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Abstract. Let A be a unite prime ∗-algebra containing a non-trivial projection. Assume that ϕ : A → A
satisfies ϕ(A1 ⋄1 A2 ⋄2 · · · ⋄n An+1) =

∑n+1
h=1 A1 ⋄1 · · · ⋄h−2 Ah−1 ⋄h−1 ϕ(Ah) ⋄h Ah+1 ⋄h+1 · · · ⋄n An+1(n ≥ 2) for any

A1,A2, · · · ,An+1 ∈ A and ⋄r is • or ◦ with 1 ≤ r ≤ n, where A • B = AB∗ + BA∗ and A ◦ B = AB + BA. In
this article, we prove that if n is even and ⋄2u−1 = •, ⋄2u = ◦ with 1 ≤ u ≤ n

2 , then there exists an element
λ ∈ ZS(A) such that ϕ(A) = δ(A) + iλA, where δ is an additive ∗-derivation. Otherwise, ϕ is an additive
∗-derivation. In particular, the nonlinear mixed bi-skew Jordan-type derivations on factor von Neumann
algebras and standard operator algebras are characterized.

1. Introduction

LetA be a ∗-algebra over the complex fieldC. For any A,B ∈ A, we say the products A∗B = AB+BA∗ and
A•B = AB∗+BA∗ are the ∗-Jordan product and the bi-skew Jordan product, respectively. These two products
have been studied by a lot of scholars in many topics, see [1–10]. Recall that an additive map ϕ : A → A
is called an additive derivation if ϕ(AB) = ϕ(A)B + Aϕ(B) for all A,B ∈ A. Besides, if ϕ(A∗) = ϕ(A)∗ for
all A ∈ A, then ϕ is an additive ∗-derivation. Correspondingly, a map (without the additivity assumption)
ϕ : A → A is called a nonlinear ∗-Jordan derivation if ϕ(A ∗ B) = ϕ(A) ∗ B + A ∗ ϕ(B) for all A,B ∈ A, and
is called a nonlinear bi-skew Jordan derivation if ϕ(A • B) = ϕ(A) • B + A • ϕ(B) for all A,B ∈ A. Taghavi
et al. [11] showed that each nonlinear ∗-Jordan derivation on factor von Neumann algebras is an additive
∗-derivation. Darvish et al. [12] prove that each nonlinear bi-skew Jordan derivation on prime ∗-algebras is
an additive ∗-derivation. In addition, Zhao et al. [13] and Khan et al. [14] extended to the cases of nonlinear
∗-Jordan triple derivations on von Neumann algebras with no central summands of type I1 and nonlinear
bi-skew Jordan triple derivations on prime ∗-algebras, respectively. With the nonlinear ∗-Jordan triple
derivation and the nonlinear bi-skew Jordan triple derivation. A map (without the additivity assumption)
ϕ : A→A is called a nonlinear ∗-Jordan-type derivation if

ϕ(A1 ∗ A2 ∗ · · · ∗ An+1) =
n+1∑
h=1

A1 ∗ · · · ∗ Ah−1 ∗ ϕ(Ah) ∗ Ah+1 ∗ · · · ∗ An+1
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for any A1,A2, · · · ,An+1 ∈ A, where A1 ∗A2 ∗ · · · ∗An+1 = (· · · ((A1 ∗A2) ∗A3) · · · ∗An), and is called a nonlinear
bi-skew Jordan-type derivation if

ϕ(A1 • A2 • · · · • An+1) =
n+1∑
h=1

A1 • · · · • Ah−1 • ϕ(Ah) • Ah+1 • · · · • An+1

for any A1,A2, · · · ,An+1 ∈ A. Li et al. [15] proved that any nonlinear ∗-Jordan-type derivation on ∗-algebras
is an additive ∗-derivation. Ashraf et al. [16] obtained similar structure of the nonlinear bi-skew Jordan-type
derivation on ∗-algebras.

Recently, many researchers have shown great interest in the study of maps related to mixed products
comprising skew Jordan products or bi-skew Jordan products, see [17–21]. For instance, a map (without
the additivity assumption) ϕ : A→A is called a second nonlinear mixed Jordan triple derivation if

ϕ(A ◦ B ∗ C) = ϕ(A) ◦ B ∗ C + A ◦ ϕ(B) ∗ C + A ◦ B ∗ ϕ(C)

for all A,B,C ∈ A, where A ◦ B = AB + BA. Rehman et al. [22] proved that every second nonlinear mixed
Jordan triple derivation on ∗-algebras is an additive ∗-derivation. Let ϕ : A → A be a map (without the
additivity assumption), then ϕ is called a nonlinear mixed Jordan triple derivation onA if

ϕ(A ∗ B ◦ C) = ϕ(A) ∗ B ◦ C + A ∗ ϕ(B) ◦ C + A ∗ B ◦ ϕ(C)

for all A,B,C ∈ A. Ning and Zhang [23] proved that each nonlinear mixed Jordan triple derivation on factor
von Neuamnn algebras is an additive ∗-derivation. Similarly, a map (without the additivity assumption)
ϕ : A→A is called a second nonlinear mixed bi-skew Jordan triple derivation if

ϕ(A ◦ B • C) = ϕ(A) ◦ B • C + A ◦ ϕ(B) • C + A ◦ B • ϕ(C) (1.1)

for all A,B,C ∈ A, and is called a nonlinear mixed bi-skew Jordan triple derivation if

ϕ(A • B ◦ C) = ϕ(A) • B ◦ C + A • ϕ(B) ◦ C + A • B ◦ ϕ(C) (1.2)

for all A,B,C ∈ A. In [24], Ferreira et al. considered a map ϕ : A→A such that

ϕ(A1 ◦ A2 ◦ · · · ◦ An • An+1) =
n+1∑
h=1

A1 ◦ · · · ◦ Ah−1 ◦ ϕ(Ah) ◦ Ah+1 ◦ · · · ◦ An • An+1 (1.3)

for any A1,A2, · · · ,An+1 ∈ A, which is called a nonlinear mixed ∗-Jordan-type derivation. We can see that
if ϕ satisfies Eq. (1.3) with n = 2, then ϕ is Eq. (1.1). Also, the authors [24] prove that each nonlinear
mixed ∗-Jordan-type derivation on ∗-algebras is an additive ∗-derivation. Define a map ϕ : A → A such
that ϕ(A) = [A,T] − iA, where T∗ = −T. It is easy check that ϕ is a nonlinear mixed bi-skew Jordan triple
derivation, but it does not an additive ∗-derivation. Encouraged by the above work, let ϕ : A → A be a
map (without the additivity assumption). If

ϕ(A1 ⋄1 A2 ⋄2 · · · ⋄n An+1) =
n+1∑
h=1

A1 ⋄1 · · · ⋄h−2 Ah−1 ⋄h−1 ϕ(Ah) ⋄h Ah+1 ⋄h+1 · · · ⋄n An+1 (1.4)

for any A1,A2, · · · ,An+1 ∈ A (n ≥ 2), where ⋄r is • or ◦ with 1 ≤ r ≤ n, then ϕ is called a nonlinear mixed
bi-skew Jordan-type derivation. Obviously, take ⋄r = ◦ with 1 ≤ r ≤ n − 1 and ⋄n = • in Eq. (1.4), then ϕ
is Eq. (1.3). Meanwhile, if ϕ satisfies Eq. (1.4) with ⋄1 = •, ⋄2 = ◦ and n = 2, we can obtain that ϕ is Eq.
(1.2). Hence, Eqs. (1.2) and (1.3) are special forms of Eq. (1.4). In this paper, we will give the structure
of the nonlinear mixed bi-skew Jordan-type derivation on prime ∗-algebras. Let A be a prime ∗-algebra,
i.e. A = 0 or B = 0 if AAB = 0, and Asa = {A ∈ A : A∗ = A}. Denote by Z(A) the central of A and
ZS(A) = Z(A) ∩Asa.
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2. Additivity

In this section, we will prove the following theorem.

Theorem 2.1. Let A be a unite prime ∗-algebra containing a non-trivial projection, and let ϕ : A → A
such that

ϕ(A1 ⋄1 A2 ⋄2 · · · ⋄n An+1) =
n+1∑
h=1

A1 ⋄1 · · · ⋄h−2 Ah−1 ⋄h−1 ϕ(Ah) ⋄h Ah+1 ⋄h+1 · · · ⋄n An+1

for any A1,A2, · · · ,An+1 ∈ Awith n ≥ 2, then ϕ is additive.

To prove Theorem 2.1, we need some lemmas.

Lemma 2.2. ϕ(0) = 0.

Proof. It is clear that

ϕ(0) =
n+1∑
h=1

0 ⋄1 · · · ⋄h−2 0 ⋄h−1 ϕ(0) ⋄h 0 ⋄h+1 · · · ⋄n 0 = 0.

The proof is completed.

Let P1 ∈ A be a non-trivial projection and P2 = I − P1, where I is the unite of this algebra. PutAi j = PiAP j
for i, j = 1, 2. Then by Peirce decomposition of A, we have A = A11 ⊕ A12 ⊕ A21 ⊕ A22. Note that any
T ∈ A can be written as T = T11 + T12 + T21 + T22, where Ti j ∈ Ai j for i, j = 1, 2. From [24] and [26], we only
need to consider the case when at least one of ⋄r is •, where r ∈ {1, 2, 3 · · · ,n− 1}. Let ⋄s = • and ⋄r = ◦with
1 ≤ r ≤ s − 1.

Γ⟨A,B,C,D⟩ = A ⋄1 A ⋄2 · · · ⋄s−2 A︸                  ︷︷                  ︸
s−1

⋄s−1B ⋄s C ⋄s+1 D ⋄s+2 A ⋄s+3 · · · ⋄n A︸           ︷︷           ︸
n−s−1

and
Γ
ϕ
m⟨A,B,C,D⟩ = A ⋄1 A ⋄2 · · · ⋄m−1 ϕ(A) ⋄m · · · ⋄s−2 A ⋄s−1 B ⋄s C ⋄s+1 D ⋄s+2 A ⋄s+3 · · · ⋄n A

for any A,B,C,D ∈ A, where 1 ≤ m ≤ s − 1, s + 3 ≤ m ≤ n + 1.

Lemma 2.3. ϕ(
∑2

i, j=1 Ai j) =
∑2

i, j=1 ϕ(Ai j) for all Ai j ∈ Ai j with 1 ≤ i, j ≤ 2.

Proof. Let T = ϕ(
∑2

i, j=1 Ai j) −
∑2

i, j=1 ϕ(Ai j). For 1 ≤ k , l ≤ 2, it follows from Γ⟨ I
2 ,Pk,Akk,Pl⟩ = 0,

Γ⟨ I
2 ,Pk,All,Pl⟩ = 0 and Γ⟨ I

2 ,Pk,Akl,Pl⟩ = 0 that

ϕ(Γ⟨
I
2
,Pk,

2∑
i, j=1

Ai j,Pl⟩) =
2∑

i, j=1

ϕ(Γ⟨
I
2
,Pk,Ai j,Pl⟩)

=

s−1∑
m=1

Γ
ϕ
m⟨

I
2
,Pk,

2∑
i, j=1

Ai j,Pl⟩ +

n+1∑
m=s+3

Γ
ϕ
m⟨

I
2
,Pk,

2∑
i, j=1

Ai j,Pl⟩

+ Γ⟨
I
2
, ϕ(Pk),

2∑
i, j=1

Ai j,Pl⟩ + Γ⟨
I
2
,Pk,

2∑
i, j=1

ϕ(Ai j),Pl⟩ + Γ⟨
I
2
,Pk,

2∑
i, j=1

Ai j, ϕ(Pl)⟩.
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On the other hand,

ϕ(Γ⟨
I
2
,Pk,

2∑
i, j=1

Ai j,Pl⟩) =
s−1∑
m=1

Γ
ϕ
m⟨

I
2
,Pk,

2∑
i, j=1

Ai j,Pl⟩ +

n+1∑
m=s+3

Γ
ϕ
m⟨

I
2
,Pk,

2∑
i, j=1

Ai j,Pl⟩

+ Γ⟨
I
2
, ϕ(Pk),

2∑
i, j=1

Ai j,Pl⟩ + Γ⟨
I
2
,Pk, ϕ(

2∑
i, j=1

Ai j),Pl⟩ + Γ⟨
I
2
,Pk,

2∑
i, j=1

Ai j, ϕ(Pl)⟩,

which implies that Γ⟨ I
2 ,Pk,T,Pl⟩ = 0. Thus PkT∗Pl + PlTPk = 0, and so Tlk = 0. For any Xkl ∈ Akl, it follows

from Γ⟨ I
2 ,Xkl,Akk,Pl⟩ = 0, Γ⟨ I

2 ,Xkl,Akl,Pl⟩ = 0 and Γ⟨ I
2 ,Xkl,Alk,Pl⟩ = 0 that

ϕ(Γ⟨
I
2
,Xkl,

2∑
i, j=1

Ai j,Pl⟩) =
2∑

i, j=1

ϕ(Γ⟨
I
2
,Xkl,Ai j,Pl⟩)

=

s−1∑
m=1

Γ
ϕ
m⟨

I
2
,Xkl,

2∑
i, j=1

Ai j,Pl⟩ +

n+1∑
m=s+3

Γ
ϕ
m⟨

I
2
,Xkl,

2∑
i, j=1

Ai j,Pl⟩

+ Γ⟨
I
2
, ϕ(Xkl),

2∑
i, j=1

Ai j,Pl⟩ + Γ⟨
I
2
,Xkl,

2∑
i, j=1

ϕ(Ai j),Pl⟩ + Γ⟨
I
2
,Xkl,

2∑
i, j=1

Ai j, ϕ(Pl)⟩.

On the other hand,

ϕ(Γ⟨
I
2
,Xkl,

2∑
i, j=1

Ai j,Pl⟩) =
s−1∑
m=1

Γ
ϕ
m⟨

I
2
,Xkl,

2∑
i, j=1

Ai j,Pl⟩

+

n+1∑
m=s+3

Γ
ϕ
m⟨

I
2
,Xkl,

2∑
i, j=1

Ai j,Pl⟩ + Γ⟨
I
2
, ϕ(Xkl),

2∑
i, j=1

Ai j,Pl⟩

+ Γ⟨
I
2
,Xkl, ϕ(

2∑
i, j=1

Ai j),Pl⟩ + Γ⟨
I
2
,Xkl,

2∑
i, j=1

Ai j, ϕ(Pl)⟩.

This implies that Γ⟨ I
2 ,Xkl,T,Pl⟩ = 0. Thus XklT∗Pl + PlTX∗kl = 0. It follows from the primeness of A that

Tll = 0. Hence T = 0. The proof is completed.

Lemma 2.4. For all Ai j,Bi j ∈ Ai j with (i , j), we have
(1) ϕ(A12 + B12) = ϕ(A12) + ϕ(B12);
(2) ϕ(A21 + B21) = ϕ(A21) + ϕ(B21).

Proof. Let T = ϕ(A12 + B12) − (ϕ(A12) + ϕ(B12)). For any Xkl ∈ Akl, it follows from Γ⟨ I
2 ,Xkl,A12,Pl⟩ = 0

that

ϕ(Γ⟨
I
2
,Xkl, (A12 + B12),Pl⟩) = ϕ(Γ⟨

I
2
,Xkl,A12,Pl⟩) + ϕ(Γ⟨

I
2
,Xkl,B12,Pl⟩)

=

s−1∑
m=1

Γ
ϕ
m⟨

I
2
,Xkl, (A12 + B12),Pl⟩ +

n+1∑
m=s+3

Γ
ϕ
m⟨

I
2
,Xkl, (A12 + B12),Pl⟩

+ Γ⟨
I
2
, ϕ(Xkl), (A12 + B12),Pl⟩ + Γ⟨

I
2
,Xkl, (ϕ(A12) + ϕ(B12)),Pl⟩

+ Γ⟨
I
2
,Xkl, (A12 + B12), ϕ(Pl)⟩.
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On the other hand,

ϕ(Γ⟨
I
2
,Xkl, (A12 + B12),Pl⟩) =

s−1∑
m=1

Γ
ϕ
m⟨

I
2
,Xkl, (A12 + B12),Pl⟩

+

n+1∑
m=s+3

Γ
ϕ
m⟨

I
2
,Xkl, (A12 + B12),Pl⟩ + Γ⟨

I
2
, ϕ(Xkl), (A12 + B12),Pl⟩

+ Γ⟨
I
2
,Xkl, ϕ(A12 + B12),Pl⟩ + Γ⟨

I
2
,Xkl, (A12 + B12), ϕ(Pl)⟩.

This implies that Γ⟨ I
2 ,Xkl,T,Pl⟩ = 0. Thus XklT∗Pl + PlTX∗kl = 0, and so Tll = 0. It follows from

Γ⟨ I
2 ,P1,A12,P2⟩ = 0 that

ϕ(Γ⟨
I
2
,P1, (A12 + B12),P2⟩) = ϕ(Γ⟨

I
2
,P1,A12,P2⟩) + ϕ(Γ⟨

I
2
,P1,B12,P2⟩)

=

s−1∑
m=1

Γ
ϕ
m⟨

I
2
,P1, (A12 + B12),P2⟩ +

n+1∑
m=s+3

Γ
ϕ
m⟨

I
2
,P1, (A12 + B12),P2⟩

+ Γ⟨
I
2
, ϕ(P1), (A12 + B12),P2⟩ + Γ⟨

I
2
,P1, (ϕ(A12) + ϕ(B12)),P2⟩

+ Γ⟨
I
2
,P1, (A12 + B12), ϕ(P2)⟩.

On the other hand,

ϕ(Γ⟨
I
2
,P1, (A12 + B12),P2⟩) =

s−1∑
m=1

Γ
ϕ
m⟨

I
2
,P1, (A12 + B12),P2⟩

+

n+1∑
m=s+3

Γ
ϕ
m⟨

I
2
,P1, (A12 + B12),P2⟩ + Γ⟨

I
2
, ϕ(P1), (A12 + B12),P2⟩

+ Γ⟨
I
2
,P1, ϕ(A12 + B12),P2⟩ + Γ⟨

I
2
,P1, (A12 + B12), ϕ(P2)⟩.

This implies that Γ⟨ I
2 ,P1,T,P2⟩ = 0. Thus P1T∗P2 + P2TP1 = 0. Hence T21 = 0.

It follows from the above expression that T12 = ϕ(A12 + B12)− (ϕ(A12)+ϕ(B12)). Meanwhile, there exists
S21 ∈ A21 such that S21 = ϕ(A∗12+B∗12)−(ϕ(A∗12)+ϕ(B∗12)). SinceΓ⟨ I

2 , (P2+A∗12), (P1+B12), I
2 ⟩ = A12+B12+A∗12+B∗12,

it follows from Lemma 2.3 that

ϕ(A12 + B12) + ϕ(A∗12 + B∗12) = ϕ(Γ⟨
I
2
, (P2 + A∗12), (P1 + B12),

I
2
⟩)

=

s−1∑
m=1

Γ
ϕ
m⟨

I
2
, (P2 + A∗12), (P1 + B12),

I
2
⟩ +

n+1∑
m=s+3

Γ
ϕ
m⟨

I
2
, (P2 + A∗12), (P1 + B12),

I
2
⟩

+ Γ⟨
I
2
, (ϕ(P2) + ϕ(A∗12)), (P1 + B12),

I
2
⟩ + Γ⟨

I
2
, (P2 + A∗12), (ϕ(P1) + ϕ(B12)),

I
2
⟩

+ Γ⟨
I
2
, (P2 + A∗12), (P1 + B12), ϕ(

I
2

)⟩ = ϕ(Γ⟨
I
2
,P2,B12,

I
2
⟩) + ϕ(Γ⟨

I
2
,A∗12,P1,

I
2
⟩)

= ϕ(A12) + ϕ(B12) + ϕ(A∗12) + ϕ(B∗12).

This implies that T12 + S21 = 0 , and so T12 = 0. Hence T = 0. Similarly, we can show that (2) holds. The
proof is completed.

Lemma 2.5. For all Aii,Bii ∈ Aii with i ∈ {1, 2}, we have
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(1) ϕ(A11 + B11) = ϕ(A11) + ϕ(B11);
(2) ϕ(A22 + B22) = ϕ(A22) + ϕ(B22).

Proof. Let T = ϕ(A11 + B11) − (ϕ(A11) + ϕ(B11)). Since Γ⟨ I
2 ,Pk,A11,Pl⟩ = 0, we have that

ϕ(Γ⟨
I
2
,Pk, (A11 + B11),Pl⟩) = ϕ(Γ⟨

I
2
,Pk,A11,Pl⟩) + ϕ(Γ⟨

I
2
,Pk,B11,Pl⟩)

=

s−1∑
m=1

Γ
ϕ
m⟨

I
2
,Pk, (A11 + B11),Pl⟩ +

n+1∑
m=s+3

Γ
ϕ
m⟨

I
2
,Pk, (A11 + B11),Pl⟩

+ Γ⟨
I
2
, ϕ(Pk), (A11 + B11),Pl⟩ + Γ⟨

I
2
,Pk, (ϕ(A11) + ϕ(B11)),Pl⟩

+ Γ⟨
I
2
,Pk, (A11 + B11), ϕ(Pl)⟩.

On the other hand,

ϕ(Γ⟨
I
2
,Pk, (A11 + B11),Pl⟩) =

s−1∑
m=1

Γ
ϕ
m⟨

I
2
,Pk, (A11 + B11),Pl⟩

+

n+1∑
m=s+3

Γ
ϕ
m⟨

I
2
,Pk, (A11 + B11),Pl⟩ + Γ⟨

I
2
, ϕ(Pk), (A11 + B11),Pl⟩

+ Γ⟨
I
2
,Pk, ϕ(A11 + B11),Pl⟩ + Γ⟨

I
2
,Pk, (A11 + B11), ϕ(Pl)⟩.

This implies that Γ⟨ I
2 ,Pk,T,Pl⟩ = 0. Thus PkT∗Pl + PlTPk = 0, and so Tlk = 0. For any X12 ∈ A12, it follows

from Γ⟨ I
2 ,X12,A11,P2⟩ = 0 that

ϕ(Γ⟨
I
2
,X12, (A11 + B11),P2⟩) = ϕ(Γ⟨

I
2
,X12,A11,P2⟩) + ϕ(Γ⟨

I
2
,X12,B11,P2⟩)

=

s−1∑
m=1

Γ
ϕ
m⟨

I
2
,X12, (A11 + B11),P2⟩ +

n+1∑
m=s+3

Γ
ϕ
m⟨

I
2
,X12, (A11 + B11),P2⟩

+ Γ⟨
I
2
, ϕ(X12), (A11 + B11),P2⟩ + Γ⟨

I
2
,X12, (ϕ(A11) + ϕ(B11)),P2⟩

+ Γ⟨
I
2
,X12, (A11 + B11), ϕ(P2)⟩.

On the other hand,

ϕ(Γ⟨
I
2
,X12, (A11 + B11),P2⟩) =

s−1∑
m=1

Γ
ϕ
m⟨

I
2
,X12, (A11 + B11),P2⟩

+

n+1∑
m=s+3

Γ
ϕ
m⟨

I
2
,X12, (A11 + B11),P2⟩ + Γ⟨

I
2
, ϕ(X12), (A11 + B11),P2⟩

+ Γ⟨
I
2
,X12, ϕ(A11 + B11),P2⟩ + Γ⟨

I
2
,X12, (A11 + B11), ϕ(P2)⟩.

This implies that Γ⟨ I
2 ,X12,T,P2⟩ = 0 . Thus X12T∗P2 + P2TX∗12 = 0. Hence T22 = 0. For any X21 ∈ A21, it
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follows from Lemma 2.3 and Lemma 2.4 that

ϕ(Γ⟨
I
2
,X21, (A11 + B11),P1⟩) = ϕ(X21A∗11) + ϕ(A11X∗21) + ϕ(X21B∗11) + ϕ(B11X∗21)

= ϕ(X21A∗11 + A11X∗21) + ϕ(X21B∗11 + B11X∗21)

= ϕ(Γ⟨
I
2
,X21,A11,P1⟩) + ϕ(Γ⟨

I
2
,X21,B11,P1⟩) =

s−1∑
m=1

Γ
ϕ
m⟨

I
2
,X21, (A11 + B11),P1⟩

+

n+1∑
m=s+3

Γ
ϕ
m⟨

I
2
,X21, (A11 + B11),P1⟩ + Γ⟨

I
2
, ϕ(X21), (A11 + B11),P1⟩

+ Γ⟨
I
2
,X21, (ϕ(A11) + ϕ(B11)),P1⟩ + Γ⟨

I
2
,X21, (A11 + B11), ϕ(P1)⟩.

On the other hand,

ϕ(Γ⟨
I
2
,X21, (A11 + B11),P1⟩) =

s−1∑
m=1

Γ
ϕ
m⟨

I
2
,X21, (A11 + B11),P1⟩

+

n+1∑
m=s+3

Γ
ϕ
m⟨

I
2
,X21, (A11 + B11),P1⟩ + Γ⟨

I
2
, ϕ(X21), (A11 + B11),P1⟩

+ Γ⟨
I
2
,X21, ϕ(A11 + B11),P1⟩ + Γ⟨

I
2
,X21, (A11 + B11), ϕ(P1)⟩.

This implies that Γ⟨ I
2 ,X21,T,P1⟩ = 0. Thus X21T∗P1 + P1TX∗21 = 0, and so T11 = 0. Hence T = 0. Similarly,

we can show that (2) holds. The proof is completed.

Lemma 2.6. ϕ is additive onA.

Proof. Let A =
∑2

i, j=1 Ai j, B =
∑2

i, j=1 Bi j, where Ai j,Bi j ∈ Ai j. It follows from Lemma 2.3-2.5 that

ϕ(A + B) = ϕ(
2∑

i, j=1

Ai j +

2∑
i, j=1

Bi j) = ϕ(
2∑

i, j=1

(Ai j + Bi j))

=

2∑
i, j=1

ϕ(Ai j + Bi j) = ϕ(
2∑

i, j=1

Ai j) + ϕ(
2∑

i, j=1

Bi j) = ϕ(A) + ϕ(B).

Hence ϕ is additive. The proof is completed.

3. Structures

In this section, we will prove the following theorem.

Theorem 3.1. Let A be a unite prime ∗-algebra containing a non-trivial projection, and let ϕ : A → A
such that

ϕ(A1 ⋄1 A2 ⋄2 · · · ⋄n An+1) =
n+1∑
h=1

A1 ⋄1 · · · ⋄h−2 Ah−1 ⋄h−1 ϕ(Ah) ⋄h Ah+1 ⋄h+1 · · · ⋄n An+1
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for any A1,A2, · · · ,An+1 ∈ A with n ≥ 2. If n is even and ⋄2u−1 = •, ⋄2u = ◦ with 1 ≤ u ≤ n
2 , then there exists

an element λ ∈ ZS(A) such that ϕ(A) = δ(A) + iλA, where δ is an additive ∗-derivation. Otherwise, ϕ is an
additive ∗-derivation.

By the results of [24] and [26], we only need to consider the case when at least one of ⋄r is •, where
r ∈ {1, 2, 3 · · · ,n − 1}.

Lemma 3.2. If n is even and ⋄2u−1 = •, ⋄2u = ◦ with 1 ≤ u ≤ n
2 , then ϕ(I)∗ = −ϕ(I) and ϕ(I) ∈ Z(A).

Otherwise, ϕ(I) = 0.

Proof. Let ⋄sp = •, ⋄tq = ◦ with 1 ≤ s1 ≤ sp ≤ sµ1 ≤ n, 1 ≤ t1 ≤ tq ≤ tµ2 ≤ n, where 1 ≤ p ≤ µ1,
1 ≤ q ≤ µ2 and µ1 + µ2 = n.

If n ≥ 2 and sµ1 = n, then it follows from Theorem 2.1 and ϕ(I) • I = I • ϕ(I) ∈ Asa that

2nϕ(I) = ϕ(I ⋄1 I ⋄2 · · · ⋄n I) =
n+1∑
h=1

I ⋄1 · · · ⋄h−2 I ⋄h−1 ϕ(I) ⋄h I ⋄h+1 · · · ⋄n I

= (n + 1)2n−1(ϕ(I)∗ + ϕ(I)).

Moreover, 2nϕ(I)∗ = (n + 1)2n−1(ϕ(I)∗ + ϕ(I)). Hence ϕ(I) = 0.
If n ≥ 3 and 1 ≤ sµ1 < n − 1, then

2nϕ(I) = ϕ(I ⋄1 I ⋄2 · · · ⋄n I) =
n+1∑
h=1

I ⋄1 · · · ⋄h−2 I ⋄h−1 ϕ(I) ⋄h I ⋄h+1 · · · ⋄n I

= (sµ1 + 1)2n−1(ϕ(I)∗ + ϕ(I)) + (n − sµ1 )2nϕ(I).

Moreover,
2nϕ(I)∗ = (sµ1 + 1)2n−1(ϕ(I)∗ + ϕ(I)) + (n − sµ1 )2nϕ(I)∗.

Comparing the above two equations, we can obtain that ϕ(I)∗ = ϕ(I). Hence ϕ(I) = 0.
If n ≥ 2, tµ2−r+1 = n − 2(r − 1) and sµ1−r+1 = n − 2(r − 1) − 1 with 1 ≤ r ≤ 1 ≤ [ n

2 ]. Take Ac = I with
1 ≤ c ≤ n + 1, it follows from Theorem 2.1 and ϕ(I) • I = I • ϕ(I) ∈ Asa that

2nϕ(I) = ϕ(I ⋄1 I ⋄2 · · · ⋄n I) =
n+1∑
h=1

I ⋄1 · · · ⋄h−2 I ⋄h−1 ϕ(I) ⋄h I ⋄h+1 · · · ⋄n I

= n2n−1(ϕ(I)∗ + ϕ(I)) + 2nϕ(I).

It follows that ϕ(I)∗ = −ϕ(I). There are seven further cases:
Case 1: When n ≥ 3 with n is odd, s1 = 1 and 1 = [ n

2 ]. On the one hand, take A1 = I, A2 = I, A3 = iI and
Ac = I with 4 ≤ c ≤ n + 1, it follows from Theorem 2.1 and ϕ(I) • I = I • ϕ(I) = 0 that

0 = ϕ(I ⋄1 I ⋄2 iI ⋄3 · · · ⋄n I) = 2n−1(ϕ(iI)∗ + ϕ(iI)).

Thus ϕ(iI)∗ + ϕ(iI) = 0. On the other hand, take A1 = I, A2 = iI and Ac = I with 3 ≤ c ≤ n + 1, we have that
2niϕ(I) = 2n−1(ϕ(iI)∗ + ϕ(iI)). Hence ϕ(I) = 0.

Case 2: When n ≥ 3 with n is odd, t1 = 1 and 1 = [ n
2 ]. Take A1 = iI and Ac = I with 2 ≤ c ≤ n + 1, then

0 =ϕ(iI ⋄1 I ⋄2 · · · ⋄n I) = ϕ(iI) ⋄1 I ⋄2 · · · ⋄n I + iI ⋄1 ϕ(I) ⋄2 · · · ⋄n I
+ iI ⋄1 I ⋄2 ϕ(I) ⋄3 · · · ⋄n I

= 2n−1(ϕ(iI)∗ + ϕ(iI)).



Y. Yang, J. Zhang / Filomat 38:22 (2024), 7707–7718 7715

Thus ϕ(iI)∗ + ϕ(iI) = 0. On the other hand, take A1 = I, A2 = I, A3 = iI and Ac = I with 4 ≤ c ≤ n + 1, we
have that

0 = ϕ(I ⋄1 I ⋄2 iI ⋄3 · · · ⋄n I) = −2n+1iϕ(I) + 2n−1(ϕ(iI)∗ + ϕ(iI)).

Thus ϕ(I) = 0.
Case 3: When n ≥ 4, tµ2−1 = n−21−1 and sµ1−1 = n−21with 1 ≤ 1 < [ n

2 ]. Take Ac = I with 1 ≤ c ≤ n−21+1,
n− 21+ 3 ≤ c ≤ n+ 1 and An−21+2 = iI, it follows from Theorem 2.1 and ϕ(I) • I = I •ϕ(I) = 0 that there exists
α1 > 0 such that

0 =ϕ(I ⋄1 I ⋄2 · · · ⋄n−21+1 iI ⋄n−21+2 · · · ⋄n I)

=

n−21+1∑
h=1

I ⋄1 · · · I ⋄h−1 ϕ(I) ⋄h I ⋄h+1 · · · ⋄n−21+1 iI ⋄n−21+2 · · · ⋄n I

+ I ⋄1 I ⋄2 · · · ⋄n−21+1 ϕ(iI) ⋄n−21+2 · · · ⋄n I

= α1ϕ(I) ⋄n−21 I ⋄n−21+1 iI ⋄n−21+2 · · · ⋄n I + 2n−1(ϕ(iI)∗ + ϕ(iI))

= 2n−1(ϕ(iI)∗ + ϕ(iI)).

Hence ϕ(iI)∗ + ϕ(iI) = 0. Take Ac = I with 1 ≤ c ≤ n − 21, n − 21 + 2 ≤ c ≤ n + 1 and An−21+1 = iI, then there
exists α2 > 0 such that

0 = ϕ(I ⋄1 I ⋄2 · · · ⋄n−21 iI ⋄n−21+1 · · · ⋄n I)

=

n−21∑
h=1

I ⋄1 · · · ⋄h−1 ϕ(I) ⋄h I ⋄h+1 · · · ⋄n−21 iI ⋄n−21+1 · · · ⋄n I

+ I ⋄1 · · · ⋄n−21 ϕ(iI) ⋄n−21+1 · · · ⋄n I

= α2ϕ(I) ⋄n−21 iI ⋄n−21+1 · · · I ⋄n I + 2n−1(ϕ(iI)∗ + ϕ(iI))

= −221+1α2iϕ(I).

Hence ϕ(I) = 0.
Case 4: When n ≥ 4, µ1 + 1 = n with 1 ≤ 1 < [ n

2 ]. Similarly Case 3, take Ac = I with 1 ≤ c ≤ n − 21 + 1,
n − 21 + 3 ≤ c ≤ n + 1 and An−21+2 = iI, we can easy obtain that ϕ(iI)∗ + ϕ(iI) = 0. Take A1 = I, A2 = iI and
Ac = I with 3 ≤ c ≤ n + 1, then

0 = ϕ(I ⋄1 iI ⋄2 · · · ⋄n I) = ϕ(I) ⋄1 iI ⋄2 · · · ⋄n I + I ⋄1 ϕ(iI) ⋄2 · · · ⋄n I

= −2niϕ(I) + 2n−1(ϕ(iI)∗ + ϕ(iI))
= −2niϕ(I).

Hence ϕ(I) = 0.
Case 5: When n ≥ 5, 1 ≤ tµ2−1 ≤ n − 21 − 2 with 1 ≤ 1 < [ n

2 ]. Similarly Case 3, take Ac = I with
1 ≤ c ≤ n − 21 + 1, n − 21 + 3 ≤ c ≤ n + 1 and An−21+2 = iI, we have that ϕ(iI)∗ + ϕ(iI) = 0. Take Ac = I with
1 ≤ c ≤ n − 21 − 1, n − 21 + 1 ≤ c ≤ n + 1 and An−21 = iI, then there exists β > 0 such that

0 = ϕ(I ⋄1 I ⋄2 · · · iI ⋄n−21 · · · ⋄n I)

=

n−21−1∑
h=1

I ⋄1 · · · I ⋄h−1 ϕ(I) ⋄h I ⋄h+1 · · · ⋄n−21−1 iI ⋄n−21 · · · I ⋄n I

+ I ⋄1 · · · ⋄n−21−1 ϕ(iI) ⋄n−21 · · · I ⋄n I

= βϕ(I) ⋄n−21−1 iI ⋄n−21 · · · ⋄n I + 2n−1(ϕ(iI)∗ + ϕ(iI))

= −221+2βiϕ(I).



Y. Yang, J. Zhang / Filomat 38:22 (2024), 7707–7718 7716

Hence ϕ(I) = 0.
Case 6: When n ≥ 4, tµ2−1−1 = n− 21− 1 and tµ2−1 = n− 21with 1 ≤ 1 < [ n

2 ]. On the one hand, take Ac = I
with 1 ≤ c ≤ n − 21 + 1, n − 21 + 3 ≤ c ≤ n + 1 and An−21+2 = iI, it follows from Theorem 2.1 that there exists
γ1 ≥ 0 such that

0 = ϕ(I ⋄1 I ⋄2 · · · ⋄n−21+1 iI ⋄n−21+2 · · · ⋄n I)

=

n−21−1∑
h=1

I ⋄1 · · · ⋄h−1 ϕ(I) ⋄h · · · ⋄n I + I ⋄1 · · · ⋄n−21−1 ϕ(I) ⋄n−21 · · · ⋄n I

+ I ⋄1 · · · ⋄n−21 ϕ(I) ⋄n−21+1 · · · ⋄n I + I ⋄1 · · · ⋄n−21+1 ϕ(iI) ⋄n−21+2 · · · ⋄n I

= γ1ϕ(I) ⋄n−21−1 I ⋄n−21 I ⋄n−21+1 iI ⋄n−21+2 · · · ⋄n I − 2n+1iϕ(I)

+ 2n−1(ϕ(iI)∗ + ϕ(iI)).

Thus (221+2γ1 + 2n+1)iϕ(I) = 2n−1(ϕ(iI)∗ + ϕ(iI)). On the other hand, take Ac = I with 1 ≤ c ≤ n − 21 − 1,
n − 21 + 1 ≤ c ≤ n + 1 and An−21 = iI, it follows from Theorem 2.1 that there exists γ2 ≥ 0 such that

0 = ϕ(I ⋄1 I ⋄2 · · · ⋄n−21−1 iI ⋄n−21 · · · ⋄n I)

=

n−21−1∑
h=1

I ⋄1 · · · ⋄h−1 ϕ(I) ⋄h · · · ⋄n I + I ⋄1 · · · ⋄n−21−1 ϕ(iI) ⋄n−21 · · · ⋄n I

= γ2ϕ(I) ⋄n−21−1 iI ⋄n−21 I ⋄n−21+1 · · · ⋄n I + 2n−1(ϕ(iI)∗ + ϕ(iI)).

Thus 221+2γ2iϕ(I) + 2n−1(ϕ(iI)∗ + ϕ(iI)) = 0. Hence ϕ(I) = 0.
Case 7: When n ≥ 2 with n is even and 1 = n

2 . Take A1 = A ∈ Asa and Ac = I with 2 ≤ c ≤ n+ 1, it follows
from (A • ϕ(I))∗ = A • ϕ(I) and (A ◦ ϕ(I))∗ = −(A ◦ ϕ(I)) that

2nϕ(A) = ϕ(A ⋄1 I ⋄2 · · · I ⋄n I) = 2n−1(ϕ(A)∗ + ϕ(A)) + 2n−11(Aϕ(I)∗

+ ϕ(I)A) + 2n−1(Aϕ(I) + ϕ(I)A).

Thus
ϕ(A) = ϕ(A)∗ + 1(ϕ(I)A − Aϕ(I)) + Aϕ(I) + ϕ(I)A.

On the other hand,
ϕ(A)∗ = ϕ(A) + 1(ϕ(I)A − Aϕ(I)) − Aϕ(I) − ϕ(I)A.

We can get that ϕ(I)A = Aϕ(I) for all A ∈ Asa. Hence ϕ(I) ∈ Z(A). The proof is completed.

Proof of Theorem 3.1. Let ⋄s = • and ⋄h = ◦ with 1 ≤ h ≤ s − 1. If ϕ(I) = 0, Let Ac = I with 1 ≤ c ≤ s − 1,
s + 2 ≤ c ≤ n + 1, it follows from Theorem 2.1 that

2n−1ϕ(As ⋄s As+1) = ϕ(I ⋄1 I ⋄2 · · · ⋄s−1 As ⋄s As+1 ⋄s+1 · · · ⋄n I)

= 2n−1(ϕ(As) ⋄s As+1 + As ⋄s ϕ(As+1))

for any As,As+1 ∈ A. Thus
ϕ(As ⋄s As+1) = ϕ(As) ⋄s As+1 + As ⋄s ϕ(As+1).

It follows from [25, Main Theorem] that ϕ is an additive ∗-derivation.
If n is even and ⋄2u−1 = •, ⋄2u = ◦ with 1 ≤ u ≤ n

2 . Define a map δ : A → A by δ(A) = ϕ(A) − ϕ(I)A. It
follows from Lemma 3.2 that δ is an additive map and satisfies

δ(A1 ⋄1 A2 ⋄2 · · · ⋄n An+1) =
n+1∑
h=1

A1 ⋄1 · · · ⋄h−1 δ(Ah) ⋄h · · · ⋄n An+1
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for any A1,A2, · · · ,An+1 ∈ A and δ(I) = 0. It follows from the above conclusion that

δ(A ⋄s B) = δ(A) ⋄s B + A ⋄s δ(B)

for any A,B ∈ A. It follows from [25, Main Theorem] that δ is an additive ∗-derivation. Hence, there exists
an element λ ∈ ZS(A) such that

ϕ(A) = δ(A) + iλA

for any A ∈ A, where δ is an additive ∗-derivation. The proof is completed.

As a consequences of Theorem 3.1, we have the following corollaries.

Corollary 3.1. Let M be a factor von Neumann algebra with dimM > 1, and let ϕ : M → M be a
nonlinear mixed bi-skew Jordan-type derivation, that is, ϕ satisfies

ϕ(A1 ⋄1 A2 ⋄2 · · · ⋄n An+1) =
n+1∑
h=1

A1 ⋄1 · · · ⋄h−2 Ah−1 ⋄h−1 ϕ(Ah) ⋄h Ah+1 ⋄h+1 · · · ⋄n An+1

for any A1,A2, · · · ,An+1 ∈ M with n ≥ 2. If n is even and ⋄2u−1 = •, ⋄2u = ◦ with 1 ≤ u ≤ n
2 , then there

exists an number λ ∈ R such that ϕ(A) = δ(A)+ iλA, where δ is an additive ∗-derivation. Otherwise, ϕ is an
additive ∗-derivation.

Corollary 3.2. Let A be a standard operator algebra on an infinite-dimensional complex Hilbert space H
containing the identity operator I, whichA is closed under the adjoint operation. Assume that ϕ : A→A
is a nonlinear mixed bi-skew Jordan-type derivation. It is show that if n is even and ⋄2u−1 = •, ⋄2u = ◦
with 1 ≤ u ≤ n

2 , then there exist T,S ∈ B(H) satisfying T∗ + T = 0, T − S ∈ iRI such that ϕ(A) = AT − SA.
Otherwise, there exists Y ∈ B(H) such that ϕ(A) = AY − YA with Y∗ + Y = 0.
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