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Abstract. It is known that group inverse, the Moore–Penrose inverse and the inverse along an element
have strongly connections with the classical inverse. The (b, c)-inverse and the (b, c)-core inverse are two
new types of outer generalized inverses, extending several generalized inverses. In this paper, we mainly
establish the criteria for the (b, c)-inverse and the (b, c)-core inverse by units in rings.

1. Introduction

Let S be a semigroup. An element a ∈ S is regular in the sense of von Neumann if there exists some
x ∈ S such that a = axa. Such an x is called an inner inverse or {1}-inverse of a, and is denoted by a−. By a{1}
we denote the set of all inner inverses of a.

For any a, b, c ∈ S, the element a is called (b, c)-invertible if there exists some y ∈ S such that y ∈ bSy∩ ySc,
yab = b and cay = c. Such an y is called a (b, c)-inverse of a. It is unique if it exists, and is denoted by a(b,c).
We denote by S(b,c) the set of all (b, c)-invertible elements in S. In particular, a is called invertible along b
[5] if it is (b, b)-invertible. The (b, c)-inverse encompasses the Moore–Penrose inverse [8], the Drazin inverse
[3], the group inverse and the inverse along an element.

Let ∗ be an involution on a semigroup S, that is the involution ∗ satisfies (x∗)∗ = x and (xy)∗ = y∗x∗ for
any x, y ∈ S. A semigroup S is called a ∗-semigroup if there exists an involution on S. In what follows, we
assume that S is a ∗-semigroup.

We follow [8]. An element a ∈ S is Moore–Penrose invertible if there exists an x ∈ S satisfying the
following four equations (1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa. Such an x is called a Moore–
Penrose inverse of a. It is unique if it exists, and is usually denoted by a†. If a, x ∈ S satisfy the equations
{i1, . . . , ik} ⊆ {1, 2, 3, 4}, then x is called a {i1, . . . , ik}-inverse of a, and is denoted by a(i1,...,ik). As usual, by
S†, S(1,3) and S(1,4) we denote the sets of all Moore–Penrose invertible, {1, 3}-invertible and {1, 4}-invertible
elements in S, respectively.

The present author Zhu [11] introduced the (b, c)-core inverse of a in S. Let a, b, c ∈ S. We call that a is
(b, c)-core invertible if there exists some x ∈ S such that caxc = c, xS = bS and Sx = Sc∗. Such an x is called a
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(b, c)-core inverse of a. It is unique if it exists, and is denoted by a #O

(b,c). It was also shown that a is (b, c)-core
invertible if and only if a is (b, c)-invertible and c is {1,3}-invertible if and only if ca is (b, c∗)-invertible. The
new introduced (b, c)-core inverse extends the core inverse [1, 10], the w-core inverse [16] and the Moore–
Penrose inverse. We denote by S #O

(b,c) the set of all (b, c)-core invertible elements in S. More details on the
w-core inverse can be found in [15, 17].

Recall that an element a ∈ R is left invertible if there exists some x ∈ R such that xa = 1, and a is right
invertible if ay = 1 for some y ∈ R. An element a is invertible if it is both left and right invertible. As usual,
by R−1

l , R−1
r and R−1 we denote the sets of all left invertible, right invertible and invertible elements in R,

respectively.
A map ∗ : R → R is an involution of R if it satisfies (x∗)∗ = x, (xy)∗ = y∗x∗ and (x + y)∗ = x∗ + y∗ for all

x, y ∈ R. Throughout this paper, any ring R is assumed to be a unital ∗-ring, that is a ring R with unity 1 and
an involution ∗.

Several articles derived the the criteria of group inverses, Drazin inverses and Moore–Penrose inverses
of a regular element a ∈ R by using units. Such as, Puystjens and Hartwig [9] proved that a ∈ R# if and
only if a + 1 − aa− ∈ R−1 if and only if a + 1 − a−a ∈ R−1, where R# denotes the set of all group invertible
elements in R. Patrı́cio and Araújo [7] derived that a ∈ R† if and only if aa∗ + 1 − aa− ∈ R−1 if and only if
a∗a + 1 − a−a ∈ R−1. In [12], the authors obtained the fact that a ∈ R† if and only if a ∈ aa∗aR if and only if
a ∈ Raa∗a. Based on this, the author derived in [14] that a ∈ R† if and only if aa∗ + 1− aa− ∈ R−1

l if and only if
aa∗ + 1 − aa− ∈ R−1

r .
In 2011, Mary [5] introduced the inverse along an element, which recovers the classical group inverses,

Drazin inverses and Moore–Penrose inverses. Furthermore, it is shown that a(d,d) exists if and only if
da + 1 − dd− ∈ R−1 if and only if ad + 1 − d−d ∈ R−1, provided that d is regular. This recovers the classical
criterion for group inverses and Moore–Penrose inverses by picking d = a and d = a∗, respectively.

As far as we know presently, there is no such a characterization for the general (b, c)-inverse for the case
b , c.

Motivated by [7, 9, 11], it is of interest to establish the characterization for the (b, c)-inverse and the
(b, c)-core inverse by using units in a ∗-ring R.

2. Characterizations for (b, c)-core inverses by units

In this section, we aim to derive the characterization for the (b, c)-inverse by units, provided that b and
c are relevant.

Let us now recall Green’s relations [4] in a ring R: (i) aLb ⇔ Ra = Rb ⇔ there exist some x, y ∈ R such
that a = xb and b = ya. (ii) aRb ⇔ aR = bR ⇔ there exist some s, t ∈ R such that a = bs and b = at. (iii)
aHb⇔ aLb and aRb.

Under the relation bHc, we observe that b and c have almost the same property. For instance, if b is
regular ({1,3}-invertible or {1,4}-invertible), then so is c. The notation for the commutator of b and c is
[b, c] = bc − cb.

Lemma 2.1. Let a, b, c ∈ R with bHc. Then we have
(i) b is regular if and only if c is regular. Moreover, b = cc−b = bc−c and c = cb−b = bb−c.
(ii) b ∈ R(1,3) if and only if c ∈ R(1,3). Moreover, [bb(1,3), cc(1,3)] = 0.
(iii) b ∈ R(1,4) if and only if c ∈ R(1,4). Moreover, [b(1,4)b, c(1,4)c] = 0.

Proof. Given bHc, i.e., bR = cR and Rb = Rc, then there is some t ∈ R such that c = bt = bb−bt = bb−c, Also,
bHc implies b = cs for some s ∈ R.

(i) Suppose b is regular. Then c = bb−c = csb−c, i.e., c is regular. So, b = cc−cs = cc−b, and dually b = bc−c.
Conversely, if c is regular then so is b, and we have c = cb−b = bb−c.
(ii) Suppose b ∈ R(1,3), i.e., b ∈ Rb∗b. Then c ∈ Rb∗c by c = bt. As b = cs, then c ∈ R(cs)∗c = Rs∗c∗c ⊆ Rc∗c

and c ∈ R(1,3). For the converse part, if c ∈ Rc∗c, we get b = cs ∈ Rc∗cs = Rc∗b = R(bt)∗b ⊆ Rb∗b, and
b ∈ R(1,3). Applying (i), it follows that b = cc(1,3)b and bb(1,3) = cc(1,3)bb(1,3) = (cc(1,3)bb(1,3))∗ = bb(1,3)cc(1,3).
Hence, [bb(1,3), cc(1,3)] = 0.
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(iii) By a similar proof of (ii).

It is well known that b ∈ R† if and only if b ∈ R(1,3)
∩ R(1,4). From Lemma 2.1, one can get that b ∈ R† if

and only if c ∈ R†, under the hypothesis bHc.

Lemma 2.2. Let a, b ∈ R. Then we have
(i) 1 + ab is left invertible if and only if 1 + ba is left invertible.
(ii) 1 + ab is right invertible if and only if 1 + ba is right invertible.

The lemma above is well known as Jacobson’ Lemma. In particular, if 1+ab is invertible then so is 1+ba.
Moreover, (1 + ba)−1 = 1 − b(1 + ab)−1a.

Lemma 2.3. [2, Theorem 2.2] Let a, b, c ∈ R. Then a is (b, c)-invertible if and only if b ∈ Rcab and c ∈ cabR. In
particular, if b = vcab and c = cabw for some v,w ∈ R, then a(b,c) = bw = vc.

Proposition 2.4. Let a, b, c ∈ R with b regular. If bHc, then the following statements are equivalent:
(i) a ∈ R(b,c).
(ii) u = 1 + ab − b−b ∈ R−1 and v = 1 + ca − cc− ∈ R−1.
(iii) u′ = 1 + ba − bb− ∈ R−1 and v′ = 1 + ac − c−c ∈ R−1.
In this case, a(b,c) = (u′)−1b = c(v′)−1.

Proof. (i)⇒ (ii) Given (i), then, by Lemma 2.3, we have b = vcab and c = cabw for some v,w ∈ R. Note that
vcb−bab = vcab = b by Lemma 2.1(i). Then (b−vcb−b+ 1− b−b)(b−bab+ 1− b−b) = 1, i.e., b−bab+ 1− b−b ∈ R−1

l .
Also, it follows from bc−c = b that (b−bab + 1 − b−b)(b−bw + 1 − b−b) = 1. Indeed, we have

(b−bab + 1 − b−b)(b−bw + 1 − b−b)
= b−babw + 1 − b−b
= b−(bc−c)abw + 1 − b−b
= b−bc−(cabw) + 1 − b−b
= b−(bc−c) + 1 − b−b
= b−b + 1 − b−b
= 1.

Consequently, b−bab + 1 − b−b ∈ R−1
r . So, b−bab + 1 − b−b = 1 + b−b(ab − 1) ∈ R−1. Again, Lemma 2.2 ensures

that u = 1 + ab − b−b = 1 + (ab − 1)b−b ∈ R−1. Similarly, we get 1 + ca − cc− ∈ R−1.
(ii) ⇔ (iii) follows from Lemma 2.2. Indeed, u = 1 + ab − b−b = 1 + (a − b−)b ∈ R−1 if and only if

u′ = 1 + b(a − b−) = 1 + ba − bb− ∈ R−1. A similar argument for v and v′.
(iii) ⇒ (i) If u′ = 1 + ba − bb− ∈ R−1 then u′b = bab and b = (u′)−1bab = (u′)−1(bc−c)ab ∈ Rcab. Also,

c = cac(v′)−1 = cabb−c(v′)−1
∈ cabR. So, a ∈ R(b,c) and a(b,c) = (u′)−1b = c(v′)−1 by Lemma 2.3.

If bHc and b is regular, then c is regular, b = bc−c and c = cb−b by Lemma 2.1. Hence, u = 1 + ab − b−b ∈
R−1 in Proposition 2.4(ii) can be reduced to u = 1 + abc−c − b−bc−c ∈ R−1, and in terms of Lemma 2.2,
1 + c−cab − c−cb−b = 1 + c−cab − c−c = 1 + c−c(ab − 1) ∈ R−1, whence 1 + abc−c − c−c = 1 + ab − c−c ∈ R−1.

Analogously, by b = cc−b and c = bb−c, then 1+ba−bb− ∈ R−1 can be reduced to 1+ba−cc− ∈ R−1. Similar
arguments show that v = 1+ ca− cc− ∈ R−1 if and only if t = 1+ ca− bb− ∈ R−1, and v′ = 1+ ac− c−c ∈ R−1 if
and only if t′ = 1 + ac − b−b ∈ R−1.

We hence have the following characterization for the (b, c)-inverse.

Corollary 2.5. Let a, b, c ∈ R with b regular. If bHc, then the following statements are equivalent:
(i) a ∈ R(b,c).
(ii) s = 1 + ab − c−c ∈ R−1 and v = 1 + ca − cc− ∈ R−1.
(iii) s′ = 1 + ba − cc− ∈ R−1 and v′ = 1 + ac − c−c ∈ R−1.
(iii) u = 1 + ab − b−b ∈ R−1 and t = 1 + ca − bb− ∈ R−1.
(iv) u′ = 1 + ba − bb− ∈ R−1 and t′ = 1 + ac − b−b ∈ R−1.
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We next come to our another main result of this section, under Green’s relations bHc.

Theorem 2.6. Let a, b, c ∈ R with b regular. If bHc, then the following statements are equivalent:
(i) a ∈ R(b,c).
(ii) u = caba + 1 − cc− ∈ R−1.
(iii) v = abac + 1 − c−c ∈ R−1.
(iv) s = baca + 1 − bb− ∈ R−1.
(v) t = acab + 1 − b−b ∈ R−1.
In this case, a(b,c) = u−1cab = bacv−1 = s−1bac = babt−1.

Proof. It only need prove (i)⇔ (ii)⇔ (iii), as (i)⇔ (iv)⇔ (v) can be probed similarly.
(i) ⇒ (ii) As a ∈ R(b,c), then, by Lemma 2.1 and Corollary 2.5, ba + 1 − cc− = cc−ba + 1 − cc− ∈ R−1 and

cacc− + 1 − cc− ∈ R−1. So, caba + 1 − cc− = (cacc− + 1 − cc−)(cc−ba + 1 − cc−) ∈ R−1.
(ii)⇔ (iii) by Lemma 2.2.
(iii) ⇒ (i) If v = abac + 1 − c−c then cv = cabac and c = cabacv−1

∈ cabR. As (iii) ⇔ (ii), then we have
uc = cabac and c = u−1cabac. So, b = cc−b = u−1cabacc−b = u−1cabab = u−1ca(bc−c)ab ∈ Rcab. By Lemma 2.3,
a ∈ R(b,c) and a(b,c) = bacv−1 = u−1cab.

We next give another expression of a(b,c). As s = baca + 1 − bb− ∈ R−1, then sb = bacab and b = s−1bacab.
Also, b = bacabt−1 since t = acab + 1 − b−b ∈ R−1. So, c = cb−b = cb−(bacabt−1) = (cb−b)acabt−1 = cacabt−1 =
ca(bb−c)abt−1 = cab(b−cabt−1). Moreover, a(b,c) = s−1bac = cabt−1.

3. Criteria for the (b, c)-core inverse

The following result presents the characterization for the (b, c)-core inverse by units. Several auxiliary
lemmas are given, which play important roles in the proof of the sequel results.

Lemma 3.1. [12, Theorem 2.16] and [13, Theorem 3.12] Let a ∈ R. Then the following statements are equivalent:
(i) a ∈ R†.
(ii) a ∈ aa∗aR.
(iii) a ∈ Raa∗a.
In this case, a† = (ax)∗ = (ya)∗, where x, y ∈ R satisfy a = aa∗ax = yaa∗a.

Lemma 3.2. [11, Theorem 2.7] Let a, b, c ∈ R. Then a ∈ R #O

(b,c) if and only if a ∈ R(b,c) and c ∈ R(1,3). In this case,
a #O

(b,c) = a(b,c)c(1,3).

Theorem 3.3. Let a, b, c ∈ R with bHc. Then the following statements are equivalent:
(i) a ∈ R #O

(b,c).
(ii) c ∈ R(1,3) and u = caba + 1 − cc(1,3)

∈ R−1.
(iii) c ∈ R(1,3) and v = abac + 1 − c(1,3)c ∈ R−1.
In this case, a #O

(b,c) = bau−1.

Proof. To begin with, (ii)⇔ (iii) follows from Lemma 2.2.
(i) ⇒ (ii) As a ∈ R #O

(b,c), then, by Lemma 3.2, a ∈ R(b,c) and c ∈ R(1,3). It follows from Theorem 2.6 that
caba + 1 − cc(1,3)

∈ R−1 since c(1,3)
∈ c{1}.

(iii)⇒ (i) Since v = abac+ 1− c(1,3)c ∈ R−1, it follows from Theorem 2.6 that a ∈ R(b,c), which together with
c ∈ R(1,3) imply a ∈ R #O

(b,c) by Theorem 3.2.
We next give the formula of the a #O

(b,c). Since u∗c = ((caba)∗+1−cc(1,3))c = (caba)∗c, we have c = (u∗)−1(caba)∗c =
(u∗)−1(aba)∗c∗c and abau−1

∈ c{1, 3}. So, a #O

(b,c) = a(b,c)c(1,3) = a(b,c)abau−1 = (a(b,c)ab)au−1 = bau−1.

Recall from [11] that an element a ∈ R is called dual (b, c)-core invertible if there is some y ∈ S such that
byab = b, yR = b∗R and Ry = Rc. Such an element y is called a dual (b, c)-core inverse of a. The dual (b, c)-core
inverse of a is denoted by a(b,c) #O. By R(b,c) #O we denote the set of all dual (b, c)-core invertible elements in R.

Characterizations for the dual (b, c)-core inverse can be given as follows.
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Theorem 3.4. Let a, b, c ∈ R with bHc. Then the following statements are equivalent:
(i) a ∈ R(b,c) #O.
(ii) b ∈ R(1,4) and s = baca + 1 − bb(1,4)

∈ R−1.
(iii) b ∈ R(1,4) and t = acab + 1 − b(1,4)b ∈ R−1.
In this case, a(b,c) #O = t−1ac.

As was shown in [11], a ∈ R #O

(b,c) if and only if a ∈ R(b,c) and c ∈ R(1,3). Dually, a ∈ R(b,c) #O if and only if
a ∈ R(b,c) and b ∈ R(1,4). In particular, a ∈ R #O

(b,c) ∩ R(b,c) #O if and only if a ∈ R(b,c), b ∈ R(1,4) and c ∈ R(1,3). It is
concluded that a ∈ R #O

(b,c) ∩ R(b,c) #O if and only if a ∈ R(b,c) and b ∈ R† (or c ∈ R†), provided that bHc.
We next present the criterion for both (b, c)-core and dual (b, c)-core invertible elements by units, under

the Green’s relations bHc.

Lemma 3.5. [7, Theorem 1.2] and [13, Corollary 3.17] Let a ∈ R be regular. Then the following statements are
equivalent:

(i) a ∈ R†.
(ii) u = aa∗ + 1 − aa− ∈ R−1.
(iii) v = a∗a + 1 − a−a ∈ R−1.
In this case, a† = (u−1a)∗ = (av−1)∗.

Theorem 3.6. Let a, b, c ∈ R with b regular. If bHc, then the following statements are equivalent:
(i) a ∈ R #O

(b,c) ∩ R(b,c) #O.
(ii) u = bb∗baca + 1 − bb− ∈ R−1.
(iii) v = b∗bacab + 1 − b−b ∈ R−1.
(iv) s = cc∗caba + 1 − cc− ∈ R−1.
(v) t = c∗cabac + 1 − c−c ∈ R−1.

Proof. (i) ⇒ (ii) Given a ∈ R #O

(b,c) ∩ R(b,c) #O, then a ∈ R(b,c), b ∈ R(1,4) and c ∈ R(1,3). So, b ∈ R† since bHc. It
follows from Lemma 3.5 that bb∗ + 1 − bb− ∈ R−1, and consequently bb∗bb− + 1 − bb− ∈ R−1 from Lemma 2.2.
Note that a ∈ R(b,c). Then baca + 1 − bb− ∈ R−1 in terms of Theorem 2.6. Therefore, u = bb∗baca + 1 − bb− =
(bb∗bb− + 1 − bb−)(baca + 1 − bb−) ∈ R−1.

(ii)⇔ (iii) follows from Jacobson’s Lemma.
(iii)⇒ (i) As v = b∗bacab + 1 − b−b ∈ R−1, then bv = bb∗bacab and b = bb∗bacabv−1

∈ bb∗bR. So, by Lemma
3.1, b ∈ R†, and hence c ∈ R† since bHc. Given b ∈ R†, then bb∗bb− + 1 − bb− ∈ R−1 by Lemmas 2.2 and 3.5.
So, baca + 1 − bb− = (bb∗bb− + 1 − bb−)−1(bb∗baca + 1 − bb−) ∈ R−1, which together with Theorem 2.6 imply
a ∈ R(b,c). So, a ∈ R #O

(b,c) ∩ R(b,c) #O.
(i)⇔ (iv)⇔ (v) can be proved similarly.
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