > d.

For k > d,we now define

λk = inf {∥z∥2 : z ∈ Nk} and Λk = sup {∥z∥2 : z ∈ Nk} . (19)

The non-increasing nature of k 7→ λk and non-decreasing nature of k 7→ Λk are evident. The following
lemma demonstrates that λk andΛk are finite positive values, thus confirming the nontriviality of the result
in Theorem 4.7.

Lemma 3.4. Suppose that (2)-(3) hold. Then for any k > d, λk and Λk defined in (19) satisfy 0 < λk ≤ Λk < ∞.
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Proof. Let’s begin by proving Λk < ∞. For any k > d and z ∈ Nk, we have E (z) < k and I (z) = 0. By (7) and
utilizing the embedding H2

0 (Ω) ↪→ L2 (Ω) ,we get

k > E (z) ≥
(

1
2
−

1
p−

)
∥∇z∥22 +

(
1
2
−

1
p−

)
∥∆z∥22

+

(
1

m+
−

1
p−

) ∫
Ω

|∆z|m(x) dx +
1

p−
I (z)

≥

(
1
2
−

1
p−

)
∥∆z∥22

≥

(
1
2
−

1
p−

)
S−2

2 ∥z∥
2
2 , (20)

then

∥z∥2 ≤ S2

√
2kp−

p− − 2
,

where S2 > 0 is the optimal embedding constant, i.e.,

S2 = sup
z∈H2

0(Ω)\{0}

∥z∥2
∥∆z∥2

. (21)

To indicate that

Λk ≤ S2

√
2kp−

p− − 2
< ∞.

To establish that λk > 0. We use the Gagliardo-Nirenberg inequality. There exists a positive constant A0
depending only on Ω, N, p− and p+ such that

∥z∥p
−

p− ≤ A0 ∥∆z∥θ
−p−

2 ∥z∥(1−θ
−)p−

2 ,

∥z∥p
+

p+ ≤ A0 ∥∆z∥θ
+p+

2 ∥z∥(1−θ
+)p+

2 ,

where θ± =
N(p±−2)

4p± ∈ (0, 1) by (3). Then, since z ∈ Nk andNk ⊂ N , it follows that

∥∆z∥22 ≤

∫
Ω

|z|p(x) dx

≤

∫
Ω

(
|z|p

−

+ |z|p
+
)

dx

≤ 2 max
{
∥z∥p

−

p− , ∥z∥
p+

p+

}
≤ 2A0 max

{
∥∆z∥θ

−p−

2 ∥z∥(1−θ
−)p−

2 , ∥∆z∥θ
+p+

2 ∥z∥(1−θ
+)p+

2

}
.

Taking this into account and noticing that ∥∆z∥2 > 0 and θ± < 1,we obtain

∥z∥2 ≥ min

(2A0)
1

(θ−−1)p− ∥∆z∥
2−θ−p−

(1−θ−)p−

2 , (2A0)
1

(θ+−1)p+ ∥∆z∥
2−θ+p+

(1−θ+)p+

2

 . (22)
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Moreover, it follows from (15) and (20) that

δ1 ≤ ∥∆z∥2 ≤

√
2kp−

p− − 2
:= δ2, for all z ∈ Nk.

Thus, when combined with (22), it implies

∥z∥2 ≥ min


(2A0)

1
(θ−−1)p− min

δ 2−θ−p−

(1−θ−)p−

1 , δ
2−θ−p−

(1−θ−)p−

2

 ,
(2A0)

1
(θ+−1)p+ min

δ 2−θ+p+

(1−θ+)p+

1 , δ
2−θ+p+

(1−θ+)p+

2




> 0.

Therefore, λk > 0 by the definition of λk. This completes the proof.

As a result, here we present the following lemma, which plays a crucial role in the proofs of our main
results for the case of high initial energy.

Lemma 3.5. Suppose that (2)-(3) hold, we can derive the following results
i) The point 0 is away from bothN andN−, i.e., dist (0,N) > 0 and dist (0,N−) > 0.
ii)The setN+ ∩ Ek is bounded in H2

0 (Ω) for any k > 0.

Therefore from (15), obtain

dist (0,N) = inf
z∈N
∥∆z∥2 ≥ δ1 > 0,

dist (0,N−) = inf
z∈N−
∥∆z∥2 ≥ δ1 > 0.

Let’s proceed with the proof of ii). For any z ∈ N+ ∩ Ek, we have E (z) < k and I (z) > 0. Utilizing (7), we
obtain

k > E (z) ≥
(

1
2
−

1
p−

)
∥∇z∥22 +

(
1
2
−

1
p−

)
∥∆z∥22

+

(
1

m+
−

1
p−

) ∫
Ω

|∆z|m(x) dx +
1

p−
I (z)

≥

(
1
2
−

1
p−

)
∥∆z∥22 ,

we get

∥∆z∥2 <

√
2kp−

p− − 2
,

and completes the proof.

4. Evolution Problem

Definition 4.1. Consider a function z (t) defined on the domain Ω × [0,T), where T > 0. We say z (t) is a weak
solution to equation (1) in Ω × [0,T) if the following conditions hold:

1. The function z (t) is essentially bounded in time (up to T ) and has square-integrable second-order spatial
derivatives on Ω with homogeneous Dirichlet boundary conditions. Formally z (t) ∈ L∞

(
0,T; H2

0 (Ω)
)
.
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2. The time derivative of z (t) denoted by zt is square-integrable over time (up to T ) and the spatial distribution is
also square-integrable on Ω. Formally zt ∈ L2

(
0,T; L2 (Ω)

)
.

3. The initial condition of the function z (t) is given by z (0) = z0 where z (0) = z0 ∈ H2
0 (Ω) . This initial condition

represents the state of the system at time t = 0, satisfying homogeneous Dirichlet boundary conditions on Ω.

⟨zt, v⟩ + ⟨∇z,∇v⟩ + ⟨∆z,∆v⟩ +
〈
|∆z|m(x)−2 ∆z,∆v

〉
=

〈
|z|p(x)−2 z, v

〉
, a.e. t ∈ (0,T) (23)

for any v ∈ H2
0 (Ω) . Furthermore ,

t∫
0

∥∥∥z
′

(s)
∥∥∥2

2
ds + E (z (t)) = E (z0) , 0 ≤ t < T. (24)

Definition 4.2. Suppose that z (t) be a weak solution to the problem (1). We define the maximal existence time Tmax
of z (t) as follows

i)If z (t) exists for 0 ≤ t < ∞, then Tmax = ∞.
ii)If there exists t0 > 0 such that z (t) exists for 0 ≤ t < t0, but does not exist at t0, then Tmax = t0.

Lemma 4.3. Assuming that (2)-(3) hold and J (z0) < d, we have the following statements:
i) If I (z0) < 0, then I (z (t)) < 0 for all t ∈ [0,Tmax) .
ii) If I (z0) ≥ 0, then I (z (t)) ≥ 0 for all t ∈ [0,Tmax) .

Proof. It is important to note that z < N , for all t ∈ [0,Tmax) since E (z (t)) ≤ E (z0) < d.
For i). Assume the opposite that there exists t0 ∈ (0,Tmax) such that I (z (t)) < 0 for all t ∈ [0, t0) and

I (z (t0)) = 0. Then using (15), we get ∥∆z (t)∥2 ≥ δ1, for all t ∈ [0, t0) .As t→ t0,we have ∥∆z (t0)∥2 ≥ δ1,which
implies z (t0) , 0. Consequently, z (t0) ∈ N , leading to a contradiction.

For ii). Assuming the contrary, we consider the existence of t1 ∈ (0,Tmax) such that I (z (t1)) < 0. Given
that I (z0) ≥ 0 this implies the existence of t2 ∈ [0, t1) for which I (z (t2)) = 0, as z (t2) < N . Since z (t2) = 0
it follows that z (t) = 0 for t ∈ [t2,Tmax) . Consequently, we have z (t1) = 0 which contradicts the initial
assumption of I (z (t1)) < 0. Thus, the proof is complete.

Let us define the set

S =
{
ϕ ∈ H2

0 (Ω) : ϕ is a stationary solution of (1)
}
,

and define the ω−limit set ω (z0) of the initial data z0 ∈W2,m(.)
0 (Ω) by

ω (z0) =
{
ω ∈ H2

0 (Ω) : ∃ {tn} with tn →∞ such that z (tn)→ ω
}
.

Let z (t) be a solution to (1) related with z0 ∈ H2
0 (Ω) over the maximal existence time interval [0,Tmax) .

Subsequently, we define the sets.

G =
{
z0 ∈ H2

0 (Ω) : z (t) exists globally, i.e. Tmax = ∞
}
,

G0 =
{
z0 ∈ G : z (t)→ 0 in H2

0 (Ω) as t→∞
}
,

B =
{
z0 ∈ H2

0 (Ω) : z (t) blows up in finite time, i.e. Tmax < ∞
}
.

The main results are stated as follows.

Theorem 4.4. Assume that (2)-(3) hold. If E (z0) < d and I (z0) ≥ 0, then the maximal existence time Tmax = ∞.
Furthermore, z (t) satisfies the following decay estimates:

∥z (t)∥2 ≤ ∥z0∥2 e−αt,

∥∆z (t)∥2 ≤

√
2q−

q− − 2

(
E (z0) + ∥z0∥

2
2

)
e−βt,√

E (z (t)) + ∥z (t)∥22 ≤

√(
E (z0) + ∥z0∥

2
2

)
e−βt,
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where α and β are positive constants.

Theorem 4.5. Suppose that (2)-(3) hold.
i)If z0 ∈ H2

0 (Ω) \ {0} holds E (z0) ≤ 0, then Tmax < ∞. Additionally, it is possible to obtain an upper bound for
the maximal existence time.

Tmax ≤ Cmax

{
∥z0∥

2−p−

2 , ∥z0∥
2−p+

2

}
,

where

C =
p−max

{
Sp−

p(.),2,S
p+

p(.),2

}
(
p− − 2

) (
p− −max {2,m+}

) > 0, (25)

and Sp(.),2 represents the optimal embedding constant of Lp(.) (Ω) ↪→ L2 (Ω) when p > 2, i.e.,

Sp(.),2 = sup
z∈Lp(.)(Ω)\{0}

∥z∥2
∥z∥p(.)

. (26)

ii) If 0 < E (z0) < d and I (z0) < 0, then Tmax < ∞.

Theorem 4.6. Let’s denote that (2)-(3) are satisfied, and z (t) is a global solution to (1). Then there exists a sequence
{tn} with tn →∞ as n→∞ and a function ϕ ∈ S such that

lim
n→∞

∥∥∥∆z (tn) − ∆ϕ
∥∥∥

2
= 0.

Our next result provides an abstract criterion for the vanishing and global nonexistence of solutions to (1) based
on the variational values λk and Λk.

Theorem 4.7. Assume that (2)-(3) hold and E (z0) > d. If z0 ∈ N+ and ∥z0∥2 ≤ λE(z0), then z0 ∈ G0. If z0 ∈ N− and
∥z0∥2 ≤ ΛE(z0), then z0 ∈ B.

Lastly, there is a characterization of the initial data z0 with arbitrary high energy E (z0) which results in the
phenomenon of blow-up in finite time.

Theorem 4.8. Under the conditions (2)-(3) suppose z0 ∈ H2
0 (Ω) satisfies E (z0) > d and the following inequality

holds:

∥z0∥
2
2 ≥

2p−S2
2

p− − 2
E (z0) . (27)

Then, it follows that z0 ∈ N− ∩ B. Here S2 is the constant given in (21).

5. The proof of Theorem 4.4

Assume that z := z (x, t) be a solution of equation (1) on the interval [0,Tmax) related with to the initial
data z0. Our goal is to demonstrate the uniform boundedness in time of z in the function space H2

0 (Ω) ,
which will imply Tmax = ∞ by the continuation principle. To begin, we note that since E (z0) < d and
I (z0) ≥ 0, according to Lemma 4.3, we have the inequality I (z) ≥ 0 for all t in [0,Tmax).We proceed to utilize
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the non-increasing property of E (z) and and equation (7).

E (z0) ≥ E (z)

≥

(
1
2
−

1
p−

)
∥∇z∥22 +

(
1
2
−

1
p−

)
∥∆z∥22 (28)

+

(
1

m+
−

1
p−

) ∫
Ω

|∆z|m(x) dx −
(

1
p+
−

1
p−

) ∫
Ω

|z|p(x) dx +
1

p−
I (z)

≥

(
1
2
−

1
p−

)
∥∇z∥22 +

(
1
2
−

1
p−

)
∥∆z∥22

≥

(
1
2
−

1
p−

)
∥∆z∥22 ,

which implies

∥∆z∥22 ≤

√
2p−E (z0)

p− − 2
.

Next, we will establish the decay estimates of z. Let’s consider two cases:

Case 1: If there exists a t0 ≥ 0 such that z (t0) = 0, then we can deduce that z = 0 for all t ≥ t0 and thus,
the proof is complete.

Case 2: Let’s assume that z , 0 for all t ≥ 0. Since I (z) ≥ 0 due to Lemma 3.1, we can find a parameter
λ∗ ≥ 1 such that I (λ∗z) = 0.

λp−
∗ I (z) = λp−

∗ I (z) − I (λ∗z)

=
(
λp−
∗ − λ

2
∗

)
∥∇z∥22 +

(
λp−
∗ − λ

2
∗

)
∥∆z∥22

+

∫
Ω

(
λp−
∗ − λ

m(x)
∗

)
|∆z|m(x) dx +

∫
Ω

(
λp(x)
∗ − λp

∗

)
|z|p(x) dx

≥

(
λp−
∗ − λ

2
∗

)
∥∇z∥22 +

(
λp−
∗ − λ

2
∗

)
∥∆z∥22 +

∫
Ω

(
λp−
∗ − λ

m(x)
∗

)
|∆z|m(x) dx.

Dividing the above inequality by λp−
∗ ,we have

I (z) ≥

(
1 − λ2−p−

∗

)
∥∇z∥22 +

(
1 − λ2−p−

∗

)
∥∆z∥22 (29)

+
(
1 − λm+−p−

∗

) ∫
Ω

|∆z|m(x) dx.

Next, we proceed to estimate the value of λ∗. To do this, we apply Lemma 3.2 and take into account that
λ∗ ≥ 1,

E (z (t)) −
1
q−

I (z (t)) ≥
d

max
{
λ2
∗ , λ

m−
∗ , λ

p+
∗

} = d

λp+
∗

. (30)

Moreover, we can utilize the non-increasing property of E (z) and take into account that I (z) ≥ 0, to deduce
the following:

E (z) −
1

p−
I (z) ≤ E (z0) .
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This together with (30),

λ∗ ≥

(
d

E (z0)

)1\p+

> 1. (31)

It follows from (29) and (31) that

I (z) ≥

1 −
(

d
E (z0)

) 2−p−

p+
 ∥∇z∥22 +

1 −
(

d
E (z0)

) 2−p−

p+
 ∥∇z∥22

+

1 −
(

d
E (z0)

) m+−p−

p+

∫
Ω

|∆z|m(x) dx,

where

I (z) ≥ C1 ∥∇z∥22 , I (z) ≥ C2 ∥∆z∥22 and I (z) ≥ C3

∫
Ω

|∆z|m(x) dx, (32)

then

C1 = 1 −
(

d
E (z0)

) 2−p−

p+

, C2 = 1 −
(

d
E (z0)

) 2−p−

p+

and C3 = 1 −
(

d
E (z0)

) m+−p−

p+

.

We now deal with the exponential decay of ∥z∥2 . Taking v = z in (23), we get

d
dt
∥z∥22 = −2

∥∇z∥22 + ∥∆z∥22 +
∫
Ω

|∆z|p(x) dx −
∫
Ω

|z|q(x) dx


= −2I (z) .

From this and (32), it follows that

d
dt
∥z∥22 ≤ −2

(
C1 ∥∇z∥22 + C2 ∥∆z∥22

)
≤ −2C2 ∥∆z∥22

≤ −2C2 ∥∆z∥22 ≤ −2C2S−2
2 ∥z∥

2
2 ,

where S2 is the constant given in (21). This implies that

∥z∥2 ≤ ∥z0∥2 e−αt,

where α = C2S−2
2 > 0.

Next, we will focus on the exponential decay of E (z) and ∥∆z∥2 . By utilizing equation (8) we can derive
the following:

E (z) ≤

(
1
2
−

1
p+

)
∥∇z∥22 +

(
1
2
−

1
p+

)
∥∆z∥22

+

(
1

m−
−

1
p+

) ∫
Ω

|∆z|m(x) dx +
1

p+
I (z) .

This together with (32) immediately yields

E (z) ≤ C4I (z) , (33)
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where

C4 =
1

C1

(
1
2
−

1
p+

)
+

1
C2

(
1
2
−

1
p+

)
+

1
C3

(
1

m−
−

1
p+

)
+

1
p+
> 0.

Let us define an auxiliary function

L (t) = E (z) + ∥z∥22 , for t ≥ 0. (34)

Then by (28) and (34), we get

L (t) ≤ E (z) + S−2
2 ∥z∥

2
2 ≤ C5E (z) . (35)

Here C5 = 1 + 2p−

p−−2 S2
2 > 0 and S2 is the constant given in (21). It follows from (33), (34) and (35) that

d
dt

L (t) = −
∥∥∥z
′
∥∥∥2

2
− 2I (z) ≤ −

2
C4

E (z) ≤ −
2

C4C5
L (t) .

As a result, we can conclude that

L (t) ≤ L (0) e−2βt,

where β = 1
C4C5
> 0. The inequality shown above can be reformulated as

E (z) + ∥z∥22 ≤
(
E (z0) + ∥z0∥

2
2

)
e−2βt. (36)

The proof is complete.

6. The proof of Theorem 4.5

We deal with following two cases by utilizing different methods:
Case 1: z0 ∈ H2

0 (Ω) \ {0}with E (z0) ≤ 0.We define the function

f (t) = ∥z∥22 , for all t ∈ [0,Tmax).

By the definition of E and I,we get

E (z) ≥
1
2
∥∇z∥22 +

1
2
∥∆z∥22

+
1

m+

∫
Ω

|∆z|m(x) dx −
1

p−

∫
Ω

|z|p(x) dx

≥
1

max {2,m+}

∥∇z∥22 + ∥∆z∥22 +
∫
Ω

|∆z|m(x) dx

 − 1
p−

∫
Ω

|z|p(x) dx

=

(
1

max {2,m+}
−

1
p−

) ∫
Ω

|z|p(x) dx +
1

max {2,m+}
I (z) .

Considering this fact and observing that E (z) ≤ E (z0) ≤ 0,

f
′

(t) = −2I (z)

≥ −2 max
{
2,m+

}
E (z) + 2

(
1 −

max {2,m+}
p−

) ∫
Ω

|z|p(x) dx (37)

≥ 2
(
1 −

max {2,m+}
p−

) ∫
Ω

|z|p(x) dx.
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From the obtained value p− > max {2,m+} , it follows that f ′ (t) ≥ 0 for all t ∈ [0,Tmax). This implies that

f (t) ≥ f (0) = ∥z0∥
2
2 > 0, for all t ∈ [0,Tmax). (38)

Then by (38) we can estimate
∫
Ω

|z|p(x) dx as follows:

∫
Ω

|z|p(x) dx ≥ min
{
∥z∥p

−

p(.) , ∥z∥
p+

p(.)

}
≥ min

{
S−p−

p(.),2 ∥z∥
p−

2 ,S
−p+

p(.),2 ∥z∥
p+

2

}
≥ min

{
S−p−

p(.),2,S
−p+

p(.),2

}
min

{
∥z∥p

−

2 , ∥z∥
p+

2

}
(39)

= min
{
S−p−

p(.),2,S
−p+

p(.),2

}
min

{
1, f

p+−p−

2 (t)
}

f
p−

2 (t)

≥ min
{
S−p−

p(.),2,S
−p+

p(.),2

}
min

{
1, ∥z0∥

p+−p−

2

}
f

p−

2 (t) ,

where Sp(.),2 is defined in (26). It follows from (37) and (39) that

f
′

(t) ≥ C0 f
p−

2 (t) , (40)

where

C0 = 2
(
1 −

max {2,m+}
p−

)
min

{
S−p−

p(.),2,S
−p+

p(.),2

}
min

{
1, ∥z0∥

p+−p−

2

}
> 0.

Given that f (t) > 0,we can divide the inequality (40) by f
p−

2 (t) , yielding

f
′

(t) f−p−/2 (t) ≥ C0.

By integrating the above inequality over the interval [0, t] ,we obtain

f 1− p−

2 (t) ≤ f 1− p−

2 (0) −
(

p−

2
− 1

)
C0t, for all t ∈ [0,Tmax) .

This and f 1− p−

2 (t) > 0 imply

t <
2(

p− − 2
)

C0
∥z0∥

2−p−

2 , for all t ∈ [0,Tmax) .

Therefore, we have

Tmax ≤
2(

p− − 2
)

C0
∥z0∥

2−p−

2 = C max
{
∥z0∥

2−p−

2 , ∥z0∥
2−p+

2

}
,

here, C represents the constant given in equation (25).
Case 2: Assuming a contradiction, let us suppose that Tmax = ∞ given that 0 < E (z0) < d and I (z0) < 0.

Due to I (z0) < 0, by Lemma 4.3, we deduce that I (z (t)) < 0 for all t ≥ 0. Then, with the aid of Lemmas 3.1
and 3.2, we can conclude that there exists λ∗ ∈ (0, 1) such that

E (z) −
1

p−
I (z) ≥

d

max
{
λ2
∗ , λ

m−
∗ , λ

p+
∗

} > d,
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which implies that

d
dt
∥z∥22 = −2I (z) > 2p− (d − E (z)) ≥ 2p− (d − E (z0)) .

Then we obtain

∥z∥22 = ∥z0∥
2
2 +

t∫
0

d
ds
∥z (s)∥22 ds ≥ ∥z0∥

2
2 + 2p− (d − E (z0)) t.

From the previous results and the fact that E (z0) < d, we obtain limt→∞ ∥z∥22 = ∞. Thus, we can choose
sufficiently large t0 > 0 such that

∥z (t0)∥22 >
p−(

p− − 2
) ∥z0∥

2
2 .

Let

T =

t0∫
0
∥z (s)∥22 ds( p−

2 − 1
) (
∥z (t0)∥22 −

p−

(p−−2) ∥z0∥
2
2

) + t0 ≥ t0 > 0. (41)

We now define the auxiliary function F : [0,T] −→ (0,∞) by

F (t) =

t∫
0

∥z (s)∥22 ds + (T − t) ∥z0∥
2
2 . (42)

Then

F′ (t) = ∥z∥22 − ∥z0∥
2
2 = 2

t∫
0

⟨z′ (s) , z (s)⟩ ds,

and

F′′ (t) = 2 ⟨z′ (t) , z (t)⟩ = −2I (z (t))
> 2p− (d − E (z (t)))

= 2p− (d − E (z0)) + 2p−
t∫

0

∥z′ (s)∥22 ds (43)

≥ 2p−
t∫

0

∥z′ (s)∥22 ds.

From equations (42) and (43) we can deduce

F (t) F′′ (t) ≥ 2p−
t∫

0

∥z′ (s)∥22 ds

t∫
0

∥z (s)∥22 ds. (44)
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Moreover, by Cauchy-Schwarz inequality, we get

t∫
0

∥z′ (s)∥22 ds

t∫
0

∥z (s)∥22 ds ≥


t∫

0

⟨z′ (s) , z (s)⟩ ds


2

=
1
4

(F (t))2 . (45)

Combining (44)-(45), we have

F (t) F
′′

(t) ≥
p−

2

(
F
′

(t)
)2
, for all t ∈ [0,T] . (46)

Setting G (t) = F1− p−

2 (t) ,we get

G′ (t) =
(
1 −

p−

2

)
F′ (t)

F
p−
2 (t)
, G′′ (t) =

(
1 −

p−

2

)
F (t) F′′ (t) − p−

2 (F′ (t))2

F1+ p−
2 (t)

.

Consequently, utilizing equation (46), we can establish G′′ (t) ≤ 0, for all t ∈ [0,T] thanks to . Hence, G (t) is
concave on the interval [0,T] . This implies that

G (t) ≤ G (t0) + G′ (t0) (t − t0) , for all t ∈ [0,T] .

Substituting t by T in the previous inequality and taking into account equation (41), we obtain

G (T) ≤ G (t0) + G′ (t0) (T − t0)

= F−
p−

2 (t0)
[
F (t0) −

(
p−

2
− 1

)
(T − t0) F′ (t0)

]
= 0.

This contradicts G (T) > 0, and the proof is complete.

7. The proof of Theorem 4.6

Assuming z is a global weak solution to equation (1). We can apply property i). In Theorem 4.6 to
deduce that E (z) ≥ 0 for all t ≥ 0. Thus,

t∫
0

∥z′∥22 ds = E (z0) − E (z) ≤ E (z0) .

Letting t→∞, one has

∞∫
0

∥z′∥22 ds ≤ E (z0) < ∞.

Consequently, we can find a sequence {tn}with tn →∞ as n→∞ such that

lim
n→∞
∥z′ (tn)∥2 = 0, (47)

which implies that ∥z′ (tn)∥2 ≤ A for all n ∈N, for some a constant A. Then

|I (z (tn))| = |⟨z′ (tn) , z (tn)⟩| (48)
≤ ∥z′ (tn)∥2 ∥z (tn)∥2 (49)
≤ ∥z′ (tn)∥2 S2 ∥∆z (tn)∥2 (50)
≤ AS2 ∥∆z (tn)∥2 . (51)
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By utilizing the constant S2 given in equation (21) and taking into account the non-increasing property of
E (z) , equation (51) and replacing z with z (tn) in equation (7), we can establish

E (z0) ≥ E (z (tn))

≥

(
1
2
−

1
p−

)
∥∇z (tn)∥22 +

(
1
2
−

1
p−

)
∥∆z (tn)∥22 +

(
1

m+
−

1
p−

) ∫
Ω

|∆z (tn)|m(x) dx +
1

p−
I (z (tn))

≥

(
1
2
−

1
p−

)
∥∆z (tn)∥22 −

AS2

p−
∥∆z (tn)∥2 ,

which implies that

∥∆z (tn)∥2 ≤
AS2 +

√
A2

2S2
2 + 2p−

(
p− − 2

)
E (z0)

p− − 2
. (52)

The above inequality guarantees that the sequence {z (tn)} is bounded in the function space H2
0 (Ω) . Given

that H2
0 (Ω) is a reflexive space, the embeddings H2

0 (Ω) ↪→ W2,m(.)
0 (Ω) and H2

0 (Ω) ↪→ Lp(.) (Ω) are compact
(by (2) and (3)). Consequently, there exists a subsequence of {z (tn)} and a function ϕ ∈ H2

0 (Ω) such that

z (tn) ⇀ ϕ weakly in H1
0 (Ω) , (53)

z (tn) ⇀ ϕ weakly in H2
0 (Ω) , (54)

z (tn) −→ ϕ strongly in W2,m(.)
0 (Ω) , (55)

z (tn) −→ ϕ strongly in Lp(.) (Ω) . (56)

For any v ∈ H2
0 (Ω) . We replace z with z (tn) in the equation (1). By multiplying equation(1) by v and

integrating by parts, we obtain∣∣∣∣⟨∇z (tn) ,∇v⟩ + ⟨∆z (tn) ,∆v⟩ +
〈
|∆z (tn)|m(x)−2 ∆z (tn) ,∆v

〉
−

〈
|z (tn)|p(x)−2 z (tn) , v

〉∣∣∣∣
= |⟨z′ (tn) , v⟩| ≤ ∥z′ (tn)∥2 ∥v∥2 .

From this and (47), it follows that

lim
n→∞

(
⟨∇z (tn) ,∇v⟩ + ⟨∆z (tn) ,∆v⟩ +

〈
|∆z (tn)|m(x)−2 ∆z (tn) ,∆v

〉
−

〈
|z (tn)|p(x)−2 z (tn) , v

〉)
= 0,

which, together with (53),(54), (55) and (56) yields

ϕ ∈ S. (57)

By (47), (50) and (52), we have

lim
n→∞

I (z (tn)) = 0,

which, together with (55), (56) and (57), implies

lim
n→∞

(∥∇z (tn)∥2 + ∥∆z (tn)∥2) = − lim
n→∞

∫
Ω

|∆z (tn)|m(x) dx + lim
n→∞

∫
Ω

|z (tn)|p(x) dx (58)

= −

∫
Ω

∣∣∣∆ϕ∣∣∣m(x)
dx + lim

n→∞

∫
Ω

∣∣∣ϕ∣∣∣p(x)
dx =

∥∥∥∆ϕ∥∥∥
2
.

Note that H2
0 (Ω) is uniformly convex. Then by (54) and (58), we imply (see ([5], Proposition 3.32)).

z (tn) −→ ϕ strongly in H2
0 (Ω) .

Thus, the proof is now complete.
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8. The proof of Theorems 4.7 and 4.8

We can establish the Theorems 4.7 and 4.8 by adopting the ideas presented in [15, 34]. Here’s how the
proof proceeds:

The proof of Theorem 4.7. Suppose that z0 ∈ N+ and ∥z0∥2 ≤ λE(z0). We first prove that z ∈ N+ for all
t ∈ [0,Tmax) . Indeed, assume on the contrary that there is t0 > 0 such that for all t ∈ [0, t0) and z (t0) ∈ N .
Then for all t ∈ [0, t0) ,we get

0 < |I (z)| = |⟨z′, z⟩| ≤ ∥z′∥2 ∥z∥2 ,

which gives ∥z′∥2 > 0. From this and (24), we have E (z (t0)) < E (z0) , i.e., z (t0) ∈ EE(z0). So ∥z (t0)∥2 ≥ λE(z0).
Moreover, for all t ∈ [0, t0) ,we obtain

d
dt
∥z∥22 = −2I (z) < 0.

The obtained inequality implies that ∥z (t0)∥2 < ∥z0∥2 ≤ λE(z0). This leads to a contradiction, which establishes
the claim that z ∈ N+ for all t ∈ [0,Tmax) . Considering the strictly decreasing property of E (z) it follows that
z ∈ N+ ∩ EE(z0) for all t ∈ [0,Tmax) . Additionally, based on property ii). In Lemma 3.5, z remains bounded
in H2

0 (Ω) for all t ∈ [0,Tmax) . Consequently, Tmax = ∞ indicating that z0 ∈ G. Next, we aim to prove that
z0 ∈ G0. Let any w ∈ ω (z0) ,

∥w∥2 < λE(z0) and E (w) < E (z0) ,

which implies that ω (z0) ∩N = ∅ by definition of λE(z0). And thus, ω (z0) = {0} , i.e., z0 ∈ G0.
Now we suppose that z0 ∈ N− and ∥z0∥2 ≥ ΛE(z0). By analogous arguments as above, in addition to

z ∈ N− for all t ∈ [0,Tmax) . Assume on the contrary that Tmax = ∞, then for every w ∈ ω (z0) , one has

∥w∥2 > ΛE(z0) and E (w) < E (z0) ,

which givesω (z0)∩N = ∅ by the definition ofΛE(z0).However, since dist (0,N−) > 0,we also have 0 < ω (z0) .
And thus ω (z0) = ∅,which contradicts Tmax = ∞. Thus z0 ∈ B. The proof is complete.

The proof of Theorem 4.8. Let any z ∈ H2
0 (Ω) \ {0} . By using (7), we get

E (z) ≥

(
1
2
−

1
p−

)
∥∇z∥22 +

(
1
2
−

1
p−

)
∥∆z∥22 +

(
1

m+
−

1
p−

) ∫
Ω

|∆z|m(x) dx +
1

p−
I (z)

>

(
1
2
−

1
p−

)
∥∆z∥22 +

1
p−

I (z) (59)

≥

(
1
2
−

1
p−

)
S−2

2 ∥z∥
2
2 +

1
p−

I (z) ,

where S2 is defined in (21). Replacing z by z0 in (59) and using (27), we have

E (z0) >
(

1
2
−

1
p−

)
S−2

2 ∥z0∥
2
2 +

1
p−

I (z0) ≥ E (z0) +
1

p−
I (z0) ,

which gives I (z0) < 0, i.e.,

z0 ∈ N−. (60)

For any z ∈ NE(z0),we know that I (z) = 0 and E (z) < E (z0) . Utilizing equation (59), we can deduce

∥z∥22 ≤
2p−S2

2

p− − 2
E (z0) ,

which together with (27), implies ∥z∥2 ≤ ∥z0∥2 . By taking the supremum over z ∈ NE(z0),we have

Λ
E(z0) ≤ ∥z0∥2 . (61)

Then by Theorem 4.7, it follows from (60) and (61) that z0 ∈ N− ∩ B. The proof is complete.
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