
Filomat 38:22 (2024), 7935–7940
https://doi.org/10.2298/FIL2422935L

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. An [a, b]-factor of a graph G is a spanning subgraph H in which the degree of each vertex v
satisfies a ≤ dH(v) ≤ b. In particular, when a = b = k, it is also called a k-factor. Let Q(G) and q(G) be
the Q-matrix and the Q-spectral radius of G, respectively. Motivated by the conjecture of Cho, Hyun, O
and Park [Bull. Korean Math. Soc. 58 (2021) 31–46] and the result of the spectral radius obtained by Fan,
Lin and Lu [Discrete Math. 345 (2022) 112892], we in this paper consider the Q-spectral version of the
above conjecture and present a tight sufficient condition in terms of the Q-spectral radius to guarantee the
existence of [a, b]-factors in a graph.

1. Introduction

In this paper, we only consider finite, undirected and simple graphs. For undefined notations and terms,
one can refer to [1]. Let G be a graph with vertex set V(G) and edge set E(G). The order and size of G are
denoted by |V(G)| = n and |E(G)| = e(G), respectively. For any vertex v in G, we use NG(v) to denote the
set of vertices adjacent to v and use dG(v) to denote the degree of vertex v. Let G1 and G2 be two disjoint
graphs. The disjoint union of G1 and G2 is the graph G with vertex set V(G) = V(G1) ∪ V(G2) and edge
set E(G) = E(G1) ∪ E(G2), denoted by G = G1 + G2. The joint of G1 and G2 is the graph G with vertex set
V(G) = V(G1)∪V(G2) and edge set E(G) = E(G1)∪E(G2)∪{uv|u ∈ V(G1), v ∈ V(G2)}, denoted by G = G1∨G2.

The adjacency matrix of G is defined to be the matrix A(G) = (ai j)n×n, where ai j ∈ {0, 1} and ai j = 1 if
and only if there is an edge viv j in E(G). The Q-matrix Q(G) of graph G is defined as Q(G) = A(G) + D(G),
where D(G) is the diagonal degree matrix of G, i.e., D(G) = diag{d(v1), d(v2), . . . , d(vn)}. We define the largest
eigenvalue of A(G) as the spectral radius of graph G, denoted by ρ(G), and the largest eigenvalue of Q(G)
as the Q-spectral radius of G, denoted by q(G).

Let 1 and f be two integer-valued functions defined on V(G) such that 0 ≤ 1(x) ≤ f (x) for all vertex x in
V(G). A (1, f )-factor of G is a spanning subgraph F of G satisfying 1(x) ≤ dF(x) ≤ f (x) for any vertex x in
V(G). Let a and b be two positive integers with b ≥ a ≥ 1. A (1, f )-factor is called an [a, b]-factor if 1(x) ≡ a
and f (x) ≡ b. In particular, for a positive integer k, a [k, k]-factor of a graph G is called a k-factor of G. The
study of factors in graphs has a rich history. In 1952, Tutte [9] provided a necessary and sufficient condition
for the existence of k-factors in graphs. In 1970, Lovász [7] presented a necessary and sufficient condition

2020 Mathematics Subject Classification. Primary 05C50; Secondary 05C35.
Keywords. [a, b]-factors, Q-matrix, Q-spectral radius.
Received: 13 January 2024; Revised: 26 February 2024; Accepted: 05 March 2024
Communicated by Paola Bonacini
* Corresponding author: Xuan Yang
Email addresses: lizhan@zzu.edu.cn (Zhan Li), 1423152175@qq.com (Xinpeng Wang), yang1533057372@163.com (Xuan Yang)



Z. Li et al. / Filomat 38:22 (2024), 7935–7940 7936

for the existence of (1, f )-factors in graphs, which is known as the (1, f )-factor theorem. In 2021, Cho, Hyun,
O and Park [2] proposed a conjecture on the existence of an [a, b]-factor based on the spectral radius of G.

Conjecture 1.1 ([2]). Let a, b be two positive integers such that 1 ≤ a ≤ b. Suppose that G is a graph of order
n ≥ a + 1, where n · a is even. If

ρ(G) > ρ(Ka−1 ∨ (Kn−a + K1)),

then G contains an [a, b]-factor.

In 2022, Fan, Lin and Lu [3] confirmed the above conjecture when n ≥ 3a + b − 1.

Theorem 1.1 ([3]). Let a, b be two positive integers such that 1 ≤ a ≤ b. Suppose that G is a graph of order n. If n · a
is even, n ≥ 3a + b − 1 and

ρ(G) > ρ(Ka−1 ∨ (Kn−a + K1)),

then G contains an [a, b]-factor.

In this paper, we consider the Q-spectral version of the above conjecture and prove a tight sufficient
condition based on the Q-spectral radius to assure the existence of [a, b]-factors in a graph.

Theorem 1.2. Let a, b be two positive integers such that 1 ≤ a ≤ b. Suppose that G is a graph of order n. If n · a is
even, n ≥ 3a + b − 1 and

q(G) ≥ q(Ka−1 ∨ (Kn−a + K1)),

then G contains an [a, b]-factor unless G � Ka−1 ∨ (Kn−a + K1) or K1,3.

By Theorem 1.2, we can directly obtain the following corollary.

Corollary 1.1. Let G be a graph of order n ≥ 4k − 1, n · k even and k ≥ 1. If

q(G) ≥ q(Kk−1 ∨ (Kn−k + K1)),

then G contains a k-factor unless G � Kk−1 ∨ (Kn−k + K1).

2. Preliminaries

In this section, we will present some important lemmas that support our proof. Yu and Fan [10]
presented a sufficient condition in terms of the Q-spectral radius to assure the existence of Hamilton paths
or Hamilton cycles.

Lemma 2.1 ([6],[10]). If G is a connected graph of order n ≥ 3 and

q(G) ≥ 2n − 4,

then G contains a Hamilton path unless G � K1,3. If the above inequality holds strictly, then G contains a Hamilton
cycle unless G � K2 ∨ 3K1 or K1 ∨ (Kn−2 + K1).

In 1998, Li and Cai [5] obtained a degree condition for a graph to have [a, b]-factors.

Lemma 2.2 ([5]). Let a, b be two positive integers such that b > a ≥ 1. Suppose that G is a graph of order n with
minimum degree δ(G) ≥ a. If n ≥ 2a + b + a2

−a
b and

max{dG(u), dG(v)} ≥
an

a + b

for any two nonadjacent vertices u and v of G, then G contains an [a, b]-factor.

Nishimura [8] proved a result to guarantee the existence of k-factors in a graph, which can be seen as a
special case of the above result.
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Lemma 2.3 ([8]). Let G be a connected graph of order n ≥ 4k−3 with minimum degree δ(G) ≥ k, where k is a positive
integer such that k ≥ 3. If n · k is even and

max{dG(u), dG(v)} ≥
n
2

for any two nonadjacent vertices u and v of G, then G contains a k-factor.

Lemma 2.4 ([4]). Let G be a connected graph and X = (xv)v∈V(G) be the Perron vector of Q(G). Assume that
u1v < E(G) while u2v ∈ E(G). If xu1 ≥ xu2 , then q(G − u2v + u1v) > q(G).

3. Proof of Theorem 1.2

We first prove an important lemma to support the proof our main result.

Lemma 3.1. Let G be a connected graph of order n and t ≥ 1 be an integer. If u and v are two nonadjacent vertices
such that

max{dG(u), dG(v)} ≤ t,

then q(G) ≤ q(Kt ∨ (Kn−t−2 + 2K1)), with equality if and only if G � Kt ∨ (Kn−t−2 + 2K1).

Proof. Let x be the Perron vector of Q(G) and V(G)\{u, v} = {v1, v2, . . . , vn−2}with xv1 ≥ xv2 ≥ · · · ≥ xvn−2 , where
xvi corresponds to the vertex vi. Define

G̃ = G − {uw|w ∈ NG(u)} − {vw|w ∈ NG(v)} + {uvi|1 ≤ i ≤ dG(u)} + {vvi|1 ≤ i ≤ dG(v)}.

Note that max{dG(u), dG(v)} ≤ t. By using repeatedly Lemma 2.4, we have q(G) ≤ q(G̃), where equality holds
if and only if G � G̃. Since G̃ is a spanning subgraph of Kt∨(Kn−t−2+2K1), we have q(G̃) ≤ q(Kt∨(Kn−t−2+2K1)).
Hence we obtain that

q(G) ≤ q(G̃) ≤ q(Kt ∨ (Kn−t−2 + 2K1)),

with equality if and only if G � Kt ∨ (Kn−t−2 + 2K1).

Now we are ready to give a proof of Theorem 1.2.

Proof of Theorem 1.2. Let G be a graph of order n ≥ 3a + b − 1 with q(G) ≥ q(Ka−1 ∨ (Kn−a + K1)),where n · a
is even and 1 ≤ a ≤ b. Assume that G � Ka−1 ∨ (Kn−a +K1) and K1,3. Next, it suffices to prove that G contains
an [a, b]-factor.

Claim 1. G is a connected graph.

Proof. Suppose, to the contrary, that G is not connected. Let G1,G2, . . . ,Gs (s ≥ 2) be the connected compo-
nents of G. Then

q(G) = max{q(G1), q(G2), . . . , q(Gs)} ≤ q(Kn−1) = 2n − 4.

If a ≥ 2, q(G) ≥ q(Ka−1 ∨ (Kn−a +K1)) > q(Kn−1) = 2n− 4, a contradiction. If a = 1, q(G) ≥ q(Kn−1 +K1) = 2n− 4.
Hence we have q(G) = q(Kn−1 + K1) = 2n − 4, which implies that G � Kn−1 + K1. This contradicts that
G � Ka−1 ∨ (Kn−a + K1) = Kn−1 + K1.

Claim 2. δ(G) ≥ a.

Proof. By Claim 1, we know that G is connected, and hence δ(G) ≥ 1. That is to say, Claim 2 holds for a = 1.
Next we consider the case of a ≥ 2. By contradiction, assume that 1 ≤ δ(G) ≤ a − 1. Then G is a spanning
subgraph of Ka−1 ∨ (Kn−a + K1). Hence we have

q(G) ≤ q(Ka−1 ∨ (Kn−a + K1)).

Note that q(G) ≥ q(Ka−1 ∨ (Kn−a + K1)). Hence we have q(G) = q(Ka−1 ∨ (Kn−a + K1)). This implies that
G � Ka−1 ∨ (Kn−a + K1), a contradiction.
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Now we divide the following proof into three cases according to different values of a.

Case 1. a = 1.
In this case, we have

q(G) ≥ q(Ka−1 ∨ (Kn−a + K1)) = q(Kn−1 + K1) = 2n − 4.

By Claim 1 and Lemma 2.1, we know that G contains a Hamilton path unless G � K1,3. Since n · a is even, n
is even. Then we obtain that G contains a 1-factor unless G � K1,3. Hence the result holds for a = 1.

Case 2. a = 2.
We have

q(G) ≥ q(Ka−1 ∨ (Kn−a + K1)) > q(Kn−1 + K1) = 2n − 4.

According to Claim 1 and Lemma 2.1, we know that G contains a Hamilton cycle unless G � K2 ∨ 3K1 or
K1 ∨ (Kn−2 + K1). Note that n ≥ b + 5 ≥ 7. Then it follows that G � K2 ∨ 3K1. By Claim 2, we have δ(G) ≥ 2,
which implies that G � K1 ∨ (Kn−2 + K1). Hence G contains a 2-factor.

Case 3. a ≥ 3.
Suppose that G contains no [a, b]-factors. According to Lemmas 2.2 and 2.3, there exist two nonadjacent

vertices u and v of G such that
max{dG(u), dG(v)} ≤ ⌈

an
a + b

⌉ − 1.

Let t = ⌈ an
a+b ⌉ − 1. Then we have t ≥ δ(G) ≥ a and n ≥ 2t + 1. Define G′ = Kt ∨ (Kn−t−2 + 2K1). By Lemma 3.1,

we have
q(G) ≤ q(G′). (7)

Assume that x is the Perron vector of Q(G′). By symmetry, we can take x1, x2 and x3 on the vertices of V(Kt),
V(Kn−t−2) and V(2K1), respectively. It is easy to see that

Q(G′) =

 (J + (n − 2)I)t×t Jt×(n−t−2) Jt×2
J(n−t−2)×t (J + (n − 4)I)(n−t−2)×(n−t−2) O(n−t−2)×2

J2×t O2×(n−t−2) tI2×2

 ,
where J denotes a matrix of all elements equal to 1, I denotes the identity matrix, and O denotes the matrix
of all elements equal to 0. Let q′ = q(G′). By Q(G′)x = q′x, we have

tx1 + (2n − t − 6)x2 = q′x2, (8)

tx1 + tx3 = q′x3. (9)

Since G′ contains Kn−2 as a proper subgraph and G′ � Kn, we have 2n−6 < q′ < 2n−2. Then q′−2n+t+6 > 0.
Combining (8) and (9), we can obtain that

x1 =
q′ − t

t
x3, x2 =

q′ − t
q′ − 2n + t + 6

x3. (10)

Now we let G′′ = Ka−1 ∨ (Kn−a + K1). Then the Q-matrix of G′′ is

Q(G′′) =

 (J + (n − 2)I)(a−1)×(a−1) J(a−1)×(n−a) J(a−1)×1
J(n−a)×(a−1) (J + (n − 3)I)(n−a)×(n−a) O(n−a)×1

J1×(a−1) O1×(n−a) a − 1

 .
Let y be the Perron vector of Q(G′′). Similarly, by symmetry, y takes y1, y2 and y3 on the vertices of V(Ka−1),
V(Kn−a) and V(K1), respectively. Let q′′ = q(G′′). According to Q(G′′)y = q′′y, we can obtain that

(a − 1)y1 + (2n − a − 3)y2 = q′′y2, (11)
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(a − 1)y1 + (a − 1)y3 = q′′y3. (12)

Note that Kn−1 is a proper subgraph of G′′. Then 2n − 4 < q′′ < 2n − 2. Since n ≥ 2t + 1 and t ≥ a, we have
q′′ − a + 1 > 2n − a − 3 > 0. By (11) and (12), we obtain that

y3 =
q′′ − 2n + a + 3

q′′ − a + 1
y2. (13)

Combining (10) and (13), we have

yT(q′′ − q′)x = yT(Q(G′′) −Q(G′))x
= 2(n − t − 2)x2y2 + (2n − 3t + a − 5)x3y2 − (t − a + 1)(x1y2 + x1y3 + x3y3)

= x3y2

[
2(n − t − 2)(q′ − t)

q′ − 2n + t + 6
+ (2n − 3t + a − 5) − (t − a + 1)

(
q′ − t

t

+
(q′ − t)(q′′ − 2n + a + 3)

t(q′′ − a + 1)
+

q′′ − 2n + a + 3
q′′ − a + 1

)]
= x3y2

[
2(n − t − 2)(q′ − t)

q′ − 2n + t + 6
+ 2(n − t − 2) − (t − a + 1) − (t − a + 1)·(

q′ − t
t
+

(q′ − t)(q′′ − 2n + a + 3)
t(q′′ − a + 1)

+
q′′ − 2n + a + 3

q′′ − a + 1

)]
= x3y2

[
(n − t − 2)

(
4 +

4n − 4t − 12
q′ − 2n + t + 6

)
−

q′(2q′′ − 2n + 4)(t − a + 1)
t(q′′ − a + 1)

]
.

Since q′ < 2n − 2 and 2n − 4 < q′′ < 2n − 2, we can obtain that

yT(q′′ − q′)x > x3y2

[
(n − t − 2)

(
4 +

4n − 4t − 12
(2n − 2) − 2n + t + 6

)
−

(2n − 2)[2(2n − 2) − 2n + 4](t − a + 1)
t(q′′ − a + 1)

]
= x3y2

[
4(n + 1)(n − t − 2)

t + 4
−

4n(n − 1)(t − a + 1)
t(q′′ − a + 1)

]
≥ x3y2

[
4(n + 1)(n − t − 2)

t + 4
−

4n(n − 1)(t − a + 1)
t[(2n − 4) − a + 1]

]
= x3y2

[
4(n + 1)(n − t − 2)

t + 4
−

4n(n − 1)(t − a + 1)
t(2n − a − 3)

]
=

4(n + 1)x3y2

t + 4

[
n − t − 2 −

n(n − 1)(t + 4)
t(n + 1)

·
t − a + 1

2n − a − 3

]
.

Recall that n ≥ 2t + 1. Then we have t−a+1
2n−a−3 < 1. Note that a ≥ 3. Then t−a+1

2n−a−3 ≤
t−a+1+(a−3)

2n−a−3+(a−3) =
t−2

2n−6 . Hence
we obtain that

yT(q′′ − q′)x ≥
4(n + 1)x3y2

t + 4

[
n − t − 2 −

n(n − 1)(t + 4)
t(n + 1)

·
t − 2

2n − 6

]
=

4(n + 1)x3y2

t + 4

[
n − t − 2 −

(t + 4)(t − 2)
t

·
n(n − 1)

(n + 1)(2n − 6)

]
>

4(n + 1)x3y2

t + 4

[
n − t − 2 −

(t + 4)(t − 2)
t

·
7

12

]
>

4(n + 1)x3y2

t + 4

[
2t + 1 − t − 2 −

7(t + 4)(t − 2)
12t

]
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=
(n + 1)x3y2

3(t + 4)

(
5t − 26 +

56
t

)
> 0.

This implies that
q(G′) < q(G′′).

Combining (7), we have
q(G) ≤ q(G′) < q(G′′) = q(Ka−1 ∨ (Kn−a + K1)),

a contradiction. Hence G contains an [a, b]-factor. □
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