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Recovery of the intermediate derivative of an approximately given
function

A. S. Kochurova

aLomonosov Moscow State University, Russian Federation

Abstract. The problem of numerical recovery of intermediate derivatives or a differential operator is
considered. With this aim, the norm of the leading derivative is estimated, from which optimal difference
schemes for intermediate derivatives are obtained. An example of a smooth model function is considered
for which the measurement error is simulated using real-world experimental data. The trusted probability
of the obtained estimate for the norm of the leading derivative is estimated. Intervals of trusted recovery
of intermediate derivatives are estimated.

1. Introduction

In the present paper, we will estimate the uniform norm of the leading derivative for a function x
approximately defined on a grid. This problem is important for evaluation of intermediate derivatives
of x or of some differential operator of this function. Problems of this kind appear frequently in numerous
applied problems (see, for example, [1]–[9], [13], [15]–[18], [21]), in which an estimate of the leading
derivative is assumed to be known. However, the problem of estimation of the norm of the leading
derivative from approximately given values of a function is a nontrivial problem. The purpose of the
present paper is to work out concrete recommendations for delivering estimates of this kind for the norm
of the leading derivative.

The majority of ill-posed problems on a class of smooth functions is usually solved according to the
following general scheme. In the class of smooth functions of which the original problem is posed, one
singles out the subset of functions whose derivative is bounded from above by a fixed constant. After this
the original problem is considered only on functions of this subclass. This constraint usually reduces the
ill-posed problem to that amenable to standard methods of the theory of functions. However, in general,
no estimate of the norm of (say) leading derivative (of order n) is known. This is the principal impediment
to application of many remarkable results on optimal recovery of various characteristics.

The present paper is not concerned with new methods of recovery of derivatives. Instead, we attack the
main problem for estimation of the norm of the leading derivative. This will make it possible to employ
the available methods for optimal recovery of intermediate derivative of order < n.

Let x0(·) be a smooth real function on R. One knows approximate values of x0(·) obtained from a real-
world experiment. We construct an algorithm for estimating the norm of the leading derivative of x0(·) from
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these real data. This makes its possible to numerically recover the values of all intermediate derivatives
of x0(·). The performance of the algorithm developed in the present paper is also tested on artificially
generated random noise data, the resulting estimate of the norm of the leading derivative is found to be
correct with large probability. Numerous examples of model recovery (a polynomial with noise) are given.

In the simplest case, in such problems, the values of the measured function x0(·) are known to a certain
accuracy δ (the measurement accuracy) at points {ti} ⊂ R, i.e., for each i, numbers yi ∈ R are defined so
that |yi − x0(ti)| ≤ δ. The problem is as follows: how one should act in order, for some k ∈ N, k ≤ n, to
approximately evaluate the derivative x(k)

0 (t) at a point t, which is, for example, a points from the system
{ti}? This problem is a particular case of problem of the recovery theory, and in this problem, a certain
terminology, statements of problems, and approaches to their solution have been developed.

These problems were originated and developed in the works of S.B. Stechkin [4], [5], V.V. Arestov [17],
V.N. Gabushin [7], Yu.N. Subbotin, L.V. Taikov [8], [9], A.P. Buslaev, V.M. Tikhomirov, and in a large number
of works by G.G. Magaril-Il’yaev and K.Yu. Osipenko [13], [14], [15], [16], C. A. Micchelli, T. J. Rivlin [20],
[21], and many others. For a survey on this and related topics, see [17], [18].

Let us recall some definitions, statements of problems, and methods of their solutions.
Any mappingΛ of a space sending {yi} intoR is called a method of recovery (in our problem, a method of

recovery of the derivative x(k)
0 (t)). The recovery error on a given vector of measurements {yi} corresponding

to a selected method of recovery Λ is defined by

|Λ({yi}) − x(k)
0 (t)| . (1.1)

A recovery method, under a nonadaptive approach, should not depend on the choice of x0(·) and the system
{yi}, and hence, as an error related to Λ, one uses the “worst” error, which may appear with all possible
choices of x(·) and {yi}— this leads to the concept of the error of the method

e(W,Λ, δ) = sup
x∈W, {yi}: |yi−x(ti)|≤δ ∀i

|Λ({yi}) − x(k)(t)| (1.2)

on the class of functions W. The choice of the class W depends substantially on the construction of the
so-called optimal recovery method. A recovery method Λ̂ is called optimal (on a class of functions W) if

e(W, Λ̂, δ) = E(W, δ), (1.3)

where

E(W, δ) = inf
Λ

e(W,Λ, δ) (1.4)

is the error of recovery on the class W. For the above problem, as W one uses the class of functions

W = {x(·) ∈W n+1
∞ (R) : ∥x(n+1)

∥∞ ≤ ∆}, (1.5)

where W n+1
∞ (R), n ∈ N, is the class of functions x : R → R with absolutely continuous nth derivative x(n),

essentially bounded (n+1)st derivative, and∆ > 0 should be refined later: the smaller∆, the smaller E(W, δ),
and, on the other hand, if ∆ is chosen to be so small, then the original element x0(·) ∈ W n+1

∞ (R), whose kth
derivative should be recovered, may happen to lie outside W.

So, the parameter ∆ > 0 should satisfy the inequality ∆ ≥ ∥x(n+1)
0 ∥. The equality ∆ = ∥x(n+1)

0 ∥might be the
best variant of this choice, however, ∥x(n+1)

0 ∥ is unknown. As an alternative to the best choice of ∆, we may
choose upper estimates ∥x(n+1)

0 ∥ as ∆ > 0: if ∆ ≥ ∥x(n+1)
0 ∥ exceeds ∥x(n+1)

0 ∥ only by a not very large number of
times, then the optimal method Λ̂ = Λ̂(∆) will provide a good error of recovery for (1.1).

To summarize: the recovery problem calls for the choice of a constant ∆ > 0 and W = W(∆,n), and
requires finding the recovery error E(W, δ) and explicit provision of an optimal recovery method. For
practical purposes, a satisfactory answer includes only provision of a near optimal recovery method: for
example, a method for which the recovery error from (1.2) is not worse than E(W, δ) in, say, 3 or 5 times.
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For some pretty general sets W which are symmetric about zero, evaluation of E(W, δ) and construction
of an optimal (or a near-optimal) recovery method is closely related to the study of a special recovery
problem, i.e., to a situation where x0(·) is the identically zero mapping; in this case, the recovery problem
amounts to a simpler one. As already mentioned, the statement of the general recovery problem and its
simultaneous study with the above particular case was given in [5]; later, this approach has contributed
significantly to many other recovery problems.

Let us write down this particular problem in the context of the recovery problem we are interested in:

x(k)(0)→ sup ∥x∥C := sup
t∈R
|x(t)| ≤ δ, ∥x(n+1)

∥L∞ := inf
M⊂R: µ(M)=0

sup
t∈R\M

|x(n+1)(t)| ≤ ∆ . (1.6)

For n = 2, problem (1.6) was solved by J. Hadamard [10], and in the general case, by A. N. Kolmogorov [11].
This problem is a particular case of optimal control problems (a kind of conditional extremum problems).
Such problems can be successfully solved by the well known method of Lagrange multipliers, which,
for optimal control problems, is augmented by the Pontryagin maximum principle. Such an approach is
capable of composing necessary extremum conditions and using them to single out a small set of functions
on which a solution may be delivered. However, since in addition the above problem (1.6) is convex,
the necessary and sufficient conditions for extremum for this problem coincide. As a result, for small n,
problem (1.6) can be successfully attacked by standard methods.

For problem (1.6), its value coincides with E(W, δ), which was considered in (1.1)–(1.5), and by using the
Lagrange multipliers, which appeared in the course of the solution of (1.6), one can construct an optimal
method in the general problem, for which x0(·) is not necessary the identically zero function. Let us give
some known examples (see [5])

In the case k = n = 1, the formula, which was obtained in the solution of problem (1.6),

ẋ(0) =
y1 − y−1

2h
(1.7)

gives the derivative x(1)(0) with error not exceeding
√

2δ∆ if h = (2δ/∆)1/2 is an optimal step; here it is
assumed that the function x(·) of real variable is known approximately with accuracy δ > 0 at all points
of the real line and |x(h) − y1| ≤ δ, |x(−h) − y−1| ≤ δ; we also assume that ∥x(2)

∥L∞ ≤ ∆. The same recovery
formula for the first derivative, but with a different optimal h, also holds for k = 1, n = 3.

In the case k = n = 2, the formula

ẍ(0) =
y1 − 2y0 + y−1

h2 (1.8)

gives x(2)(0) with error not exceeding
3√

3δ∆2 if h = (24δ/∆)1/3 is an optimal step. Here also, as in the
previous example, the function x(·) is known approximately at all points R, |x(h) − y1| ≤ δ, |x(0) − y0| ≤ δ,
|x(−h) − y−1| ≤ δ and ∥x(3)

∥L∞ ≤ ∆.
It is also known that, in each of the above cases, the above formula is optimal, i.e., the error of its recovery

is realized on some explicit admissible function and the error of its recovery at nodes of a uniform grid.
In the actual fact, correctness of the estimate of the norm of the leading derivative is verified from “good”
recovery (i.e., on a sufficiently large set) of intermediate derivatives (see § 6).

In the case n > 2, any optimal recovery formula for any intermediate derivative contains an infinite
number of terms (for n = 2, 3, it was obtained by Arestov [6]). For n > 3, the solution was given by Buslaev
[13]. Their results depend essentially on the previous studies by Domar [12] and Arestov.

From these examples (as well as from other solved recovery problems) one can see that the choice of ∆
(an estimate for the leading derivative) plays a principal role in the construction of a recovery method
of the derivative and estimating the error of this method. Let us consider one approach to obtaining an
approximate value of ∆. This approach will be demonstrated on an example of evaluation of the second
order derivative, for which, in order to find an optimal h in (1.8), one should estimate ∥x(3)

∥L∞ ≤ ∆.
Experimental data in these examples were provided for the study and evaluation of processing methods

by the Laboratory of the Physical Biochemistry at the National Medical Research Center of Hematology
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(Russia). These data consist of several tuples of numbers of which each represents approximate values of
the function x(t, s) of the variables t on the uniform grid {ti} for s = sk, k = 1, 2, . . . . In changing from one
tuple to a different one, the values of sk also change with constant step.

2. Structure of the ratios of divided differences for functions defined with error on a grid

Let n ∈ Z+. In the problem of estimation of the largest value of the absolute value of the (n + 1)st
derivative of a function x(·) : R → R, we know only approximate values of x̃(ti) = x(ti) + δ(ti) of this
function, which differ from x(ti) by a small quantity δ(ti) at some points ti ∈ R, ti+1 − ti = τ. In this setting,
one cannot guarantee a satisfactory estimate of ∥x(n+1)

∥C for an arbitrary sufficiently smooth function x(·)
(even if all δ(ti) are zero). Hence, in this problem, we will be focused on the case when from evaluation
of various difference relations for x(·), in which precise values of x(ti) are involved, one may still properly
judge about the quantity ∥x(n+1)

∥C, thereby providing the value which is smaller than ∥x(n+1)
∥C, but which

differs from it by a small (of order 1) factor.
Recall the definition of the successive difference of order (n + 1) for a function x:

∆n+1
jτ x(ti) =

n+1∑
k=0

(−1)n+1−kCk
n+1x(ti + kjτ) =

n+1∑
k=0

(−1)n+1−kCk
n+1x(ti+kj), Ck

n+1 =
(n + 1)!

k!(n + 1 − k)!
.

For the functions x̃, δwe proceed similarly. The linearity in x in the definition implies that

∆n+1
jτ x̃(ti) = ∆n+1

jτ x(ti) + ∆n+1
jτ δ(ti) (2.1)

or, more precisely, already for the divided difference

n+1∑
k=0

(−1)n+1−k

( jτ)n+1 Ck
n+1x̃(ti+kj) =

n+1∑
k=0

(−1)n+1−k

( jτ)n+1 Ck
n+1x(ti+kj) +

n+1∑
k=0

(−1)n+1−k

( jτ)n+1 Ck
n+1δ(ti+kj).

In addition to the order (n + 1) and the function x(·), this definition of ∆n+1
jτ x(ti) involves the initial point ti

and the step jτ at which this difference is evaluated.
It is known (see, for example, [19], p. 231) that if a function x(·) has the continuous (n + 1)st derivative

on the interval [ti, ti+(n+1) j], then

∆n+1
jτ x(ti)

( jτ)n+1 =
1

( jτ)n+1

∫
[0, jτ]n+1

x(n+1)(ti + β1 + . . . + βn+1) dβ1 . . . dβn+1 = x(n+1)(ζ), (2.2)

where ζ is some intermediate point on [ti, ti+(n+1) j].
If the values of x(ti) were known precisely, i.e., if δ(ti) would be zero for all i, then for estimation of the

modulus of the (n + 1)st derivative of x one could evaluate all possible values of ( jτ)−n−1
|∆n+1

jτ x(ti)| from all
admissible i, j, take the largest one among them, and assume that the maximum of the absolute value of
the required derivative is bounded by this quantity. Here it is worth pointing out again that the step τ
for the nodes ti at which the values of x(ti) are specified is sufficiently small, so that the sequence {x(ti)}
would correctly reflect the characteristic features of the function x(t), and, using which, one would be able
to recover, with good precision, the maximum of the absolute value of (n + 1)st derivative.

We will say that the step jτ is acceptable (for a smooth function x(·) and a set of nodes x(ti)) if, when
evaluating the largest absolute value of expressions (2.2) with given j, we will obtain a number that differs
from ∥x(n+1)

∥ by a small (of order 1) number of times. Such a decision (whether the step jτwas acceptable or
not) does not depend on the accuracy of measurements, but depends only on the character of the quantity x
being measured. This decision is taken in each case individually and is not discussed in the present paper.

If, in place of x(ti), one knows only approximate values of x̃(ti), then, by evaluating all possible values of
∆n+1

jτ x̃(ti) from i, j, we get quantities that differ from ∆n+1
jτ x(ti) by ∆n+1

jτ δ(ti). We will assume that the values of
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the function δ(ti) ∈ [−δ0, δ0] are realizations of some random variable with zero expectation. By definition
and from the condition |δ(ti)| ≤ δ0 we have

1
( jτ)n+1 |∆

n+1
jτ x̃(ti) − ∆n+1

jτ x(ti)| ≤
δ0

( jτ)n+1

n+1∑
k=0

Ck
n+1 =

(
2
jτ

)n+1

δ0. (2.3)

Since usually the absolute value of the (n + 1)st derivative of a smooth function x(·) is comparable with
the norm of ∥x(n+1)

∥ on a relatively small interval of variation of the independent argument, from (2.2) it

follows that by evaluating
∆n+1

jτ x̃(ti)

( jτ)n+1 for large j, we will obtain values that lie far from ∥x(n+1)
∥ for any choice of

the initial point ti. Hence, to estimate ∥x(n+1)
∥, one should focus on the possibly small values the parameter j,

which specifies the step size jτ for which∆n+1
jτ x̃(ti) is calculated. However, in evaluation of ( jτ)−n−1

|∆n+1
jτ x̃(ti)|

one should take j to be so large to reduce the effect of measurement errors on evaluation of these values
with increased j — in view of (2.3) the effect (on the estimate of the (n+ 1)st derivative) of the measurement
error decreases with the rate at least j−n−1.

We set bi := ( jτ)−n−1∆n+1
jτ x(ti), ci := ( jτ)−n−1∆n+1

jτ x̃(ti), ri := ( jτ)−n−1∆n+1
jτ δ(ti) for brevity, and consider the

quantities

ci

ci+1
− 1 (2.4)

for various i. We note here that all ci, bi, ri and the relations in (2.4) depend on the parameter j: ci = ci, j, bi =
bi, j, ri = ri, j. Let us illustrate, for example, the ranges of variation of the indexes i and j: j may assume
any values 1, 2, 3, . . . . If the interval, on which the sequence {x̃(ti)} is investigated, is i ∈ [N1,N2], then,
for a fixed j ∈ N, the interval of variation i, where the sequence { ci

ci+1
} is defined, reduces to [N1,N3 − 1],

N3 = N2 − j(n + 1). If it happens that N1 > N3 − 1, then for such j the sequence { ci
ci+1
} cannot be considered.

As already mentioned, regarding the quantities δ(ti), which constitute the distortion in x̃(ti), we will
assume that, for all i, their effect on x(ti) is random and is an observation of some random variable.

If, on some interval of variation of i, in

ci

ci+1
=

bi + ri

bi+1 + ri+1
(2.5)

the absolute values of ri, ri+1 are small in comparison with |bi|, |bi+1| (for example, |rs| ≤ ρ · |bs|, s = i, i+ 1, ρ is
a small positive number), then the ratios ci

ci+1
differ from bi

bi+1
by the factor θ, and, in the worst case, they are

confined in the interval [κ−1, κ], κ = 1+ρ
1−ρ :

ci

ci+1
=

bi

bi+1
· θ. (2.6)

Assuming, for the sake of clarity, that bs are values of some smooth function bs = 1(ts) at the points ts,
s = i, i + 1, and assuming that this function preserves its sign on [ti, ti+1], we write the identity (for 1(t) > 0
on [ti, ti+1]):

bi/bi+1 = exp (ln 1(ti) − ln 1(ti+1)).

Since ln 1(ti)− ln 1(ti+1) = (ln 1)′(ζ) · τ, and ζ ∈ [ti, ti+1] is some intermediate point, it is natural to expect that

bi

bi+1
− 1 = O(τ). (2.7)

Similar relations may also be written for the case 1(t) < 0 on [ti, ti+1].

Remark 2.1. If the function 1(t) changes its sign on [ti, ti+1], then bi, bi+1 do not seem to be maximal in absolute
value, and such an i can be excluded from consideration.
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Remark 2.2. Since we a priori do not know the value of the derivative in comparison with the error, the logarithmic
scale appears to be most representative for representing all possible relations between the evaluated derivative and the
measurement error.

Estimating the quantities from (2.4), we get in view of (2.6), (2.7)∣∣∣∣ ci

ci+1
− 1

∣∣∣∣ = ∣∣∣∣( bi

bi+1
− 1

)
θ + (θ − 1)

∣∣∣∣ = |θ − 1| +O(τ), θ ∈ [κ−1, κ]. (2.8)

As a result, for small positive ρ and τ, the values in (2.4) are close to zero precisely for these values of
the estimated derivative, where bi is essentially prevailed over the random component ri.

This should be manifested most markedly at the points of at which bi is greatest in absolute value,
because near the maximum point the smooth function behaves like a constant function, i.e., | bi

bi+1
− 1| is

small, and since |θ− 1| is most likely the smallest possible. Here it is worth pointing out that because of the
continuous dependence (on the index i) the smallness of the quantities in (2.4) should be observed not for
separate i, but for entire intervals of variation of i.

If, vice versa, on some interval of variation of i in (2.5), ri is prevailing in absolute value over bi, and ri+1
is prevailing over bi+1, then, due to the random behavior of ri, the values of the ratios from (2.5) are also
random.

Let us consider various relations between bi and ri. To this end, we define the quantities ci
ci+1
− 1. For

a more complete visual representation of information, we will use not the values of ci
ci+1

, but rather the
quantities

ai =

ci/ci+1 if
∣∣∣ ci

ci+1

∣∣∣ ≤ 1,
ci+1/ci if

∣∣∣ ci
ci+1

∣∣∣ > 1.
(2.9)

In the examples that follow, we will use the approximate values x̃(ti) of the function x(ti) = x(ti, s) at
the points ti = iτ, i = 0, . . . , 1484 with some fixed s. The explicit expression for τ occurs only in the factor
multiplying all the difference relations of the form bi, ci, ri, and so for brevity we may assume that τ = 1;
this will result in no changes in the relative characteristics of the form ai. From {x̃(ti)} and n = 2, n + 1 = 3,
we evaluate ∆n+1

j x̃(ti) and (ai − 1) for various steps j and for the interval [N1,N2] = [0, 1484] of variation of i
in the sequence {x̃(ti)}. In Fig. 1, we show the dependence of (ai − 1) on i for the step j = 1, 20, 40, 60.

Figure 1: Dependence of (ai − 1) on i for the step j = 1, 20, 40, 60.
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It is clear that, for j = 1, ri’s prevail over bi’s for all admissible values of i: the graph of the sequence
(ai − 1) is random, and with increasing j in the range i ∈ [N1,N1 + 400] the quantities ri start to be affected
by bi, since ai approach 1 (in the graphs, (ai − 1) tends to 0).

Remark 2.3. For j = 40 and j = 60, there is a marked registered departure of (ai − 1) from zero for numerical
evaluation near i = 125. This is related to the fact that at some point near i = 125 the third derivative of the function
x(·) is zero, and hence bi is close to zero.

3. Identification of the greatest (n + 1)st divided difference as a function of the step

Let us investigate how the behavior of the sequence ai changes as the step j increases. We will be
oriented on the appearance of a j for which one can single out one or several essential intervals of variation
of i, where the sequence {ai = ai, j} from (2.9) is close to 1.

In Fig. 1 ( j = 40 and j = 60), on the interval [1, 400], there are closed intervals (possibly of small length)
on which the calculated (1 − ai)’s are small in magnitude:

(1 − ai)≪ 1, i.e. 0 ≤ 1 − ai ≤ ϵ, i ∈ [1, 400], (3.1)

ϵ is much smaller than 1. It is natural to assume that, on these intervals, |bi| are much larger than |ri|,
and hence, bi ≈ ci, and consequently, on these intervals |bi| ≈ |ci| attain their maximum values among
the remaining ones (for the step j chosen for the calculation of ci). As a result, the maximum of |ci|, as
calculated for these intervals, gives an approximate value for ∥x(n+1)

∥ (provided that the step j is acceptable,
i.e., under the condition that the greatest in absolute value bs = ( j)−n−1∆n+1

j x(ts), as obtained already from
all possible s’s, is different from ∥x(n+1)

∥, but by a small factor).
Let us consider in more detail the verification of condition (3.1). By definition, (ai − 1) ∈ [−2, 0] for

any i. The quantity ai is the ratio of ci and ci+1, of which each is the sum of a smooth component and
a quantity of random nature — these being bi and ri for ci, and, respectively, bi+1 and ri+1 for ci+1. Recall that
ri = j−n−1∆n+1

j δ(ti) are obtained as realizations of some random variable ξ formed from δ. Let

ri ∈ [−R,R], R > 0, (3.2)

be the interval of observation of ri.
Let us consider several possible variants of behavior of the sequence {ai}. If the condition (ai − 1) > −1,

or equivalently ai > 0, is satisfied on some range of variation of i ∈ [i1, i2] ⊂ [N1,N3 − 1], then by definition
for

∣∣∣ ci
ci+1

∣∣∣ ≤ 1 we have ai =
ci

ci+1
> 0, i.e., ci and ci+1 are of the same sign,

for
∣∣∣ ci+1

ci

∣∣∣ ≤ 1 we have ai =
ci+1
ci
> 0, i.e., ci and ci+1 are of the same sign again.

Hence, for all i ∈ [i1, i2 + 1], ci = bi + ri are of the same sign. The interval [i1, i2 + 1] is quite large and ri
appear as realizations of the random variable ξ. Hence on [i1, i2 + 1] the quantity |bi| assumes values that
are approximately larger than R (though, perhaps, not for all i ∈ [i1, i2 + 1], and even, perhaps, only for
a small number of i). In general, R is not known, but in any case we approximately have R ≤ maxi∈[i1,i2+1] |bi|.
Hence, for any i0 ∈ [i1, i2 + 1], |ci0 | ≤ |bi0 | +maxi∈[i1,i2+1] |bi| holds approximately, i.e.,

max
i∈[i1,i2+1]

|bi| ≥ max
i∈[i1,i2+1]

|ci|/2. (3.3)

Let us generalize (3.3) for other assumptions on ai:

ai > α, i ∈ [i1, i2]. (3.4)

If α ∈ (0, 1), then ci, i ∈ [i1, i2 + 1], also preserve sign, and the best situation occurs if |ri0 | = |ri0+1| = R,
ri0 · ri0+1 < 0 for some i0 ∈ [i1, i2]. By definition (for ci ≥ 0),

α(bi+1 + ri+1) ≤ bi + ri ≤
bi+1 + ri+1

α
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and hence, both for ri0 = −ri0+1 = R, and for −ri0 = ri0+1 = R,

1 + α
1 − α

· R ≤ max{bi0 , bi0+1} +O(τ)

i.e.,

max
i∈[i1,i2+1]

|bi| ≥
1 + α

2
max

i∈[i1,i2+1]
|ci| +O(τ). (3.5)

This inequality holds also for α ∈ (−1, 0) (if, as above, there is i0 ∈ [i1, i2] such that |ri0 | = |ri0+1| = R,
r0 · ri0+1 < 0).

It will be convenient, in place of the above condition |ri0 | = |ri0+1| = R, ri0 · ri0+1 < 0, we will consider the
inequalities R(1 − β2) ≤ |ri0 |, |ri0+1| ≤ R(1 − β1), riri0+1 < 0, or R(1 − β2) ≤ ri0 ≤ R(1 − β1), or −R(1 − β1) ≤ ri0 ≤

−R(1 − β2), where 0 ≤ β1 < β2 < 1. Under these constraints, we will obtain an estimate similar to (3.5). To
this end, we will consider the sets

Ai := {r = {rN1 , . . . , rN3 } : R(1 − β2) ≤ |ri|, |ri+1| ≤ R(1 − β1), riri+1 < 0}, i ∈ [N1,N3 − 1],
Bi := {r = {rN1 , . . . , rN3 } : −R(1 − β1) ≤ ri ≤ −R(1 − β2)}, i ∈ [N1,N3],

Ci := {r = {rN1 , . . . , rN3 } : R(1 − β2) ≤ ri ≤ R(1 − β1)}, i ∈ [N1,N3],
(3.6)

where 0 ≤ β1 < β2 < 1. Note that

Ai = (Ci ∩ Bi+1) ∪ (Ci+1 ∩ Bi).

Let P(i, i2) := P(Āi ∩ . . . ∩ Āi2 ) be the probability that none of the events Am, m = i, . . . , i2, will hold. We also
set S(i) = P(Ci ∩ Āi ∩ . . .∩ Āi2 ), T(i) = P(Bi ∩ Āi ∩ . . .∩ Āi2 ), P(i) = P(i, i2), i = i1, . . . , i2. The quantities P(i1, i2),
as well as the similar quantities

Q1(i1, i2) = P(B̄i1 ∩ . . . ∩ B̄i2+1), Q2(i1, i2) = P(C̄i1 ∩ . . . ∩ C̄i2+1),

will appear below in the statement of the theorem. We will assume that P(i1, i2) (and Q1(i1, i2), Q2(i1, i2))
depends only on the size of the interval [i1, i2], i.e., for example, P(i1, i2) = P(m,m + i2 − i1) for all integer
m ∈ [N1,N3 − i2 + i1 − 1]. Let us use this observation to find P(i1, i2). To this end, we first, from the available
observations {xi}, compose the sequence {ci}, then compose {ri}, and find

P(i1, i2) =
M

N3 − i2 + i1 −N1
(3.7)

empirically from the available series r = {rN1 , . . . , rN3 } by evaluating the number M of elements of the set

{m ∈ [N1,N3 − i2 + i1 − 1] : r ∈ Āi, i = m, . . . ,m + i2 − i1}.

We proceed similarly for Q1(i1, i2), Q2(i1, i2). A corresponding example is given in § 5.

Remark 3.1. Let β1 = 0. Given r = {rN1 , . . . , rN3 }, we set

qi =
1
2

(
1 − sgn (riri+1)

)
·min{|ri|, |ri+1|}, i ∈ [N1,N3 − 1],

and relate Ai with qi. If qi < R(1 − β2), then
either min{|ri|, |ri+1|} ≥ R(1 − β2) and sgn (riri+1) = 1,
or min{|ri|, |ri+1|} < R(1 − β2).
In both cases, r ∈ Āi. If R(1− β2) ≤ qi, then riri+1 < 0 and R(1− β2) ≤ |ri|, |ri+1|, i.e., r ∈ Ai. Hence, the condition

R(1 − β2) ≤ qi is equivalent to r ∈ Ai. Hence,

P(Ām1 ∩ . . . ∩ Ām2 ) = P
(

max
m1≤i≤m2

qi < R(1 − β2)
)
,
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and so to find P
(

max
m1≤i≤m2

qi < q
)
, where q = R(1− β2), it suffices to construct the empirical distribution function of the

random variable

q∗s = max
s≤i≤s+m2−m1

qi,

in view of the equality P(q∗s < q) = P
(

max
m1≤i≤m2

qi < q
)
.

Even though P(i1, i2), Qm(i1, i2), m = 1, 2, should be evaluated by (3.7) (or similar formulas), the following
result provides another interesting method for evaluation of these quantities.

Lemma 3.2. We set

P{−R(1 − β1) ≤ ξ ≤ −R(1 − β2)} = γ1, P{R(1 − β2) ≤ ξ ≤ R(1 − β1)} = γ2, (3.8)

where 0 ≤ β1 < β2 < 1. Assume that 0 < γ1 +γ2 < 1 and the sequence {ri} consists of independent random variables.
Then

P(i1) := P(i1, i2) = D1λ
i2−i1+2
1 +D2λ

i2−i1+2
2 +D3λ

i2−i1+2
3 , (3.9)

here, λi, i = 1, 2, 3, are the roots of the cubic (in λ) equation

(1 − λ)λ2 + γ1γ2(γ1 + γ2 − 1 − λ) = 0, 0 < (−λ1), λ2 ≤
√
γ1γ2 < λ3 < 1,

D1 :=
λ2

1 − γ1γ2

(λ1 − λ2)(λ1 − λ3)
< 0, D2 :=

λ2
2 − γ1γ2

(λ2 − λ1)(λ2 − λ3)
≥ 0, D3 :=

λ2
3 − γ1γ2

(λ3 − λ1)(λ3 − λ2)
> 0.

Qs(i1, i2) = (1 − γs)i2−i1+2, s = 1, 2. (3.10)

Proof. Equalities (3.10) follow from independence of ri. By definition of the events Ai, i = i1, . . . , i2,

P(i + 1) = P(i) + P(Ai ∩ Āi+1 ∩ . . . ∩ Āi2 )
= P(i) + P(Ci ∩ Bi+1 ∩ Āi+1 ∩ . . . ∩ Āi2 ) + P(Ci+1 ∩ Bi ∩ Āi+1 ∩ . . . ∩ Āi2 )
= P(i) + γ2T(i + 1) + γ1S(i + 1).

We also have

γ2P(i + 1) = P(Ci ∩ (Ai ∪ Āi) ∩ Āi+1 ∩ . . . ∩ Āi2 )
= S(i) + γ2P(Bi+1 ∩ Āi+1 ∩ . . . ∩ Āi2 ) = S(i) + γ2T(i + 1)

and

γ1P(i + 1) = P(Bi ∩ (Ai ∪ Āi) ∩ Āi+1 ∩ . . . ∩ Āi2 )
= T(i) + γ1P(Ci+1 ∩ Āi+1 ∩ . . . ∩ Āi2 ) = T(i) + γ1S(i + 1).

Hence P(i)
S(i)
T(i)

 = Γ ·
 P(i + 1)

S(i + 1)
T(i + 1)

 , Γ =
 1 −γ1 −γ2
γ2 0 −γ2
γ1 −γ1 0

 .
The solution of this recurrence relation can be written as the sum

d1Z1λ
i2−i
1 + d2Z2λ

i2−i
2 + d3Z3λ

i2−i
3 (3.11)
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in eigenvectors Z1,Z2,Z3 of the matrix Γwith some coefficients d1, d2, d3, λm is the eigenvalue corresponding
to the eigenvector Zm, m = 1, 2, 3. The characteristic polynomial of Γ is as follows:

φ(λ) = (1 − λ)λ2 + γ2
1γ2 + γ1γ

2
2 − γ1γ2(λ + λ + 1 − λ) = (1 − λ)λ2 + γ1γ2(γ1 + γ2 − 1 − λ).

Since 0 < γ1 + γ2 < 1, we have φ(0) < 0. Further φ(−
√
γ1γ2) ≥ 0, and hence one of the roots (say, λ1) of the

characteristic polynomial lies in the interval [−
√
γ1γ2, 0). In addition, φ(1) < 0, and, for λ =

√
γ1γ2 ∈ (0, 1),

φ(
√
γ1γ2) = γ1γ2

(
γ1 + γ2 − 2

√
γ1γ2

)
≥ 0.

Hence, for γ1 , γ2, the equation φ(λ) = 0 has two distinct roots λ2 <
√
γ1γ2 < λ3 on (0, 1). If γ1 = γ2 = γ,

then φ(γ) = 0,

φ(λ) = (1 − λ)λ2 + γ2(2γ − 1 − λ) = −(λ − γ)(2γ2
− γ + (γ − 1)λ + λ2),

− (2γ2
− γ + (γ − 1)γ + γ2) = −2γ(2γ − 1) > 0,

and, as above, the equation φ(λ) = 0 has two distinct roots λ2 =
√
γ1γ2 < λ3 < 1 on (0, 1).

We can assume that

Zm =

 −γ1γ2 + λ2
m

−γ1γ2 + γ2λm
−γ1γ2 + γ1λm

 , m = 1, 2, 3.

Let us find d1, d2, d3 from (3.11). For i = i2, we have

P(i2) = P(Āi2 ) = 1 − 2γ1γ2,

γ2 = P(Ci2 ∩ (Ai2 ∪ Āi2 )) = S(i2) + γ2γ1,

γ1 = T(i2) + γ1γ2,

and so, for d1, d2, d3, we have the system

d1Z1 + d2Z2 + d3Z3 =

 1 − 2γ1γ2
γ2 − γ1γ2
γ1 − γ1γ2

 .
Consequently,

d1 =
λ2

1

(λ1 − λ2)(λ1 − λ3)
, d2 =

λ2
2

(λ2 − λ1)(λ2 − λ3)
, d3 =

λ2
3

(λ3 − λ1)(λ3 − λ2)
. (3.12)

Let us substitute d1, d2, d3 into (3.11). The first coordinate of the resulting vector is P(i1), which is the
right-hand side of (3.9).

We will choose β1, β2 so that P(i1, i2) (and Qs(i1, i2), s = 1, 2) will be small, for example, < 0.1. Then the
probability of the complementary event is at least 0.9, and hence, the event Ai0 (Bi0 or Ci0 ) holds, with this
probability, for some i0 ∈ [i1, i2] (i0 ∈ [i1, i2 + 1]).

Theorem 3.3. Let 0 ≤ β1 < β2 < 1, and let P(i1, i2) be the probability of the event {Āi1 ∩ . . . ∩ Āi2 }.
1) If ai ≥ α > 0 for all i ∈ [i1, i2] ⊂ [N1,N2], β1 = 0, β := β2, then

max
i∈[i1,i2+1]

|bi| +O(τ) ≥
(1 + α)(1 − β)
2 − β(1 + α)

max
i∈[i1,i2+1]

|ci| (3.13)

with probability 1 − P(i1, i2);
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2) if all ci, i1 ≤ i ≤ i2 + 1, are of the same sign (in particular, if ai > 0 for all i ∈ [i1, i2] ⊂ [N1,N2]), and s = 1 ∨ 2
is such that (−1)s+1ci ≥ 0, β1 = 0, β := β2, then

max
i∈[i1,i2+1]

|bi| ≥
1 − β
2 − β

max
i∈[i1,i2+1]

|ci| +
σ

2 − β
, σ := min

i∈[i1,i2+1]
|ci|. (3.14)

with probability 1 −Qs(i1, i2);
3) if α < 0, ai ≥ α for all i ∈ [i1, i2] ⊂ [N1,N2], 0 ≤ β1 < β2 < 1, (1 − β2 + α(1 − β1)) > 0, then

max
i∈[i1,i2+1]

|bi| ≥
1 − β2 + α − αβ1

2 − β2 − αβ1
max

i∈[i1,i2+1]
|ci|. (3.15)

with probability 1 − P(i1, i2).

Proof. Let us verify 1). If the condition (ai − 1) > −1+ α (⇔ ai > α) is satisfied on some interval of variation
of the index i ∈ [i1, i2] ⊂ [N1,N3 − 1], α > 0, then, for all i ∈ [i1, i2 + 1], ci = bi + ri are also of the same sign.
In addition, assume, for example, that all ci = bi + ri are nonnegative. For each i ∈ [i1, i2], we have two
possibilities:

either bi+1 + ri+1 ≥ bi + ri ≥ α(bi+1 + ri+1),
or, vice versa, bi + ri ≥ bi+1 + ri+1 ≥ α(bi + ri)

and, hence, in any case,

bi + ri ≥ α(bi+1 + ri+1) , bi+1 + ri+1 ≥ α(bi + ri). (3.16)

Assume that one of the events Ai0 for some fixed i0 ∈ {i1, . . . , i2} is satisfied. Then from the inequalities (3.16)
we have

bi0 (1 − α) +O(τ) ≥ αri0+1 − ri0 , bi0+1(1 − α) +O(τ) ≥ αri0 − ri0+1

and therefore,

(1 + α) · R · (1 − β) ≤ (1 − α) ·max{bi0 , bi0+1} +O(τ), R · (1 − β) ≤
1 − α
1 + α

max
i∈[i1,i2+1]

bi +O(τ).

Hence

max
i∈[i1,i2+1]

|ci| ≤ max
i∈[i1,i2+1]

|bi| + R ≤
(
1 +

1 − α
(1 + α)(1 − β)

)
max

i∈[i1,i2+1]
|bi| +O(τ),

which implies the required inequality (3.13). This estimate holds with probability 1 − P(i1, i2).
Let us prove assertion 3). Assume now that on some interval of variation of i ∈ [i1, i2] ⊂ [N1,N2], the

condition ai > α is satisfied and α < 0, 0 ≤ β1 < β2 < 1, (1 − β2 + α(1 − β1)) > 0. Assume also that some
event Ai0 , i0 ∈ [i1, i2] is satisfied. Hence, if ci0 and ci0+1 are of the same sign (for example, these values are
negative), then

bi0 ≤ −ri0 , bi0+1 ≤ −ri0+1, |ri0 | ≥ R · (1 − β2), |ri0+1| ≥ R · (1 − β2), ri0 ri0+1 < 0,

that is,

max
i∈[i1,i2+1]

|bi| ≥ max{|bi0 |, |bi0+1|} ≥ R · (1 − β2). (3.17)

We have the same result also for positive ci0 and ci0+1. If ci0 and ci0+1 are of different sign (for example, ci0 > 0
and ci0+1 < 0), then we consider two possible cases.

I) Let ri0 ≤ 0, ri0+1 ≥ 0. Then

0 < ci0 = bi0 + ri0 , ci0+1 = bi0+1 + ri0+1 < 0, |ri0 |, |ri0+1| ≥ R · (1 − β2),
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and so (3.17) holds.
II) Let ri0 > 0, ri0+1 < 0. By definition of ai0 (see (2.9)), it follows that either 0 < ci0 = bi0 + ri0 < αci0+1 =

α(bi0+1 + ri0+1) or αci0 = α(bi0 + ri0 ) < ci0+1 = bi0+1 + ri0+1 < 0.
Hence, we have either a) −bi0 +αbi0+1 > ri0 −αri0+1, or b) αri0 − ri0+1 < bi0+1−αbi0 . The inequality in case a)

can be rewritten as

(bi0+1 − bi0 ) + (−1 + α)bi0+1 > ri0 − αri0+1 or α(bi0+1 − bi0 ) + (−1 + α)bi0 > ri0 − αri0+1.

We have α < 0, and so one of the numbers (bi0+1 − bi0 ) and α(bi0+1 − bi0 ) is negative. Hence, so that one of the
inequalities (−1 + α)bi0+1 > ri0 − αri0+1 or (−1 + α)bi0 > ri0 − αri0+1 holds, and, therefore,

(1 − α) max
i∈[i1,i2+1]

|bi| ≥ R · (1 − β2) − α(−R(1 − β1)) = R · (1 − β2 + α(1 − β1)). (3.18)

The inequality in case b) can be rewritten as

α(bi0+1 − bi0 ) + (1 − α)bi0+1 > αri0 − ri0+1 or (bi0+1 − bi0 ) + (1 − α)bi0 > αri0 − ri0+1,

and so, at least one of the inequalities (1 − α)bi0+1 > αri0 − ri0+1 or (1 − α)bi0 > αri0 − ri0+1 holds, and,
therefore, estimate (3.18). The remaining case of signs ci0 < 0 and ci0+1 > 0 is investigated similarly and also
gives (3.18).

Hence, if, for all i ∈ [i1, i2] ⊂ [N1,N3 − 1], (ai − 1) > −1 + α and α < 0, (1 − β2 + α(1 − β1)) > 0, then

max
i∈[i1,i2+1]

|ci| ≤ max
i∈[i1,i2+1]

|bi| + R ≤ max
i∈[i1,i2+1]

|bi|
(
1 +

1 − α
1 − β2 + α(1 − β1)

)
,

max
i∈[i1,i2+1]

|bi| ≥
1 − β2 + α − αβ1

2 − β2 − αβ1
max
i∈[i1,i2]

|ci|. (3.19)

This estimate also holds with probability 1 − P(i1, i2).
Let us prove assertion 2). Assume that all ci = bi + ri are nonnegative for all i ∈ [i1, i2 + 1]. Hence, for

i ∈ [i1, i2 + 1],

bi + ri ≥ σ := min
z∈[i1,i2+1]

|cz|, (3.20)

1 −Q1(i1, i2) = P(Bi1 ∪ . . . ∪ Bi2+1) = P
(

min
i∈[i1,i2+1]

ri ≤ −R(1 − β)
)
≤ P

(
R(1 − β) ≤ max

i∈[i1,i2+1]
bi − σ

)
,

i.e., for all z ∈ [i1, i2 + 1],

|cz| ≤ |bz| + |rz| ≤ |bz| + ( max
i∈[i1,i2+1]

|bi| − σ)/(1 − β),

max
i∈[i1,i2+1]

|bi| ≥
1 − β
2 − β

(
max

i∈[i1,i2+1]
|ci| +

σ
1 − β

)
with probability ≥ 1 − Q1(i1, i2). If ci ≤ 0, i ∈ [i1, i2 + 1], then the above arguments apply with ci replaced
by (−ci).

As a result, if, for some α ∈ (−1, 1) and for “sufficiently” large interval [i1, i2], we have ai > α, i ∈ [i1, i2],
we may expect that the estimate

max
i∈[i1,i2]

|bi| ≥
1 + α

2
max
i∈[i1,i2]

|ci| (3.21)

holds approximately.
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Each of the estimates from Theorem 3.3 is a lower estimate for the maximum of the absolute value
of the (n + 1)st probability (with the corresponding probability). Based on these results, we give some
recommendations for choosing ∆ from (1.5) for use in formulas for derivative recovery (like (1.7), (1.8)):

– for each step j we define the sequences {ci} = {ci, j} and {ai} = {ai, j},
– from {ci} one defines the sequence {ri} for distortions associated with evaluation of difference relations;

from {ri} one constructs the empirical distribution function of the random variable ξ (see (3.2)),
– using {ai}, one chooses α and [i1, i2] to satisfy (3.4),
– for given { j, i1, i2, α}, the right-hand side of (3.21) can be used as a lower estimate for the norm of

the derivative, because as a rule this estimate is the correct one. We maximize this right-hand side over
all { j, i1, i2, α} and take the resulting value as ∆ in recovery formulas of the form (1.7) or (1.8). Here, it is
important to exclude the interval [i1, i2] of small length,

– in order to use Theorem 3.3, we choose β1, β2, and then evaluate P(i1, i2) (or Qs(i1, i2), s = 1, 2). Next, if
P(n1,n2) is not small (say, > 0.1), then one should increase β1, decrease β2, and then repeat these calculations,

– if P(n1,n2) (or Qs(i1, i2), s = 1, 2) is small (say, < 0.1), then we use the right-hand of (3.13), (3.14) or (3.15)
(depending on α) to estimate from below the norm of the derivative,

– as above, we maximize the norm of the derivative over all { j, i1, i2, α}, and take as∆ in recovery formulas
of the form (1.7) or (1.8).

So, regardless of whether the step was acceptable or not, if (3.1) is satisfied on some visible interval
(possibly of small length) of variation of the argument i, then, by evaluating the maximum of |ci| along this
interval, we obtain a lower estimate for ∥x(n+1)

∥ (as a corollary of the Theorem).
If there are no intervals on the entire interval [N1,N2] of consideration, and if the step j remains

acceptable, then the value

max
i
|ci| (3.22)

can be looked upon (up to a small factor > 1) as one of the upper estimates for ∥x(n+1)
∥ (note that the

maximum in (3.22) can differ substantially from ∥x(n+1)
∥ (exceed it considerably)).

If, in the course of the above calculations, it was found that the upper and lower estimates of the
derivative differ by a not very large factor and if the “acceptability” conditions for the size of the step j are
satisfied for the upper estimate of the derivative, then in what follows one may use some average of these
two estimates as a value of ∥x(n+1)

∥— this not quite accurate replacement of ∥x(n+1)
∥ by a quantity that differs

from it by a not very large factor will not change much the accuracy of recovery of the derivative x(n): here
it is important that the error should not differ by a very large factor.

If, in the course of all calculations, one succeeds in obtaining a lower estimate for the derivative x(n+1)

only for a very large step j, then as the value of ∥x(n+1)
∥ one may use any of the upper estimates (3.22) — in

this case, the quantity ∥x(n+1)
∥ remains unknown, but with an available upper estimate. The same can be

said in this case also about the recovery error of the derivative.
In § 4, we give an example of estimation of the uniform norm of the 3rd derivative. To this end, from

a given function (a polynomial of degree 5), we form a sequence of its values on a uniform grid consisting
of 1485 knots. This sequence is augmented with a random perturbing sequence. Next, using inequalities
(3.21), we estimate the absolute value of the modulus of the 3rd derivative. This value is compared with
the exact value of the norm of the 3rd derivative of the original function (a polynomial of degree 5).

In § 5, we consider the same function on the same grid, but in this case the perturbed values of the
function are obtained using random variables.

4. Model case for the errors {δi} obtained from experimental data

In this section, we consider the errors of values of a function from a real experiment. In this case, we
find estimate (3.21) of the norm of the 3rd derivative for a model function (a given polynomial).

Assume that as a result of an experiment we have obtained approximate values x̃(ti) of some function
x(·) at some points {ti} from its domain. We also assume that the same random factors were acting in the
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course of the experiment and lead to the error in the function. We choose some value of the parameter k0,
and, from the approximate values of x̃, we construct the new sequence {x̃(ti) − 1

2k0+1

∑k0
k=−k0

x̃(ti+k)} such that

x̃(ti) −
1

2k0 + 1

k0∑
k=−k0

x̃(ti+k) =
2

2k0 + 1

k0∑
k=1

(
x̃(ti) −

x̃(ti+k) + x̃(ti−k)
2

)

=
2

2k0 + 1

k0∑
k=1

(
δ(ti) −

δ(ti+k) + δ(ti−k)
2

)
+O(τ2) = δ(ti) −

1
2k0 + 1

k0∑
k=−k0

δ(ti+k) +O(τ2), (4.1)

because
(
x(ti)−

x(ti+k)+x(ti−k)
2

)
= O(τ2) (here, k0 is a small parameter controlling the number of points around ti

which are involved in the evaluation of the mean). From the assumption that δ(ti) are observations of some
random variable with zero mean, one may assume that the values in (4.1) are approximately equal to δ(ti)
even for small k0.

Taking this into account, we consider the sequence thus constructed as a random perturbation {δ(ti)},
which affected x(·) during measurements at the points {ti}. We add this perturbation to the model function
at the points {ti}. As a model function, we take the polynomial p, and will study the error of recovery of the
norm of the leading derivative on this sequence {p̃(ti)}. The polynomial p is subject to the only condition
that, on the domain of the function x, the range of p would be approximately equal to the smallest interval
containing all values of the sequence x̃(ti). Let us give two graphs of the difference (4.1) for k0 = 2 and k0 = 5
(see Fig. 2).

Figure 2: The difference (4.1) for k0 = 2 and k0 = 5.

These dependences were obtained for the graphs of experimental data for x̃(ti) (see Fig. 3):

Figure 3: The original data and the model function.

Using the example of the sequence p̃(zi), i = 0, . . . , 1484, (see Fig. 3) constructed from the polynomial

p(z) = 45
(
(z − 1)5

− 2(z − 1)4
− (z − 1)3 + 3(z − 1)2

)
, z ∈ [0, 1.5], (4.2)
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and which has similar characteristics with the sequence x̃(ti), let us see how the estimate of the norm of the
third derivative depends on the choice of the interval in (3.4) (by a characteristic of a sequence we will mean
the difference between its greatest and smallest values; in this example, this difference is approximately 60).

In Fig. 4, we show the graphs of the analogue of the sequence (ai − 1), which is constructed for {p̃(ti)}
and for j = 5, 40, 60, 80, 100, 140.

Remark 4.1. The successive differences from (2.1), (2.2) can be naturally looked upon as the derivative of order
(n + 1) taken at the central point of the interval [ti, ti+(n+1) j] (due to symmetry considerations, the order of smallness
the difference between the precise value of the derivative at this point and bi is greater by one that the difference between
the derivative at the neighboring points and bi). To get values with increased order of accuracy not only at the central
point [ti, ti+(n+1) j], but also at different points (see (4.3)), one should replace the successive differences from (2.1), (2.2)
by different one. So, if one considers the point t +mτ of the interval [t, t + 4τ] in the problem of approximation of the
third derivative, one should replace the successive difference used in (2.1), (2.2) by

(m − 5/2)x(t) + (9 − 4m)x(t + τ) + 6(m − 2)x(t + 2τ) + (7 − 4m)x(t + 3τ) + (m − 3/2)x(t + 4τ). (4.3)

Figure 4: The sequence (ai − 1) for p̃(zi), for j = 5, 40, 60, 80, 100, 140.

In the graph of the dependence (ai − 1) on i (Fig. 4), which corresponds to j = 40, one can single out the
interval i ∈ [55, 201], on which the quantities (ai − 1), as evaluated for p̃(zi), exceed (−1 − 0.4), i.e., for this
interval, one may take the parameter α = −0.4. By calculating the largest value among |ci|, i ∈ [55, 202] and
finding the difference relation corresponding to this value, and after multiplying this relation by 1+α

2 = 0.3 (in
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accordance with (3.21)), we get a lower estimate for the norm of the third derivative, which is approximately
2633.24. If on the interval i ∈ [55, 202] one evaluates the maximum of the absolute value of the third order
difference relations for precisely given values of the polynomial p(·), we get approximately 3740.17. For the
function p(·) itself, the maximum of the absolute value of the third derivative is attained at zero and is equal
to 4590 (on the interval [0, 0.8] the absolute value decreases). So, we have approximately obtained a lower
estimate for the third derivative of the function on the interval i ∈ [0, 1359], which (see (4.2)) for the chosen
values k0 = 2, j = 40 corresponds to the interval z ∈ [0.06, 1.44] ⊂ [0, 1.5]: the value of the third central
difference for i = 0 with step 40τ corresponds approximately to the third derivative at the central point of
the interval [0, 120τ], i.e., approximately at the point 0.06, and, similarly, for the rightmost possible value
i = 1359 = 1484 − 3 j − 2k0 − 1 (at the point 1.44). The absolute value of the third derivative of the function
p(·) at the point z = 0.06 is 4146.12.

With j = 60, similar calculations give i ∈ [0, 122], α = 0.35, 1+α
2 = 0.675; the lower estimate from

approximate (exact) values of the polynomial is 3434.02 (3925.8, respectively). The interval on which the
calculations were carried out is i ∈ [0, 1299], which corresponds to z ∈ [0.09, 1.41] ⊂ [0, 1.5]. The absolute
value of the third derivative at the point z = 0.09 is 3931.47.

For other values of the parameter j, the results of estimation of the derivative are as follows:
j = 80, for i ∈ [0, 332], α = 0.55, 1+α

2 = 0.775, the lower estimate from approximate (exact) values of
the polynomial is 3561.57 (3715.48, respectively); the calculations were carried out for i ∈ [0, 1239], which
corresponds to z ∈ [0.12, 1.38] ⊂ [0, 1.5]. The absolute value of the derivative for z = 0.12 is 3721.68.

j = 100, for i ∈ [0, 320], α = 0.82, 1+α
2 = 0.91, the estimate from approximate (exact) values of the

polynomial is 3504.55 (3510.69, respectively); the calculations were carried out for i ∈ [0, 1179], which
corresponds to z ∈ [0.15, 1.35] ⊂ [0, 1.5]. The absolute value of the derivative for z = 0.15 is 3516.75.

j = 140, for i ∈ [0, 148], α = 0.93, 1+α
2 = 0.965, the estimate from approximate (exact) values of the

polynomial is 3042.28 (3117.75, respectively) the calculations were carried out for i ∈ [0, 1059], which
corresponds to z ∈ [0.21, 1.29] ⊂ [0, 1.5]. The absolute value of the derivative for z = 0.21 is 3121.47.

The above analysis was carried out in the case where the approximate values of the derivative were
calculated via the central difference relations. As a result, the analysis did not cover the points near the
end-points of [0, 1.5]. To analyse this case also, we replace everywhere the central difference by the shifted
difference from (4.3).

Figure 5 shows the analogues of the sequence (ai − 1) obtained if the successive difference is replaced by
the shifted difference (4.3) for m = 0 for the values j of the step jτ ( j = 60, 80, 100, 140):

Figure 5: The sequence (ai − 1) for the shifted difference (4.3).



A. S. Kochurov / Filomat 38:22 (2024), 7949–7970 7965

For the first graph constructed for j = 60 (see Fig. 5): on the interval i ∈ [0, 32], α = −0.33, 1+α
2 =

0.335, the lower estimate from approximately (precisely) given values of the polynomial is 2947.85 (4555.1,
respectively). For the interval i ∈ [63, 108], we get α = −0.16, 1+α

2 = 0.42, and the lower estimate, as obtained
from approximately given values, is 4641.13, which exceeds ∥p∥ = 4590. The range on which this estimate
was conducted is the interval i ∈ [0, 1239], which corresponds to z ∈ [0, 1.25] ⊂ [0, 1.5].

For j = 80, on the interval i ∈ [0, 331], α = 0.05, 1+α
2 = 0.5025. The lower estimate from approximate

(exact) values is 4268.75 (4527.96, respectively). The range on which this estimate was conducted is the
interval i ∈ [0, 1159], which corresponds to z ∈ [0, 1.17] ⊂ [0, 1.5].

For j = 100, on the interval i ∈ [0, 343], α = 0.53, 1+α
2 = 0.765. The lower estimate from approximate

(exact) values is 4444.94 (4493.06, respectively). The range on which this estimate was conducted is the
interval i ∈ [0, 1079], which corresponds to z ∈ [0, 1.09] ⊂ [0, 1.5].

5. Estimating the norm of the leading derivative for random distribution of divided differences {ri}

In this section, we consider the same model function (a polynomial) as in § 4 subject to the same noise.
The norm of the leading derivative is estimated via Theorem 3.3. We search for a sufficiently large interval
[i1, i2] ∋ i on which the infimum α − 1 of ai − 1 (see (2.9)) is greatest. As distinct from § 4, here we will use
the parameters β1, β2 chosen from the condition that the estimate from Theorem 3.3 would be satisfied with
probability ≥ 0.9. It turns out, that the estimate from § 4 is sufficiently close to that obtained in this section.

In order to use Theorem 3.3 to estimate the norm of the leading derivative, we find approximative values
of the events considered in § 3. As in § 4, ci is the sum of bi (the value of a given smooth function at ti) and ri
(the ith observation of the random variable ξwhich is independent of i and having zero mean). In analogy
with § 4, we single out the random component ri that specifies the distortions involved in evaluations of bi:
for a fixed j, consider the difference between ci and some average value over these values:

ci −
1

2k0 + 1

k0∑
k=−k0

ci+k = (bi + ri) −
1

2k0 + 1

k0∑
k=−k0

(bi+k + ri+k) = ri −
1

2k0 + 1

k0∑
k=−k0

ri+k +O(τ2) (5.1)

(see also (4.1)), which is approximately ri.
In Fig. 6 we show the graph of the empirical distribution function for ξ from the observations ri of this

functions, which are calculated by (5.1) with j = 40.
For the values of i close to 1, a small effect of quantities from O(τ2) from (5.1) is manifested, and hence

the distribution function was evaluated for the indexes starting from i = 100 (see Fig. 6).

Figure 6: The distribution function of ri.

In this case, R is approximately 5372. Let us use this function for estimates (3.15) for the model function p̃.
Let i ∈ [55, 201] and α = −0.4 (see p. 7963). To use Theorem 3.3, we specify the desired value of the empirical
probability 1 − P(i1, i2) (for example, 0.9). Then, for each 0 ≤ β1 < β2 < 1, from the resulting distribution



A. S. Kochurov / Filomat 38:22 (2024), 7949–7970 7966

function we can find γ1 and γ2, etc., and further, using Lemma 3.2, evaluate 1 − P(i1, i2). This quantity
grows with increasing β2 (or with decreasing β1). Hence, for each sufficiently large β2, there is β1 such that
1−P(i1, i2) ≈ 0.9. For such β2, β1, let us estimate the derivative from the right-hand side of (3.15). By varying
β2 we find the greatest possible estimate of the norm of the derivative. Let β1 ≈ 0.0.427, β2 ≈ 0.63. Then
γ1 ≈ 0.0919905, γ2 ≈ 0.0911975, and (3.19) holds with empirical probability ≈ 90%. In this case, inequality
(3.19) is the estimate for the norm of the 3rd derivative:

max
i∈[55,202]

|bi| ≥
1 − β2 + α − αβ1

2 − β2 − αβ1
max

i∈[55,202]
|ci| ≈ 802.09.

This estimate is obtained assuming that {ri} are independent. If 1 − P(i1, i2) is evaluated via (3.7) without
this independence assumption, we can chose β1 ≈ 0.385, β2 ≈ 0.585, which gives

max
i∈[55,202]

|bi| ≥ 945.44.

If [55, 201] is reduced to [55, 113] ∋ i, then we can chose α = 0, and σ from (3.14) is also 0. In this case, we
can apply estimate (3.14). Since ci ≥ 0 for i ∈ [55, 114], we set β = 0.42 in Theorem 3.3, 2). Then, assuming
that {ri} are independent, we have, with probability 0.9,

max
i∈[55,114]

|bi| ≥
1 − β
2 − β

· max
i∈[55,114]

|ci| ≈ 3222.11 .

If 1 − Q1(i1, i2) is evaluated without this independence assumption, then by a formula similar to (3.7), we
have β = 0.435, which gives a slightly smaller estimate for maxi∈[55,114] |bi|.

Remark 5.1. To refine P(i1, i2), Q1(i1, i2), Q2(i1, i2), which were calculated by (3.7) (and similar formulas), we used
not only {ri,k∗ }, which were obtained from {x(ti, sk)}i for some k = k∗, but also for all k (see the introduction).

We repeat the evaluations of the probability for j = 60 (the central difference case) with the use of
inequality (3.14). For the empirical distribution function ri, we find R = 2010. On the interval i ∈ [0, 436], we
have α = 0.213, σ = 451.38; for i ∈ [0, 347], we have α = 0.257 and σ = 667.775. In order that the probability
of the estimate would exceed 0.9 (for independent {ri}), we take β = 0.175 in the first case, which gives the
estimate ≥ 2547.13 for the norm 3rd derivative, and in the second case, we get β = 0.2075 and the estimate
≥ 2621.79. Evaluating the probability by (3.7), we get β = 0.4351 and β = 0.4628, respectively, in these two
cases.

For the shifted difference, for m = 0 and j = 60, following § 4, we chose i ∈ [63, 108] with α = −0.16. Let
β1 ≈ 0.418, β2 ≈ 0.749. Then, assuming that {ri} are independent, we get γ1 ≈ 0.158033, γ2 ≈ 0.175593, and
with probability ≈ 0.9, using (3.15), we obtain the lower estimate 1323.81 for the norm of the 3rd derivative.
If, for example, β1 = 0.0, β2 ≈ 0.6, then the probability is 0.378, and the norm of the 3rd derivative is estimate
from below by 1894.34 ; for β1 = 0.0, β2 ≈ 0.1, the upper estimate is 4303.81, which is close to the norm of
the 3rd derivative, but here the probability is only 0.00013856. Similar estimates can also be obtained using
(3.7).

For the shifted difference, for m = 0 and j = 140, using (3.13) and employing Lemma 3.2, we have,
with probability close to 0.9, the lower estimate 4206.72 for the norm of the 3rd derivative (on [1,195] with
α = 0.845 and β1 = 0.0, β2 ≈ 0.52). If (3.14) is used, we have the lower estimate 3241.2 with probability close
to 0.9 .

Remark 5.2. Optimal formulas capable of recovering the derivative from inexactly given data frequently indicate
that it is possible to consider only the recovery by values of the function on a sufficiently rare set of nodal points
at which these values are given. In addition, if, for example, approximate values of the function are known also at
different points, then these values will not be used. This happens, for example, in the problem related to (1.6) and to
the recovery formulas (1.7), (1.8). Another situation occurs if one does not know the value of the parameter ∆ that
specifies the class of functions on which the recovery problem of the derivative is solved. In this case, the greater the
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number of nodes at which the approximate values of the function are known, the better, for example, the recovered
characteristics of the random variables related to observation of the values of δ(ti) in (4.1) and the values of ri in (5.1).
It seems that a finer number of nodes will also allow one to obtain, via (3.13), (3.14), (3.15) or (3.21), more precise
estimates of the derivative in the uniform norm.

6. Analysis of divided differences for intermediate derivatives for ascertaining intervals of their satis-
factory recovery

Having solved the problem of approximate estimate of the leading derivative, one may consider for-
mulas of the form (1.7), (1.8) (and similar ones) for a direct recovery of intermediate derivatives. These
formulas involve the optimal step jopt ≈ (24δ/∆)1/3 (see (1.8)), using which one estimates the difference
relation that provides an answer in our problem. At this stage it is worth formulating and analyzing the
ratios ai already obtained with the use of the successive differences for the intermediate derivative and the
step jopt. Let us use in (1.8), for example, the above estimate 4206.72 as ∆ and take δ = 0.15 (see Fig. 2). This
gives jopt = 94, whereas the step of recovery, as calculated from the exact value of the norm of the third
derivative, is 91. Let us give the graph of ai − 1 composed from the second central differences with the step
jopt thus obtained (see also Remark 3)

Figure 7: The sequence (ai − 1) composed from the second central differences.

Using the following two graphs, one may compare the result of approximate evaluation of the derivative
(the left panel) with its exact value (the right panel).

Figure 8: The result of approximate evaluation of p′′(z).

In Fig. 7, the surge at i = 485 corresponds to the value of the argument 1.5
1484 · 485, which is approximately

0.49 ≈ 0.5. In Fig. 8, this corresponds to the zero of the second derivative of the polynomial p. This is why
ai−1 behaves chaotically for i ≈ 485, because the random perturbation near the zero of the second derivative
of the polynomial p strongly dominates. Figure 7 shows that the recovery of the second derivative is correct
everywhere except the zero of the second derivative of the polynomial p. This supports correctness of our
estimate of the norm of the leading derivative.

Recall that both graphs are formed on the interval [0.1 , 1.4] ⊂ [0, 1.5], which appears because the second
derivative of the second order central difference was used for the recovery — for points lying near the end-
points of the interval [0, 1.5] such a recovery is impossible — in this case, difference relations of different
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kind should be taken. Replacing the second order central difference by

(2 −m)x(t) + (3m − 5)x(t + jτ) + (4 − 3m)x(t + 2 jτ) + (m − 1)x(t + 3 jτ), (6.1)

and considering the corresponding difference relation, we get an approximation of the second derivative of
second order of accuracy at the point t+mjτ, m ∈ [0, 3]. In addition, to secure the continuity of the passage
of the successive difference in (6.1) from m = 0 at the point t to m = 1 at the point t + jτ from the system
of points t + sτ, s = 0, 1, . . . , j, one may use the successive differences with various values of m = ms. For
example, at the point t + sτ, s = 0, 1, . . . , j, such ms is equal to s/ j. The sequences ci and other sequences
constructed in this way will consist of the differences with the variable parameter m. With increased step j,
the number of ci’s constructed not from the central difference will increase, but the principal required
property of the sequence {ci} (the linearity with respect to the functional parameter x(·)) will be preserved.
Note that in general the estimates from § 3 need not hold because of the m-dependent (see (6.1)) realizations
of ri linear combinations of the random variable ξ; however, this is irrelevant on this stage of smoothing of
the recovery result.

Analyzing the original experimental data, we choose, with the purpose of estimating the third derivative,
the sequence ai, which is calculated for the multiplicity step j = 40 of the central difference. Choosing the
domain i ∈ [0, 130] with value α = 0.74, and taking β = 0.57, we get, with probability 0.9, the estimate
54653.3 for the uniform norm of the third derivative of the function under consideration (such estimate was
obtained in conditional units along the axis of the independent argument i). Using this estimate and (1.8),
let us find the optimal step jopt = 41. Let us show the graph of ai − 1 obtained from the second central
differences with step jopt for the original experimental data

Figure 9: The graph of ai − 1 (from the second central differences for the original experimental data).

Figure 9 shows that the recovered values of the second derivative for i ≥ 450 are very noisy and their
interrelations are random, while for i < 450, the recovered values prevail over the random component.

Figure 10: Recovered values of the second derivative.

7. Example of recovery of the differential operator

Analysis performed for the available set of experimental data can be carried out also for the recovery of
some linear functional constructed from a two-dimensional (or, in general, of dimension > 2) set of data.
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For example, to analyze in this way the possibility of recovery of the operator

∂x
∂t
−
∂2x
∂s2

via the difference relations

ck,i =
x̃(tk+ j1 , si) − x̃(tk− j1 , si)

2 j1τ
−

x̃(tk, si+ j2 ) − 2x̃(tk, si) − x̃(tk, si− j2 )
( j2h)2

from the value of the step of the difference relations j1 and j2 for the variables t and s, respectively, we
compose

ak,i = min{a′k,i, a
′′

k,i}, (7.1)

where a′k,i =

 ck,i/ck+1,i if
∣∣∣ ck,i

ck+1,i

∣∣∣ ≤ 1,
ck+1,i/ck,i if

∣∣∣ ck,i

ck+1,i

∣∣∣ > 1,
a′′k,i =

 ck,i/ck,i+1 if
∣∣∣ ck,i

ck,i+1

∣∣∣ ≤ 1,
ck,i+1/ck,i if

∣∣∣ ck,i

ck,i+1

∣∣∣ > 1.

Let

bk,i =
x(tk+ j1 , si) − x(tk− j1 , si)

2 j1τ
−

x(tk, si+ j2 ) − 2x(tk, si) − x(tk, si− j2 )
( j2h)2 , rk,i := ck,i − bk,i.

Figure 11: Left panel: The recovery of the values of the operator ∂x∂t −
∂2x
∂s2 on measurement data (k ∈ [1, 111], i ∈ [1, 1485]). Right

panel: the bright domain on the left corresponds to strong domination of the recovered values of the operator over noise, that is,
ak,i − 1 ≥ −0.1 for j1 = 5, j2 = 40.

One may assume, for example, that for this connected component of the range of variation of {k, i}, where
ak,i ≥ 0.9, the values bk,i are prevailing over rk,i, and the “optimistic” inequality |rk,i| ≤ ρ · |bk,i| is satisfied. As
a result, we can write

ck,i

ck,i+1
=

bk,i + rk,i

bk,i+1 + rk,i+1
=

bk,i

bk,i+1
· θ1 = θ1 +O(h),

ck,i

ck+1,i
= θ2 +O(τ),

θ1, θ2 ∈ [κ−1, κ], κ = 1+ρ
1−ρ . Then the above assumption about the acceptability of the “optimistic” inequality

will correspond to the condition ak,i − 1 ≥ −0.1 for κ−1
− 1 = −0.1, i.e., ρ = 1/19.
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