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Abstract. In locale theory, a sublocale is said to be remote in case it misses every nowhere dense sublocale.
In this paper, we introduce and study a new class of sublocales in the category of bilocales, namely (i, j)-
remote sublocales. These are bilocalic counterparts of remote sublocales and are the sublocales missing
every (i, j)-nowhere dense sublocale, with (i, j)-nowhere dense sublocales being bilocalic counterparts of
(τi, τ j)-nowhere dense subsets in bitopological spaces. A comprehensive study of (i, j)-nowhere dense
sublocales is given and we show that in the class of balanced bilocales, a sublocale is (i, j)-nowhere dense
if and only if its bilocale closure is nowhere dense. We also consider weakly (i, j)-remote sublocales which
are those sublocales missing every clopen (i, j)-nowhere dense sublocale. Furthermore, we extend (i, j)-
remoteness to the categories of bitopological spaces as well as normed lattices. In the class of sup-TD

bitopological spaces, a subset A of a bitopological space (X, τ1, τ2) is (τi, τ j)-remote if and only if the induced
sublocale Ã of τ1 ∨ τ2 is (i, j)-remote. Given a bilocale (L,L1,L2), the collection Rem(i, j)L of all elements of
L inducing closed weakly (i, j)-remote sublocales is a closed sublocale of L and is always (i, j)-remote but
seldomly remote. For the congruence bilocale of a locale L, Rem(i, j)CL = CL and for the ideal bilocale of a
bilocale whose total part is Noetherian, Rem(i, j) L = L if and only if Rem(i, j) JL = JL. We show that Rem(i, j)

is a functor from the category BiLocR(i, j) of bilocales whose morphisms are Rem(i, j)-maps to the category
of locales and there is a natural transformation from Rem(i, j) to the functor G which is the composite of
the faithful functor F : BiLoc → Loc and the inclusion functor BiLocR(i, j) ↪→ BiLoc. Moreover, there is a
comonad associated with the endofunctor from the category RemBiLocSR(i, j) whose objects are symmetric
bilocales in which Rem(i, j)L is remote. We prove that the category of symmetric Boolean bilocales is a
coreflective subcategory of the category RemBiLocSR(i, j).

1. Introduction

In [14], we introduced and studied remote sublocales in the category of locales. These are sublocales
that miss every nowhere dense sublocale. Remote sublocales subsequently appeared in the article [13]
where their relationship with maximal nowhere dense sublocales was investigated. The aim of this paper
is to study remoteness in the category of bilocales. We shall define and characterize (i, j)-remote sublocales
and weakly (i, j)-remote sublocales of bilocales. These sublocales are defined using the notion of an (i, j)-
nowhere dense sublocale which is a bilocale counterpart of a (τi, τ j)-nowhere dense subset which was defined
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by Fukutake [11], in 1992, as a subset A of a bitopological space (bispace in short) (X, τ1, τ2) such that
intτ j (clτi (A)) = ∅ (i , j), where intτi and clτi (for i = 1, 2) denote the τi-interior and τi-closure, respectively.
(i, j)-remote sublocales are also extended to the categories of bitopological spaces and normed lattices and
we prove that in the class of sup-TD bitopological spaces, a subset A of a bitopological space (X, τ1, τ2) is
(τi, τ j)-remote if and only if the induced sublocale Ã of τ1 ∨ τ2 is (i, j)-remote. We commented in [14] that
we could not determine whether the collection of all elements inducing closed remote sublocales is always
a sublocale. In this paper, we prove that Rem(i, j)L is always a closed sublocale. The assignment Rem(i, j)
is a functor from the category BiLoc(i, j) of bilocales whose morphisms are Rem(i, j)-maps to the category of
locales and there is a natural transformation from Rem(i, j) to the functor G which is the composite of the
faithful functor F : BiLoc→ Loc and the inclusion functor BiLocR(i, j) ↪→ BiLoc.

This paper is organized as follows. Section one consists of the necessary background. In Section two
we introduce (i, j)-nowhere dense sublocales and study their properties that will be used in the other
sections. We prove that, although (i, j)-nowhere dense sublocales cannot always be characterized using the
Booleanization of the total part of a bilocale, in the category of balanced bilocales, a sublocale is (i, j)-nowhere
dense precisely when its i-closure misses the Booleanization of the total part of the locale. In Section three,
we define and investigate (i, j)-remote sublocales as well as weakly (i, j)-remote sublocales. We show among
other things that in the category of symmetric bilocales, (i, j)-remote sublocales are those of the form b(x∗).
We extend (i, j)-remoteness to the categories of bitopological spaces and normed lattices. It turns out that,
in a category of Sup-TD bispaces, a subset A of a bitopological space (X, τ1, τ2) is (τi, τ j)-remote if and only if
Ã is (i, j)-remote as a sublocale of the bilocale (τ1 ∨ τ2, τ1, τ2). The fourth section discusses preservation and
reflection of (i, j)-remote sublocales by bilocalic maps. In Section five, we show that in a bilocale (L,L1,L2),
the collection Rem(i, j)L of elements of L inducing closed weakly (i, j)-remote sublocales is a closed sublocale,
which is not always remote. We also prove that Rem(i, j)L coincides with L exactly when L is (i, j)-remote
as a sublocale of itself. For the congruence bilocale of a locale L, Rem(i, j)CL = CL and for the ideal bilocale
of a bilocale whose total part is Noetherian, Rem(i, j) L = L if and only if Rem(i, j) JL = JL. We prove that
Rem(i, j) is a functor from the category BiLocR(i, j) of bilocales whose morphisms are Rem(i, j)-maps to the
category of locales and also show among other things that the category of symmetric Boolean bilocales is
a coreflective subcategory of the category RemBiLocSR(i, j) whose objects are symmetric bilocales in which
Rem(i, j)L is remote.

2. Preliminaries

See [16] as reference for notions of locales and [4, 17] for the theory of bilocales.

2.1. Locales

A locale L is a complete lattice satisfying:

a ∧
∨

B =
∨
{a ∧ b : b ∈ B}

for all a ∈ L, B ⊆ L. 1L and 0L, with subscripts dropped if there is no possibility of confusion, respectively
denote the top element and the bottom element of a locale L. We denote by a∗ the pseudocomplement of
an element a ∈ L. An element a ∈ L is said to be dense and complemented in case a∗ = 0 and a ∨ a∗ = 1,
respectively.

We denote by OX the locale of open subsets of a topological space X.
A localic map is an infima-preserving function f : L → M between locales such that the corresponding

left adjoint f ∗, called its associated frame homomorphism, preserves binary meets. Throughout the paper, if
f is a localic map, we will write h for its associated frame homomorphism.

Frm and Loc represent the categories of locales whose morphisms are frame homomorphisms and localic
maps, respectively.
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2.2. Sublocales
A sublocale of a locale L is a subset S which is closed under all meets and x→ s ∈ S for every x ∈ L and

s ∈ S, where→ is a Heyting operation on L satisfying that a ≤ b → c if and only if a ∧ b ≤ c for all a, b, c ∈ L.
We write S(L) for the collection of all sublocales of a locale L. We denote by O the smallest sublocale of a
locale L and we shall say that a sublocale S misses T ∈ S(L) in case T ∩ S = O. The largest sublocale of a
locale L missing a sublocale S of L is denoted by L ∖ S. The sublocales

c(a) = {x ∈ L : a ≤ x} and o(a) = {a→ x : x ∈ L},

of a locale L are respectively the closed and open sublocales induced by an element a of L. They are
complements of each other. The smallest closed sublocale of L containing S ∈ S(L) is called the closure of
S and denoted by S. S ∈ S(L) is dense and nowhere dense if S = L and S ∩ BL = O, respectively, where
B(L) = {x→ 0 : x ∈ L} is the least dense sublocale of L.

For each sublocale S ⊆ L there is an onto frame homomorphism νS : L→ S defined by νS(a) =
∧
{s ∈ S :

a ≤ s}. Open sublocales and closed sublocales of a sublocale S of L are given by

oS(νS(a)) = S ∩ o(a) and cS(νS(a)) = S ∩ c(a),

respectively, for a ∈ L. For any sublocale S of a locale L and x ∈ L, S ⊆ o(x) if and only if νS(x) = 1.
Each localic map f : L→ M induces the functions f [−] : S(L)→ S(M) given by the set-theoretic image

of each sublocale of L under f , and f−1[−] : S(M)→ S(L) given by

f−1[T] =
∨
{A ∈ S(L) : A ⊆ f−1(T)}.

For a localic map f : L→M and x ∈M,

f−1[cM(x)] = cL(h(x)) and f−1[oM(x)] = oL(h(x)).

We denote by Ã a sublocale of OX induced by a subset A of a topological space X.

2.3. Bilocales
A bilocale is a triple (L,L1,L2) where L1,L2 are subframes of a locale L and for all a ∈ L,

a =
∨
{a1 ∧ a2 : a1 ∈ L1, a2 ∈ L2 and a1 ∧ a2 ≤ a}.

We call L the total part of (L,L1,L2), and L1 and L2 the first and second parts, respectively. We use the
notations Li,L j to denote the first or second parts of (L,L1,L2), always assuming that i, j = 1, 2, i , j.

The bilocale pseudocomplement of c ∈ Li is given by

c• =
∨
{x ∈ L j : x ∧ c = 0}.

A biframe homomorphism (or biframe map) h : (M,M1,M2)→ (L,L1,L2) is a frame homomorphism h : M→ L
for which h(Mi) ⊆ Li (i = 1, 2).

We write BiFrm for the category of bilocales whose morphisms are biframe maps.

3. (i, j)-nowhere dense sublocales

We devote this section to introducing (i, j)-nowhere dense sublocales from (i, j)-nowhere dense subspaces
and studying some of their properties.

Recall from [11] that for a bitopological space (bispace in short) (X, τ1, τ2), where intτi and clτi (for
i = 1, 2) denote the τi-interior and τi-closure, respectively, a subset A of X is (τi, τ j)-nowhere dense in X if
intτ j (clτi (A)) = ∅ (i , j). We will extend this notion into locales and explore some of its bilocalic properties.
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For a bilocalic notion of (τi, τ j)-nowhere density, we introduce bilocalic counterparts of the notions of
closure and interior. Let (L,L1,L2) be a bilocale. In [17], the authors introduced the following notation for a
sublocale S ⊆ L:

cli(S) =
⋂
{c(a) : a ∈ Li,S ⊆ c(a)} = c

(∨
{a ∈ Li : S ⊆ c(a)}

)
(i = 1, 2).

We define inti(S) as follows:

inti(S) =
∨
{o(a) : a ∈ Li, o(a) ⊆ S} (i = 1, 2).

We shall refer to these concepts as bilocale closure and bilocale interior, respectively. Throughout this
paper, we assume that i , j ∈ {1, 2}, unless otherwise stated.

We define an (i, j)-nowhere dense sublocale as follows.

Definition 3.1. Let (L,L1,L2) be a bilocale. A sublocale S of L is (i, j)-nowhere dense if int j(cli(S)) = O (i , j ∈ {1, 2}).

Our discussion of (i, j)-nowhere density involves bilocale interiors and bilocale closures. Before we
consider the properties of bilocale closures and bilocale interiors which will be useful below, we collect
some properties of the bilocale pseudocomplement in the following proposition. We refer the reader to [15]
for the proofs of the following two results.

Proposition 3.2. Let (L,L1,L2) be a bilocale and i , j ∈ {1, 2}. Then

1. 0• = 1.
2. For every a ∈ Li, a ∧ a• = 0.
3. a ∧ b = 0 iff a ≤ b• for all a ∈ L j, b ∈ Li.
4. a ≤ b implies b• ≤ a• for all a, b ∈ Li.
5. For each a ∈ Li, a ≤ a••.
6. For each a ∈ Li, a• = a•••.
7. (a ∨ b)• = a• ∧ b• for every a, b ∈ Li.

We gather in one result some properties of bilocale closure and bilocale interior.

Proposition 3.3. Let (L,L1,L2) be a bilocale and S,T ∈ S(L). The following statements hold for i , j ∈ {1, 2}.

1. [17] S ⊆ S ⊆ cli(S).
2. If T ⊆ S, then cli(T) ⊆ cli(S).
3. cli(cli(S)) = cli(S).
4. c(a) = cli(c(a)) for every a ∈ Li.
5. inti(S) = o (

∨
{a ∈ Li : o(a) ⊆ S}).

6. inti(S) ⊆ int(S) ⊆ S.
7. If T ⊆ S, then inti(T) ⊆ inti(S).
8. inti(inti(S)) = inti(S).
9. o(a) = inti(o(a)) for every a ∈ Li.

10. For each a ∈ Li, c(a•) = cl j(o(a)).
11. For each a ∈ Li, o(a•) = int j(c(a)).
12. For each a ∈ Li, cl j(o(a)) = L ∖ int j(c(a)).
13. For each a ∈ Li, int j(c(a)) = L ∖ cl j(o(a)).
14. For each a ∈ L, L ∖ inti(o(a)) = cli(c(a)).
15. For each a ∈ L, L ∖ cli(c(a)) = inti(o(a)).

In what follows, we introduce i-dense sublocales. Recall from [18] that a subset A of a bitopological
space (X, τ1, τ2) is i-dense if clτi (A) = X. This recalled notion motivates the following definition of an i-dense
sublocale.
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Definition 3.4. A sublocale A of a bilocale (L,L1,L2) is i-dense if cli(A) = L.

We work towards showing that the bilocalic definition of i-density is “conservative” in the sense that a
subset A of a bitopological space (X, τ1, τ2) is i-dense if and only if Ã is i-dense in (τ1 ∨ τ2, τ1, τ2).

Recall from [12] that given a topological property P, a bitopological space (X, τ1, τ2) is sup-P if (X, τ1∨τ2)
has property P. We say that (X, τ1, τ2) is sup-TD if (X, τ1 ∨ τ2) is TD.

In bilocalic terms, we denote the sublocale induced by a subset A of X as follows:

Ã = {intτ1∨τ2 ((X ∖ A) ∪ G) : G ∈ τ1 ∨ τ2}.

This notation has all the properties of usual induced sublocales. We shall denote by τ the topology τ1 ∨ τ2.
We have the following:

In a sup -TD bitopological space (X, τ1, τ2), x ∈ A ⊆ X if and only if x̃ ∈ Ã.

Lemma 3.5 below provides a useful property of bilocale closure. The proof is similar to that of [14,
Proposition 2.10.] and shall be omitted.

Lemma 3.5. Let A be a subset of a sup-TD-bispace (X, τ1, τ2). Then ˜clτi (A) = cli(Ã) for i = 1, 2.

As a result of Lemma 3.5, we have the following proposition which shows that in the class of sup-TD-
bispaces, the definition of i-density given in Definition 3.4 is conservative in bilocales.

Proposition 3.6. Let A be a subset of a sup-TD-bispace (X, τ1, τ2). Then A is i-dense iff Ã is i-dense.

Proof. A subset A of X is i-dense if and only if clτi (A) = X if and only if ˜clτi (A) = X̃ if and only if cli(Ã) = X̃
if and only if Ã is i-dense.

We give an elementary notion of i-density.

Definition 3.7. Define an element x ∈ L j of a bilocale (L,L1,L2) to be Li-dense (or just i-dense) if x• = 0.

The following result gives a characterization of i-dense elements.

Proposition 3.8. Let (L,L1,L2) be a bilocale and x ∈ L j. Then the following statements are equivalent.

1. x is i-dense.
2. o(x) is i-dense.
3. For all a ∈ Li, a ∧ x = 0 implies a = 0.

Proof. (1)⇔ (2): Observe that for any x ∈ L j,

x• = 0 ⇔ c(x•) = L
⇔ cli(o(x)) = L since c(x•) = cli(o(x)) from Proposition 3.3(10)
⇔ o(x) is j-dense.

(2)⇒ (3): If a ∈ Li such that x ∧ a = 0, then o(x) ⊆ c(a) which implies that

L = c(0) = cli(o(x)) ⊆ cli(c(a)) = c(a).

Thus a = 0.
(3)⇒ (1): Recall that x• ∧ x = 0 by Proposition 3.2(2). The hypothesis gives x• = 0. Thus x is i-dense.

Observation 3.9. It is easy to see that an element x ∈ L j that is dense in L is i-dense.
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In the next result, we show that in the class of sup-TD-bispaces, the definition of (i, j)-nowhere density
given in Definition 3.1 is conservative in bilocales. Recall that for each U ∈ τi,

U• =
∨
{G ∈ τ j : G ∩U = ∅} =

∨
{G ∈ τ j : G ⊆ X ∖U} = intτ j (X ∖U) = X ∖ clτ j (U).

Proposition 3.10. Let (X, τ1, τ2) be a sup-TD-bispace. A subset A ⊆ X is (τi, τ j)-nowhere dense iff Ã is (i, j)-nowhere
dense.

Proof. Observe that

intτ j (clτi (A)) = ∅ ⇔ X ∖ intτ j (clτi (A)) = X

⇔ X ∖ clτ j (X ∖ clτi (A)) = ∅

⇔ (X ∖ clτi (A))• = ∅ since U• = X ∖ clτ j (U) for all U ∈ τi

⇔ o((X ∖ clτi (A))•) = O
⇔ int j(c(X ∖ clτi (A))) = O from Proposition 3.3(9)

⇔ int j

(
˜clτi (A)

)
= O since clτi (A) is τ-closed

⇔ int j

(
cli(Ã)

)
= O since ˜clτi (A) = cli(Ã)

which proves the result.

We characterize (i, j)-nowhere dense sublocales in Theorem 3.12 below. We shall need the following
lemma whose proof is straighforward.

Lemma 3.11. Let (L,L1,L2) be a bilocale with S,T ∈ S(L). If S is (i, j)-nowhere dense and T ⊆ S, then T is
(i, j)-nowhere dense.

Theorem 3.12. Let (L,L1,L2) be a bilocale and S ∈ S(L). The following statements are equivalent.

1. S is (i, j)-nowhere dense.
2. L ∖ cli(S) is j-dense.
3. (
∨
{x ∈ Li : S ⊆ c(x)})• = 0.

4.
∨
{x ∈ Li : S ⊆ c(x)} is j-dense.

5. cli(S) is (i, j)-nowhere dense.
6. S is (i, j)-nowhere dense.

Proof. (1)⇔ (2): We have that

int j(cli(S)) = O⇔ o
(∨
{a ∈ L j : o(a) ⊆ cli(S)}

)
= O

⇔ c
(∨
{a ∈ L j : o(a) ⊆ cli(S)}

)
= L

⇔ c
(∨
{a ∈ L j : (L ∖ cli(S)) ⊆ c(a)}

)
= L since cli(S) is complemented.

⇔ cl j(L ∖ cli(S)) = L by Proposition 3.3(4).

(2)⇔ (3): Observe that

cl j(L ∖ cli(S)) = L ⇔ cl j

(
L ∖ c

(∨
{x ∈ Li : S ⊆ c(x)}

))
= L

⇔ cl j

(
o
(∨
{x ∈ Li : S ⊆ c(x)}

))
= L

⇔ c

((∨
{x ∈ Li : S ⊆ c(x)}

)•)
= L by Proposition 3.3(10)

⇔

(∨
{x ∈ Li : S ⊆ c(x)}

)•
= 0.
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(3)⇔ (4): Follows from definition of j-density.
(4)⇔ (5): We have that∨

{x ∈ Li : S ⊆ c(x)} is j-dense⇔
∨
{x ∈ Li : cli(S) ⊆ cli(c(x)) = c(x)} is j-dense

⇔

∨
{x ∈ Li : o(x) ⊆ L ∖ cli(S)} is j-dense

⇔ cl j

(
o
(∨
{x ∈ Li : o(x) ⊆ L ∖ cli(S)}

))
= L

⇔ cl j

(
o
(∨
{x ∈ Li : S ⊆ c(x)}

))
= L

⇔ cl j

(
L ∖ c

(∨
{x ∈ Li : S ⊆ c(x)}

))
= L

⇔ cl j (L ∖ cli(S)) = L
⇔ L ∖ cl j (L ∖ cli(S)) = O

⇔ o
(∨
{a ∈ L j : L ∖ cli(S) ⊆ c(a)}

)
= O

⇔ o
(∨
{a ∈ L j : o(a) ⊆ cli(S)}

)
= O

⇔ int j

(
cli(S)

)
= O

⇔ int j

(
cli(cli(S))

)
= O since cli(cli(S)) = cli(S)

⇔ cli(S) is (i, j)-nowhere dense.

(5) ⇒ (6): Since S ⊆ cli(S) and cli(S) is (i, j)-nowhere dense, it follows from Lemma 3.11 that S is
(i, j)-nowhere dense.

(6)⇒ (1): This is another application of Lemma 3.11.

In terms of closed sublocales, we get the following characterization of (i, j)-nowhere dense sublocales.

Corollary 3.13. An element a ∈ Li is j-dense iff c(a) is (i, j)-nowhere dense.

Remark 3.14. For any bilocale (L,L1,L2) and every sublocale S of L, L ∖ cli(S) is clopen if and only if
∨
{x ∈ Li :

o(x) ⊆ S} is complemented in L: Follows since L ∖ cli(S) is an open sublocale of L.

As a result of the preceding lemma, we have the following result about clopen (i, j)-nowhere dense
sublocales. The proof is similar to that of Theorem 3.12 and shall be omitted.

Proposition 3.15. Let (L,L1,L2) be a bilocale and S ∈ S(L). The following statements are equivalent:

1. S is clopen (i, j)-nowhere dense.
2. L ∖ cli(S) is clopen j-dense.
3. (
∨
{x ∈ Li : S ⊆ c(x)})• = 0 and

∨
{x ∈ Li : S ⊆ c(x)} is complemented in L.

4.
∨
{x ∈ Li : S ⊆ c(x)} is j-dense and complemented in L.

5. cli(S) is clopen (i, j)-nowhere dense.
6. S is clopen (i, j)-nowhere dense.

Corollary 3.16. An element a ∈ Li is j-dense and complemented in L iff c(a) is clopen (i, j)-nowhere dense.

In locales, O is the only clopen nowhere dense sublocale of a locale. However, in bilocales, this need not
be the case, as shown below.

Example 3.17. Recall that the void sublocale is the only clopen nowhere dense sublocale of a locale. This follows since
if S is a clopen and nowhere dense sublocale of a locale L, then

O = int(S) = int(S) = S.
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In bilocales, for a given bilocale (L,L1,L2), a sublocale S of L may be a clopen sublocale of L and at the same be
(i, j)-nowhere dense without being void. For instance, consider the bitopological space (X, τ1, τ2), where X = {a, b, c},
τ1 = {∅,X, {a}, {b, c}} and τ2 = {∅,X, {b}}. We get that τ = {∅,X, {a}, {b}, {b, c}, {a, b}}. It is clear that c({b, c}) is a
nonvoid clopen (1, 2)-nowhere dense sublocale of τ.

In locales, nowhere dense sublocales are precisely those that miss the least dense sublocale. We have
the following result in bilocales.

Proposition 3.18. Let (L,L1,L2) be a bilocale and S ∈ S(L). Then S is (i, j)-nowhere dense whenever cli(S)∩BL = O.

Proof. Observe that

cli(S) ∩BL = O ⇔ BL ⊆ L ∖ cli(S) since cli(S) is complemented

⇔ L ∖ cli(S) = L
⇒ cl j(L ∖ cli(S)) = L by Proposition 3.3(1)
⇔ int j(cli(S)) = O

where the latter equivalence can be deduced from the proof of Proposition 3.12(4)⇔ (5).

The converse of Proposition 3.18 is not always true. For instance, using Theorem 3.12(4), we see that, in
Example 3.17, the sublocale {̃a} = {{b, c},X} = c({b, c}) of τ is (1, 2)-nowhere dense, but cl1({̃a}) = {̃a} does not
miss Bτ = {∅,X, {a}, {b, c}}.

In Proposition 3.19 below, we improve Proposition 3.18.
Recall from [10] that a bilocale (L,L1,L2) is balanced if x ∈ L1 implies x∗ ∈ L2 and x ∈ L2 implies x∗ ∈ L1.

In a balanced bilocale (L,L1,L2), a∗ = a• for all a ∈ Li. Indeed, it is clear that a• ≤ a∗. Furthermore, if y = a∗,
then y ∈ L j and y ∧ a = 0. Therefore y ∈ {x ∈ L j : a ∧ x = 0}. Thus

y = a∗ ≤
∨
{x ∈ L j : a ∧ x = 0} = a•.

Proposition 3.19. Let (L,L1,L2) be a balanced bilocale and N ∈ S(L). Then N ∈ S(L) is (i, j)-nowhere dense iff
BL ∩ cli(N) = O.

Proof. For each N ∈ S(L), we have that

N is (i, j)-nowhere dense⇔
(∨
{x ∈ Li : N ⊆ c(x)}

)•
= 0 by Theorem 3.12

⇔

(∨
{x ∈ Li : N ⊆ c(x)}

)∗
= 0 since (L,L1,L2) is balanced

⇔ o
(∨
{x ∈ Li : N ⊆ c(x)}

)
is dense

⇔ BL ⊆ o
(∨
{x ∈ Li : N ⊆ c(x)}

)
⇔ BL ∩ c

(∨
{x ∈ Li : N ⊆ c(x)}

)
= O

⇔ BL ∩ cli(N) = O

which proves the result.

The above result implies the folowing.

Corollary 3.20. In a balanced bilocale (L,L1,L2), a sublocale N of L is (i, j)-nowhere dense iff cli(N) is nowhere dense.
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4. (i, j)-remote sublocales

The aim of this section is to introduce new classes of sublocales called (i, j)-remote sublocales and weakly
(i, j)-remote sublocales and study their properties.

Definition 4.1. Let (L,L1,L2) be a bilocale. A sublocale S of L is (i, j)-remote (resp. weakly (i, j)-remote) if N∩S = O
for every (i, j)-nowhere dense (resp. clopen (i, j)-nowhere dense) sublocale N.

We consider some examples.

Example 4.2. (1) The void sublocale is both (i, j)-remote and weakly (i, j)-remote.
(2) If S is an (i, j)-remote (resp. weakly (i, j)-remote) sublocale of L, then every sublocale of L contained in S is

(i, j)-remote (resp. weakly (i, j)-remote).
(3) In a symmetric biframe, which was defined in [3] as a biframe (L,L1,L2) in which L = L1 = L2 (we shall only

write L for a symmetric bilocale whose total part is L) we have:

a) (i, j)-remoteness coincides with remoteness. As a result, the sublocale BL is (i, j)-remote.

b) Every sublocale is weakly (i, j)-remote. This follows since O is the only clopen (i, j)-nowhere dense sublocale of
the locale L.

(4) Every (i, j)-remote sublocale is weakly (i, j)-remote, but the converse is not always true: Since, by [14], Boolean
locales are precisely those whose sublocales are remote, it follows from (3)(b) that in a symmetric bilocale L where L is
non-Boolean, not every weakly (i, j)-remote sublocale is (i, j)-remote.

(5) For any symmetric bilocale L, {b(x∗) : x ∈ L} is the collection of all (i, j)-remote sublocales of L: Let A be an
(i, j)-remote sublocale of L. Since BL is the largest remote sublocale and remoteness coincides with (i, j)-remoteness,
A ⊆ BL. Because every sublocale of a Boolean locale is Boolean, we have that A is a Boolean sublocale of L and so
there is an a ∈ L such that A = b(a). Since a ∈ b(a), it follows that a ∈ BL, and so a = a∗∗.

On the other hand, let x ∈ L and consider the sublocale b(x∗) of L. Since x∗ belongs toBL and b(x∗) is the smallest
sublocale containing x∗, we have b(x∗) ⊆ BL, and so b(x∗) is remote and hence an (i, j)-remote sublocale of L.

(6) In a balanced bilocale, every remote sublocale is (i, j)-remote (In particular, the Booleanization is (i, j)-remote):
Let (L,L1,L2) be a balanced bilocale, S a remote sublocale of L and choose an (i, j)-nowhere dense sublocale N. By
Corollary 3.20, cli(N) is nowhere dense so that S ∩ cli(N) = O, making S ∩N = O as required.

In the following main result of this section, we give a characterization of (i, j)-remote and weakly (i, j)-
remote sublocales. We only prove results about (i, j)-remote sublocales. Results about weakly (i, j)-remote
sublocales follow a similar sketch.

Theorem 4.3. Let (L,L1,L2) be a bilocale and S ∈ S(L). The following statements are equivalent.

1. S is (i, j)-remote (resp. weakly (i, j)-remote).
2. S ∩ cli(N) = O for every (i, j)-nowhere dense (resp. clopen (i, j)-nowhere dense) N.
3. S ∩N = O for every (i, j)-nowhere dense (resp. clopen (i, j)-nowhere dense) N.
4. S ∩ c(x) = O for all j-dense (resp. complemented j-dense) x ∈ Li.
5. S ⊆ o(a) for every j-dense (resp. complemented j-dense) a ∈ Li.
6. νS(d) = 1 for every j-dense (resp. complemented j-dense) d ∈ Li.

Proof. (1) ⇔ (2) ⇔ (3): Follows since a sublocale N of L is (i, j)-nowhere dense if and only if cli(N) is
(i, j)-nowhere dense if and only if N is (i, j)-nowhere dense, by Theorem 3.12.

(3)⇒ (4): Let x ∈ Li be j-dense. It follows that c(x) is (i, j)-nowhere dense. By (3),

O = S ∩ c(x) = S ∩ c(x).

(4)⇔ (5): Follows since S ∩ c(y) = O if and only if S ⊆ o(y) for all S ∈ S(L) and every y ∈ L.
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(5) ⇒ (6): Let d ∈ Li be j-dense. By (5), S ⊆ o(d). Since νB(a) = 1 if and only if B ⊆ o(a) for every
a ∈ L,B ∈ S(L), νS(d) = 1.

(6) ⇒ (1): Let N ∈ S(L) be (i, j)-nowhere dense. It follows from Theorem 3.12 that
∨
{a ∈ Li : N ⊆

c(a)} is a j-dense element of Li. By hypothesis, νS(
∨
{a ∈ Li : N ⊆ c(a)}) = 1 which implies that S ⊆

o (
∨
{a ∈ Li : N ⊆ c(a)}). Therefore

O = S ∩ c
(∨
{a ∈ Li : N ⊆ c(a)}

)
= S ∩ cli(N) ⊇ S ∩N

which proves the implication.

Proposition 4.4. Let (L,L1,L2) be a bilocale. Then there is the largest (i, j)-remote sublocale of L.

Proof. Consider a collection {Si : i ∈ I} of (i, j)-remote sublocales of L. For any j-dense x ∈ Li, we have that

c(x) ∩
∨
i∈I

{Si : i ∈ I} =
∨
i∈I

{c(x) ∩ Si : i ∈ I} =
∨
i∈I

{O} = O

which proves the result.

Observation 4.5. (1) The above result also holds for weakly (i, j)-remote sublocales.
(2) Since for all sublocales S and T, the sublocale S ∖ T is contained in S, and since a sublocale smaller than

an (i, j)-remote (resp. weakly (i, j)-remote) sublocale is (i, j)-remote (resp. weakly (i, j)-remote), we deduce from (1)
above and Proposition 4.4 that the system of (i, j)-remote (resp. weakly (i, j)-remote) sublocales, partially ordered by
inclusion, is a coframe.

Next, we discuss (i, j)-remoteness and weakly (i, j)-remoteness of closed sublocales.

Proposition 4.6. Let (L,L1,L2) be a bilocale and a ∈ L. Then c(a) is (i, j)-remote (resp. weakly (i, j)-remote) iff
a ∨ x = 1 for every j-dense (resp. complemented j-dense) x ∈ Li.

Proof. For each j-dense x ∈ Li, Theorem 4.3 implies that

c(a) ∩ cli(c(x)) = O ⇔ c(a) ∩ c(x) = O
⇔ c(a ∨ x) = O
⇔ a ∨ x = 1

which proves the result.

We close this section with a short discussion of remoteness in the categories of bitopological spaces and
normed lattices.

We start by introducing (τi, τ j)-remote subsets of bispaces.

Definition 4.7. Let (X, τ1, τ2) be a bispace and A ⊆ X. Then A is (τi, τ j)-remote if A∩F = ∅ for every (τi, τ j)-nowhere
dense F ⊆ X.

We show that a subset A of a sup-TD bispace (X, τ1, τ2) is (τi, τ j)-remote (resp. weakly (τi, τ j)-remote)
precisely when Ã is (i, j)-remote (resp. weakly (τi, τ j)-remote). We shall need the following result taken
from [15, Observation 2.1.17.]:

For a TD-space X and subsets A and B of X where A is either closed or open, A ∩ B = ∅ if and only if
Ã ∩ B̃ = O.

Proposition 4.8. Let (X, τ1, τ2) be a sup-TD bitopological space and A ⊆ X. Then Ã is (i, j)-remote iff A is
(τi, τ j)-remote, where i , j ∈ {1, 2}.
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Proof. (⇒) : Let N ⊆ X be (τi, τ j)-nowhere dense. By Proposition 3.10, Ñ is (i, j)-nowhere dense in τ. By
hypothesis, Ã ∩ cli(Ñ) = O. But cli(Ñ) = ˜clτi (N), so Ã ∩ ˜clτi (N) = O. Therefore S(A∩clτi (N)) = O making
A ∩ clτi (N) = ∅.

(⇐) : Let F be an (i, j)-nowhere dense sublocale of τ. By Theorem 3.12, cli(F) is (i, j)-nowhere dense in τ.
But cli(F) is τ-closed, so there is a τ-closed B ⊆ X such that cli(F) = B̃. It follows from Proposition 3.10 that
B is (τi, τ j)-nowhere dense. Therefore B ∩ A = ∅. By [14, Observation 2.1.17.],

O = B̃ ∩ Ã = cli(F) ∩ Ã

which implies that F ∩ Ã = O as required.

We show that the equivalences (1), (2) and (5) of Theorem 4.3 hold for bispaces, by reasoning as in the localic
proof.

Theorem 4.9. Let (X, τ1, τ2) be a bispace and A ⊆ X. The following statements are equivalent.

1. A is (τi, τ j)-remote.
2. A ∩ clτi (N) = ∅ for every (τi, τ j)-nowhere dense N ⊆ X.
3. A ⊆ U for every τ j-dense U ∈ τi.

We move to normed lattices.. We refer the reader to [1] for a theory of normed lattices used below. Recall
that for a linear space E, the pair (E, q), where q is a quasi-norm defined on E, is called the quasi-normed
space associated to E, and the function q−1(a) = q(−a) defines a quasi-norm called a conjugate of q in E and its
induced quasi-uniformity q−1 is the conjugate of q.

For a normed lattice (E, ∥ ∥,≤), we will consider the topologies deduced from the norm ∥ ∥ and from the
associated quasi-norm. A subset U of E is said to be open (resp. dense) if it is open (resp. dense) for the
norm. It is q-open (resp. q-dense) if it is open (resp. dense) for the associated quasi-norm. The topology
deduced from q−1 is coarser than that deduced from the norm.

We introduce the following concept of remoteness in the category of normed lattices.

Definition 4.10. Let (E, ∥ ∥,≤) be a normed lattice. Call A ⊆ E remote in case A ⊆ U for every dense, open and
decreasing U ⊆ E.

We recall the following result from [1].

Lemma 4.11. Let (E, ∥ ∥,≤) be a normed lattice and U ⊆ X. Then

1. U is q-open iff U is open and decreasing.
2. If U is q−1-dense and decreasing, then U is dense.

Finally, we characterize remote subsets of normed lattices.

Proposition 4.12. Let (E, ∥ ∥,≤) be a normed lattice. A subset A of E is remote iff it is (q, q−1)-remote.

Proof. Let U ⊆ E be q-open and q−1-dense. It follows from Lemma 4.11 that U is decreasing, open and dense
in the norm. Since E is remote, A ⊆ U, as required.

Conversely, let A ⊆ E be (q, q−1)-remote and choose a dense, open and decreasing G ⊆ E. It follows from
Lemma 4.11(1) that G is q-open. Since the topology deduced from q−1 is coarser than that deduced from the
norm, G is q−1-dense. By hypothesis, A ⊆ G. Thus A is remote.
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5. (i, j)-remote sublocales and bilocalic maps

This section discusses preservation and reflection of (i, j)-remote and weakly (i, j)-remote sublocales by
bilocalic maps.

Definition 5.1. We call f : (L,L1,L2) → (M,M1,M2) a bilocalic map if (i) f : L → M is a localic map, and (ii)
f [Li] ⊆Mi and f ∗[Mi] ⊆ Li for i = 1, 2.

For a bilocalic map f : (L,L1,L2) → (M,M1,M2), the localic map f : L → M is called the total part of
f : (L,L1,L2) → (M,M1,M2) and f [−] : S(L) → S(M) and f−1[−] : S(M) → S(L) are respectively the usual
localic image and localic preimage functions induced by the total part of f .

Example 5.2. (1) For a locale L and S ∈ S(L), the inclusion map (S,S,S) ↪→ (L,L,L) is a bilocalic map.
(2) It is clear from the above definition of a bilocalic map that, given any bilocalic map f : (L,L1,L2)→ (M,M1,M2),

the map f ∗ : (M,M1,M2)→ (L,L1,L2) whose total part is the right adjoint of f , is a biframe map.

We consider preservation of (i, j)-remote sublocales and weakly (i, j)-remote sublocales. We only prove the
case of (i, j)-remoteness. The proof for weakly (i, j)-remoteness follows a similar sketch and uses the facts
that the left adjoint f ∗ of a localic map f preserves complements and the localic pre-image function f−1[−]
under f preserves clopen sublocales.

Proposition 5.3. Let f : (L,L1,L2)→ (M,M1,M2) be a bilocalic map. Consider the following statements:

1. f [−] : S(L)→ S(M) preserves (i, j)-remote (resp. weakly (i, j)-remote) sublocales.
2. f−1[−] : S(M)→ S(L) preserves (i, j)-nowhere dense (resp. clopen nowhere dense) sublocales.
3. f ∗ preserves j-dense (resp. complemented (in L) j-dense) elements.

Then for i , j ∈ {1, 2}, (3)⇔ (2)⇒ (1). Moreover, if (L,L1,L2) is balanced, then (1)⇔ (2)⇔ (3).

Proof. (2) ⇒ (3): Let a ∈ Mi be j-dense. By Corollary 3.13, c(a) is (i, j)-nowhere dense. By hypothesis,
f−1[c(a)] is (i, j)-nowhere dense. But f−1[c(a)] = o( f ∗(a)), so c( f ∗(a)) is (i, j)-nowhere dense, making f ∗(a) ∈ Li
j-dense by Corollary 3.13.

(3) ⇒ (2): Let A ∈ S(M) be (i, j)-nowhere dense. Then
∨
{x ∈ Mi : A ⊆ c(x)} ∈ Mi is j-dense. It

follows that f ∗
(∨
{x ∈ Mi : A ⊆ c(x)}

)
is j-dense and f ∗

(∨
{x ∈ Mi : A ⊆ c(x)}

)
∈ Li because f ∗ is a biframe

homomorphism. Therefore

c
(

f ∗
(∨
{x ∈Mi : A ⊆ c(x)}

))
= f−1

[
c
(∨
{x ∈Mi : A ⊆ c(x)}

)]
= f−1[cli(A)]

is (i, j)-nowhere dense by Proposition 3.13. Because f−1[A] ⊆ f−1[cli(A)], it follows from Lemma 3.11 that
f−1[A] is (i, j)-nowhere dense.

(2) ⇒ (1): Let A ∈ S(L) be (i, j)-remote and choose an (i, j)-nowhere dense sublocale N of M. Set
cli(N) = c(a) for some a ∈Mi. By (2),

cli( f−1[c(a)]) ∩ A = cli(c( f ∗(a))) ∩ A = O.

But f ∗(a) ∈ Li, so c( f ∗(a)) ∩ A = O. Clearly c(a) ∩ f [A] = O. Thus cli(N) ∩ f [A] = O.
For the special case, we prove (1)⇒ (3). Assume that (L,L1,L2) is balanced, f [−] preserves (i, j)-remote

sublocales and let a ∈Mi be j-dense. It follows from Example 4.2(6) thatBL is (i, j)-remote. Since (i, j)-remote
sublocales are contained in every open sublocale induced by L j-elements and f [−] preserves (i, j)-remote
sublocales, f [BL] ⊆ o(a). Therefore BL ⊆ f−1[o(a)] = o( f ∗(a)), making the Li-element f ∗(a) a dense element
of L and hence j-dense by Observation 3.9.

In the next result, we consider reflection of (i, j)-remoteness.

Proposition 5.4. Let f : (L,L1,L2) → (M,M1,M2) be a bilocalic map that sends j-dense elements to j-dense
elements. Then f−1[−] preserves (i, j)-remote sublocales.
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Proof. Let A ∈ S(M) be (i, j)-remote and choose a j-dense x ∈ Li. Since f [Li] ⊆ Mi and f sends j-dense
elements to j-dense elements, f (x) ∈Mi is j-dense. Therefore A∩c( f (x)) = O which implies that f−1[A]∩c(x) =
O, as required.

For the case of weakly (i, j)-remoteness, we impose a condition on f such that its total part is a lattice
homomorphism. The proof is similar to that of Proposition 5.4.

Proposition 5.5. Let f : (L,L1,L2)→ (M,M1,M2) be a bilocalic map that sends j-dense elements to j-dense elements
and such that its total part is a lattice homomorphism. Then f−1[−] preserves (i, j)-remote sublocales.

6. The sublocale Rem(i, j)L

For a bilocale (L,L1,L2), set

Rem(Li,L j)(L,L1,L2) = {x ∈ L : c(x) is weakly (i, j)-remote}.

From Proposition 4.6, we get that

Rem(Li,L j)(L,L1,L2) = {x ∈ L : x ∨ a = 1 for each complemented j-dense a ∈ Li}.

We shall sometimes write Rem(i, j)L if the bilocale (L,L1,L2) is clear from the context.
For the rest of this section, we investigate some properties of Rem(i, j)L.
We consider some examples.

Example 6.1. (1) For the bitopological space given in Example 3.17, we have Rem(1,2)τ = c({a}).
(2) A bilocale is Boolean, [19], if x ≺i x for each x ∈ Li, i = 1, 2, i.e., there is c ∈ L j (i , j) such that x ∧ c = 0

and x ∨ c = 1. This tells us that each x ∈ Li, i = 1, 2, is complemented in L. In every Boolean bilocale (L,L1,L2),
L = Rem(i, j)L.

(3) Consider the biframe of reals [10] which is the triple (OR,ODR,OUR), where

ODR = {(−∞, x) : x ∈ R} ∪ {∅,R}

and
OUR = {(y,∞) : y ∈ R} ∪ {∅,R}.

Clearly, Rem(ODR,OUR)OR = OR.
(4) For a symmetric bilocale (L,L1,L2), Rem(i, j)L = L if and only if L is Boolean. See [14, Corollary 2.21] for the

proof.
(5) For a bilocale (L,L1,L2), if a ≤ x and a ∈ Rem(i, j)L, then x ∈ Rem(i, j)L. In particular, 1 ∈ Rem(i, j)L.
(6) Recall that a frame homomorphism h : M→ L is closed if f (a ∨ h(b)) = f (a) ∨ b for every a ∈ L, b ∈ M. We

also recall from [7, Proposition 4.3.] that if an element a ∈ L is dense in L, then a ⊕ 1 is dense in L ⊕M: Using the
fact that (x ⊕ y)∗ = (x∗ ⊕ 1) ∨ (1 ⊕ y∗) for all x ∈ L, y ∈M (from [6]), we get that

(a ⊕ 1)∗ = (a∗ ⊕ 1) ∨ (1 ⊕ 1∗) = (0 ⊕ 1) ∨ (1 ⊕ 0) = 0L⊕M.

Now, for any symmetric bilocales L and M such that the coproduct injection L L ⊕M
qL

is closed, if x ⊕ y ∈
Rem(i, j)(L⊕M) for any x ∈ L and y ∈M, then x ∈ Rem(i, j)L: Let x ∈ L, y ∈M and assume that x⊕y ∈ Rem(i, j)(L⊕M).
For any dense a ∈ L, we get that qL(a) = a ⊕ 1 is dense in L ⊕ M. Since x ⊕ y ∈ Rem(i, j)(L ⊕ M), we get that
(x ⊕ y) ∨ (a ⊕ 1) = 1L⊕M, which implies that (x ⊕ y) ∨ qL(a) = 1L⊕M. Therefore in light of qL being a closed
homomorphism, (qL)∗(x ⊕ y) ∨ a = 1. If a = 1, then we are done. If a , 1, then

(qL)∗(x ⊕ y) =
∨
{b ∈ L : qL(b) ≤ x ⊕ y} =

∨
{b ∈ L : b ⊕ 1 ≤ x ⊕ y} , 0.

Therefore there exists b , 0 in L such that 0L⊕M , b ⊕ 1 ≤ x ⊕ y, which implies that b ≤ x and y = 1. Therefore

1 = (qL)∗(x ⊕ y) ∨ a = (qL)∗(x ⊕ 1) ∨ a = (qL)∗(qL(x)) ∨ a = x ∨ a,
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where the latter equality holds since qL is injective. Thus x ∈ Rem(i, j)L.

Consequently, if L L ⊕M M
qL qM

are closed coproduct injections, then for any x ∈ L and y ∈ M,
x ⊕ y ∈ Rem(i, j)(L ⊕M) implies x ∈ Rem(i, j)L and y ∈ Rem(i, j)M.

We prove that Rem(i, j)L is a sublocale and is always closed.

Proposition 6.2. Let (L,L1,L2) be a bilocale. Then Rem(i, j)L is a closed sublocale of L.

Proof. Choose {aα : α ∈ Λ} ⊆ Rem(i, j)L and let y ∈ Li be j-dense. Then

y ∨
∧

aα =
∧

(y ∨ aα) =
∧

(1L) = 1L

where the first equality follows since complemented elements are colinear and the second equality follows
since members of Rem(i, j)L meet j-dense elements of Li at the top. Therefore

∧
aα ∈ Rem(i, j)L.

Furthermore, let x ∈ L, a ∈ Rem(i, j) L and y ∈ Li be j-dense . Then y ∨ a = 1L. Since a ≤ x → a, we have
that y ∨ (x→ a) = 1L. Thus x→ a ∈ Rem(i, j) L.

Hence Rem(i, j)L is a sublocale of L.
For closedness, we show that for every A ∈ S(L), A ⊆ Rem(i, j)L implies A ⊆ Rem(i, j)L. Assume that

A ⊆ Rem(i, j)L and let x ∈ A and y ∈ Li be complemented j-dense. Since
∧

A ∈ Rem(i, j)L, (
∧

A) ∨ y = 1. But∧
A ≤ x, so x ∨ y = 1. Thus x ∈ Rem(i, j)L. Consequently, Rem(i, j)L ⊆ Rem(i, j)L, making Rem(i, j)L a closed

sublocale.

Observation 6.3. SinceBL is seldomly complemented, Proposition 6.2 tells us that Rem(i, j)L is not always the same
as BL. This is also confirmed by Example 6.1(1) where Bτ = {∅,X, {a}, {b, c}} , Rem(i, j)τ. We also note from the
recalled example that Rem(1,2)τ is not always a remote sublocale of L. This is because Rem(1,2)τ does not miss the
τ-nowhere dense sublocale c({a, b}).

In what follows, we consider some conditions on a bilocale (L,L1,L2) such that Rem(i, j)L is remote.

Proposition 6.4. Let (L,L1,L2) be a bilocale. If Li = L, then Rem(i, j)L is a remote sublocale of L.

Proof. Let y ∈ L be dense. Since y ∈ Li, it follows from Observation 3.9 that y is j-dense. By Theorem 4.3,
c(x) ⊆ o(y) for every x ∈ Rem(i, j)L which means that x ∈ o(y) for all x ∈ Rem(i, j)L. Therefore Rem(i, j)L ⊆ o(y).
Thus Rem(i, j)L is a remote sublocale of L.

Observation 6.5. (1) The converse of Proposition 6.4 is not always true. Example 6.1(3) is a counterexample. This
tells us that the condition hypothesized in Proposition 6.4 is one of the many conditions making Rem(i, j)L remote.

(2) SinceBL is the largest remote sublocale of a locale L, Theorem 6.4 also gives a condition when Rem(i, j)L ⊆ BL.

Although Rem(i, j)L may not always be remote, it is always (i, j)-remote, as shown below.

Proposition 6.6. Let (L,L1,L2) be a bilocale. Then Rem(i, j)L is (i, j)-remote.

Proof. Let x ∈ Li be j-dense. Since
∧

Rem(i, j)L ∈ Rem(i, j)L, x∨
∧

Rem(i, j)L = 1 so that Rem(i, j)L = c(
∧

Rem(i, j)L) ⊆
o(x).

In the following result, we give neccessary and sufficient conditions for Rem(i, j)L to be the whole locale.

Proposition 6.7. Let (L,L1,L2) be a bilocale. The following statements are equivalent.

1. Rem(i, j)L = L.
2. L is (i, j)-remote as a sublocale of itself.
3. 1 is the only j-dense element of Li which is complemented in L.
4. 0 ∈ Rem(i, j)L.
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Proof. (1)⇒ (2): Follows from Proposition 6.6.
(2)⇒ (3): Let x ∈ Li be j-dense and compemented in L. Then by (2), L∩ c(x) = O, making c(x) = O. Thus

x = 1.
(3)⇒ (4): Since 1 is the only j-dense element of Li which is complemented in L, we have that 0 ∨ x = 1

for every j-dense x ∈ Li, making 0 ∈ Rem(i, j)L.
(4)⇒ (1): Follows since Rem(i, j)L is closed.

We consider the following example.

Example 6.8. Recall from [8] that the collection CL of all congruences on a locale L form a locale. The triple
(CL,∇L,∆L), where ∇L = {∇a : a ∈ L} and ∆L is the subframe of CL generated by {∆a : a ∈ L}, is a bilocale called
the congruence bilocale of L. By [9], the congruence bilocale (CL,∇L,∆L) of a locale L satisfies the condition that each
∇a ∈ ∇L is complemented in CL and has a complement in ∆L. This tells us that the only ∆L-dense element of ∇L that
is also complemented in CL is 1CL. By Proposition 6.7, Rem(i, j)CL = CL.

Recall from [3] that the triple (JL, (JL)1, (JL)2), where JL is the locale of all ideals of L and (JL)i (i = 1, 2)
is the subframe of JL consisting of all ideals J ⊆ L generated by J ∩ Li, is a bilocale called the ideal bilocale.
A locale is said to be Noetherian if each of elements is compact.

We have the following result.

Proposition 6.9. In a bilocale (L,L1,L2) with a Noetherian total part L, Rem(i, j)L = L iff Rem(i, j)JL = JL.

Proof. Suppose that Rem(i, j)L = L. We show that 1JL is the only (JL) j-dense element of (JL)i that is
complemented in JL. Let I ∈ (JL)i be (JL)2-dense and complemented in JL. Since in a Noetherian locale
every ideal is principal, ↓

∨
I = I, making

∨
I ∈ I. Therefore

∨
J ≤ x for some x ∈ Li ∩ J, making

∨
J = x ∈ Li.

The fact that I is complemented in JL implies that there is J ∈ JL such that J ∩ I = OJL and J ∨ I = 1JL.
We get that OJL = J ∩ I = (↓

∨
J) ∩ (↓

∨
I) and 1JL = J ∨ I = (↓

∨
J) ∨ (↓

∨
I). Therefore (

∨
J) ∧ (

∨
I) = 0L and

(
∨

J) ∨ (
∨

I) = 1L, making
∨

I complemented in L. For j-density of
∨

I, choose a ∈ L j such that a ∧
∨

I = 0L.
Then O = (↓a)∩ (↓

∨
I) = ↓a∩ I. Since ↓a ∈ (JL) j and I is (JL) j-dense, ↓a = 0JL. Therefore a = 0L, making

∨
I

j-dense. Since, by Proposition 6.7, 1L is the only j-dense element of Li which is complemented in L,
∨

I = 1
so that 1JL = ↓

∨
I = I. By Proposition 6.7, Rem(i, j)JL = JL.

On the other hand, assume that Rem(i, j)JL = JL and let x ∈ Li be a j-dense element of Li which is
complemented in L. Since a ≤ x ∈ Li ∩ ↓x for each a ∈ ↓x and ↓x ∈ JL, ↓x ∈ (JL)i. For j-density of ↓x, let
J ∈ (JL)2 be such that J ∧ ↓x = 0JL. If a ∈ J, then a ≤ b for some b ∈ J ∩ L j. But (

∧
J) ∧ x = 0 and b ≤

∨
J, so

b ∧ x = 0 making b = 0 since x is j-dense. Therefore a = 0. Thus J = 0JL so that ↓x is (JL) j-dense. Because
x is complemented in L, there is a ∈ L such that a ∨ x = 1L and a ∧ x = 0L. Therefore (↓a) ∨ (↓x) = 1JL and
(↓a) ∩ (↓x) = 0JL. Thus ↓x is complemented in JL. It follows from Proposition 6.7 that ↓x = 1JL. Therefore
x = 1L, making Rem(i, j)L = L by Proposition 6.7.

For the rest of this section, we discuss Rem(i, j) as a functor and consider some other functors associated
with it.

Denote by BiLoc the category of bilocales whose morphisms are bilocalic maps.
By a weakly closed biframe homomorphism we mean a biframe map whose total part is weakly closed.

Proposition 6.10. Let (L,L1,L2), (M,M1,M2) ∈ Obj(BiLoc) and f : (L,L1,L2) → (M,M1,M2) be a bilocalic map
such that f ∗ : (M,M1,M2) → (L,L1,L2) is weakly closed and sends j-dense elements to j-dense elements. Then
f|Rem(i, j)L[Rem(i, j)L] ⊆ Rem(i, j) M.

Proof. Choose x ∈ Rem(i, j)L and let y ∈ Mi be j-dense. Since f ∗ sends j-dense elements to j-dense elements,
f ∗(y) ∈ Li is j-dense. Therefore f ∗(y)∨x = 1. But f ∗ is weakly closed so y∨ f (x) = 1. Thus f (x) ∈ Rem(i, j) M.

The following corollary is an immediate result of Proposition 6.10.
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Corollary 6.11. Let (L,L1,L2), (M,M1,M2) ∈ Obj(BiLoc) and f : (L,L1,L2) → (M,M1,M2) be a bilocalic map
such that f ∗ : (M,M1,M2)→ (L,L1,L2) is weakly closed and sends j-dense elements to j-dense elements. Then

f|Rem(i, j)L : Rem(i, j)L→ Rem(i, j) M

is a localic map.

Definition 6.12. Call a bilocalic map f : (L,L1,L2)→ (M,M1,M2) a Rem(i, j)-map if f [Rem(i, j)L] ⊆ Rem(i, j)M.

Example 6.13. The bilocalic maps described in the statement of Corollary 6.11 are Rem(i, j)-maps.

Denote by BiLocR(i, j) the subcategory of BiLoc whose morphisms are Rem(i, j)-maps.
There is a functor between BiLocR(i, j) and Loc, as one checks routinely.

Theorem 6.14. The assignment

Rem(i, j) : BiLocR(i, j) → Loc,

(L,L1,L2) 7→ Rem(i, j)L,

Rem(i, j)( f : (L,L1,L2)→ (M,M1,M2)) = f|Rem(i, j)L

is a functor.

Recall from [4] that there is a faithful functor U : BiFrm → Frm which takes the total part. It is clear that
there is also a faithful functor F : BiLoc→ Loc behaving the same as the functor U. Consider the inclusion
functor EBiLocR(i, j) : BiLocR(i, j) ↪→ BiLoc. One can easily see that the functor G = F◦EBiLocR(i, j) : BiLocR(i, j) → Loc
is faithful.

In what follows, we show that there is a natural transformation between Rem(i, j) and G.

Proposition 6.15. There is a natural transformation η : Rem(i, j) → G.

Proof. Let (L,L1,L2) ∈ BiLocR(i, j) and η(L,L1,L2) be the map jRem(i, j)L : Rem(i, j)L→ L. The map η(L,L1,L2) is clearly
a localic map. Now, choose f : (L,L1,L2)→ (M,M1,M2) ∈Morp(BiLocR(i, j)). Then the diagram

Rem(i, j)L L

Rem(i, j)M M

Rem(i, j)( f )

η(L,L1 ,L2)

G( f )

η(M,M1 ,M2)

(1)

commutes: For each x ∈ Rem(i, j)L,

G( f )(η(L,L1,L2)(x)) = G( f )(x) = f (x) = η(M,M1,M2)( f (x)) = η(M,M1,M2)(Rem(i, j)( f )(x))

which proves the result.

Denote by:

1. RemBiLocR(i, j) the full subcategory of BiLocR(i, j) whose objects are bilocales (L,L1,L2) in which Rem(i, j)L
is a remote sublocale of L,

2. RemBiLocRB(i, j) the full subcategory of RemBiLocR(i, j) whose objects are bilocales (L,L1,L2) with 1 the
only j-dense element of Li, and

3. ERemBiLocRB(i, j) the inclusion functor RemBiLocRB(i, j) ⊆ RemBiLocR(i, j).
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Observation 6.16. If, in Corollary 6.11, we consider the category RemBiLocR(i, j) instead of BiLoc, we get that
f|Rem(i, j)L is a closed localic map. This follows since remote sublocales are Boolean algebras and any localic map with a
Boolean codomain is closed.

Set Rem(i, j) ◦ERemBiLocR(i, j) = RemRB and Ĝ = G ◦ ERemBiLocRB(i, j) . Since Ĝ is a composition of two faithful
functors, it is faithful. We prove faithfulness of RemRB(i, j).

Proposition 6.17. The functor RemRB(i, j) is faithful.

Proof. Let f , 1 : (L,L1,L2)→ (M,M1,M2) be morphisms of RemBiLocRB(i, j) such that RemRB(i, j)( f ) = RemRB(i, j)(1).
Since, by Proposition 6.7, Rem(i, j)L = L and Rem(i, j)M =M, we have that

total part of f = f|Rem(i, j)L = Rem(i, j)( f ) = Rem(i, j)(1) = 1|Rem(i, j)M = total part of 1.

Therefore f = 1, making RemRB(i, j) faithful.

In fact, the functors RemRB(i, j) and Ĝ are naturally isomorphic, as we show below.

Proposition 6.18. The functors Ĝ and RemRB(i, j) are naturally isomorphic.

Proof. Consider the natural transformation ω : RemRB(i, j) → Ĝ which maps as the natural transformation
η : Rem(i, j) → G given in Proposition 6.15. Since L = Rem(i, j) L = RemRB(i, j) L for every (L,L1,L2) ∈
RemBiLocRB(i, j), each component ω(L,L1,L2) = jRem(i, j)L : Rem(i, j)L→ L is an isomorphism. Thus ω is a natural
isomorphism.

We consider an endofunctor associated with Rem(i, j) that induces a comonad. We limit our focus to
symmetric bilocales. Denote by RemBiLocSR(i, j) the full subcategory of RemBiLocR(i, j) whose objects are
symmetric bilocales (L,L1,L2) in which Rem(i, j)L is remote. Using the fact that νS[L] = S for every sublocale
S of a locale L, we have the following result.

Proposition 6.19. The assignment

RemSB(i, j) : RemBiLocSR(i, j) → RemBiLocSR(i, j),

(L,L1,L2) 7→ (Rem(i, j)L, ν(Rem(i, j)L)[L1], ν(Rem(i, j)L)[L2]),

RemSB( f ) = Rem(i, j)( f )

is an endofunctor.

The endofunctor RemSB(i, j) is associated with some comonad, as we show in Theorem 6.20 below. We show
that there are natural transformationsη : RemSB(i, j) → idRemBiLocSR(i, j) andµ : RemSB(i, j) → RemSB(i, j) ◦RemSB(i, j)
such that the following diagrams commute:

RemSB(i, j)
µ //

id

))

µ

��

RemSB(i, j) ◦RemSB(i, j)

ηRemSB(i, j)

��
RemSB(i, j) ◦RemSB(i, j) RemSB(i, j) η

// RemSB(i, j)

(2)

RemSB(i, j)
µ //

µ

��

RemSB(i, j) ◦RemSB(i, j)

RemSB(i, j) µ

��
RemSB(i, j) ◦RemSB(i, j) µRemSB(i, j)

// RemSB(i, j) ◦RemSB(i, j) ◦RemSB(i, j)

(3)
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Theorem 6.20. The triple (RemSB(i, j), η, µ), where

1. RemSB(i, j) is the endofunctor RemSB(i, j) : RemBiLocSR(i, j) → RemBiLocSR(i, j),
2. η : RemSB(i, j) → idBiCFLocSR(i, j) is a function that assigns to each (L,L1,L2) ∈ RemBiLocSR(i, j) the map

η(L,L1,L2) = jRem(i, j)L : (Rem(i, j)L, ν(Rem(i, j)L)[L1], ν(Rem(i, j)L)[L2])→ (L,L1,L2),

and
3. µ : RemSB → RemSB ◦RemSB assigns to each (L,L1,L2) ∈ RemBiLocSR(i, j) the map

µ(L,L1,L2) = idRemSB(L) = idRem(i, j)L : RemSB(L,L1,L2)→ RemSB(RemSB(L,L1,L2)),

is a comonad.

Proof. Straightforward.

Let BiBooLocS(i, j) denote the full subcategory of BiLoc whose objects are symmetric Boolean bilocales.
We close this section with a result showing that BiBooLocS(i, j) is a coreflective subcategory of BiCFLocSR(i, j).

Since Rem(i, j) L = L for every symmetric Boolean bilocale (L,L1,L2), each bilocalic map between sym-
metric Boolean bilocales is a Rem(i, j)-map and hence BiBooLocS(i, j) is a full subcategory of RemBiLocSR(i, j)
because every Boolean bilocale is an object of RemBiLoc.

Proposition 6.21. BiBooLocS(i, j) is a coreflective subcategory of RemBiLocSR(i, j).

Proof. Let (L,L1,L2) ∈ RemBiLocSR(i, j). Since Rem(i, j)L is Boolean, it is clear that the triple (Rem(i, j)L,Rem(i, j)L,Rem(i, j)L)
is a Boolean bilocale, making it an object of the category BiBooLocS(i, j).

The map jRem(i, j)L : (Rem(i, j)L,Rem(i, j)L,Rem(i, j)L)→ (L,L1,L2) is a Rem(i, j)-map:

( jRem(i, j)L)|Rem(i, j)L[Rem(i, j)(Rem(i, j)L)] = jRem(i, j)L[Rem(i, j)(Rem(i, j)L)] ⊆ Rem(i, j)L

so that jRem(i, j)L is a Rem(i, j)-map.
Let f : (N,N1,N2) → (L,L1,L2) be a Rem(i, j)-map where (N,N1,N2) is a symmetric Boolean bilo-

cale. Then N = Rem(i, j)(N) by Example 6.1(4). So, there is a bilocalic map, say f ′ : (N,N1,N2) →
(Rem(i, j) L,Rem(i, j) L,Rem(i, j) L), which maps as f . This bilocalic map clearly satisfies c ◦ f ′ = f .

f ′ is unique: Let k : (N,N1,N2)→ (Rem(i, j) L,Rem(i, j) L,Rem(i, j) L) be a bilocalic map such that jRem(i, j)L◦k =
f . Then, for each x ∈ N, k(x) = jRem(i, j)L(k(x)) = f (x) = c( f ′(x)) = f ′(x). Thus k = f ′ so that f ′ is unique.
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