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aUniversity of Kragujevac, Faculty of Science, Department of Mathematics and Informatics, Radoja Domanovića 12, 34000 Kragujevac, Serbia
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Abstract. We connect through the Fourier transform shift-invariant Sobolev type spaces Vs ⊂ Hs, s ∈ R,
and the spaces of periodic distributions and analyze the properties of elements in such spaces with respect
to the product. If the series expansions of two periodic distributions have compatible coefficient estimates,
then their product is a periodic tempered distribution. We connect product of tempered distributions
with the product of shift-invariant elements of Vs. The idea for the analysis of products comes from the
Hörmander’s description of the Sobolev type wave front in connection with the product of distributions.
Coefficient compatibility for the product of f and 1 in the case of ”good” position of their Sobolev type
wave fronts is proved in the 2-dimensional case. For larger dimension it is an open problem because of the
difficulties on the description of the intersection of cones in dimension d ⩾ 3.

1. Introduction

Our main interest is the analysis of the product of distributions f and 1 defined in a neighbourhood of a
point x0 belonging to shift-invariant spaces Vs, s ∈ R. We show that, locally, this product is also an element
of a shift-invariant space Vs0 , for some s0 ∈ R. For this purpose we use the idea of Hörmander’s wave
front set (cf. [17, 18]) and the fact that the product exists if the wave fronts are in an appropriate position.
Actually, for periodic distributions and shift-invariant distributions we introduce the corresponding notion
of compatible coefficient estimates which imply the existence of the product. The results for periodic
distributions are transferred to the results for the product in shift-invariant spaces of distributions and vice
versa.

Following the range function approach used in Bownik [11]-[13] (cf. [9], [10], [16], [22]), we investigated
in [4] the structure of shift-invariant subspaces of Sobolev spaces Hs = Hs(Rd), s ∈ R, denoted by Vs,
generated by at most countable family of generators (cf. [1] for Sobolev spaces). In this paper we consider
Vs generated by a finite set of generators, elements ofAs,r = {φ1, . . . , φr} ⊂ Hs; Vs is the closure of the span

2020 Mathematics Subject Classification. Primary 42B30; Secondary 46F10, 46E36.
Keywords. Wave fronts, Multiplication of distributions, Periodic distributions, Shift-invariant spaces, Sobolev spaces.
Received: 03 March 2024; Accepted: 23 April 2024
Communicated by Dragan S. Djordjević
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of integer translations of functions in As,r, s ∈ R. We will use the notation Vs(φ1, . . . , φr) when we want
to underline the generators of this space. In the case s = 0, Bownik [11] gave a comprehensive analysis
of the space V (V = V0, Ar = A0,r). A deep extension of results in [11] was obtained in [2], [3], [22], [25].
Our investigation goes towards the multiplication in spaces Vs for which we need to extend some results
concerning the product of periodic distributions.

Let Es(As,r) = {φi(·+k) : k ∈ Zd, i = 1, . . . , r} be a frame of Vs (cf. [15] for frames). An f ∈ S′(Rd) belongs to
Vs if and only if its Fourier transform has the form f̂ =

∑r
i=1 fi1i, fi = φ̂i ∈ L2

s (Rd) and 1i =
∑

k∈Zd ai
ke2π

√
−1⟨·,k⟩

with (ai
k)k∈Zd ∈ ℓ

2, i = 1, . . . , r. This is shown in [4]. Note that, the products fi1i, i = 1, . . . , r, exist in
L2

s (Rd) = F (Hs).
Another approach, with the frames consisting of the finite set of generatorsAr ⊂ L2(Rd) and expansions

with coefficients in ℓ2-sequence space, was developed in [5], [6], [19]. The spaces with the sequences of
coefficients in ℓ2

s were treated in [21], where the weights are (1 + |k|2)s/2, k ∈ Zd, s ⩾ 0, and the finite set of
generators are subsets of L2

s = F (Hs), s ⩾ 0. Actually, in [5] and [6], ℓp
s , p ⩾ 1, were considered, but here we

restrict ourselves to the case p = 2. Moreover, connecting two different approaches to shift-invariant spaces
Vs andV2

s , s > 0, under the assumption that the generators φi, i = 1, . . . , r, belong to Hs
∩ L2

s , we have given
the characterization of elements in Vs through the expansions with coefficients in ℓ2

s . The corresponding
assertions hold for the intersections of all such spaces and their duals in the case when the generators are
elements of S(Rd) (see [4]).

Our framework in this paper is the space of periodic distributions, see for example [20] and [24], where
the authors studied wave fronts through the analysis of Fourier expansions of periodic distributions. See
also [14] and [23], where the authors studied generalized functions on the d-dimensional torus Td and
discrete wave fronts.

The paper is organized as follows. After recalling in Section 2 the basic facts about periodic distributions
and shift-invariant spaces, we repeat in Section 3 our results of [4] concerning different approaches in [5], [6],
[11], [21], connecting shift-invariant spaces with the subspaces of periodic distributions. In Section 4, after
recalling results for the multiplication of periodic distribuctions f1 and f2 belonging to spaces P1,s1 , P2,s2

respectively, we give our main result, Theorem 4.3 related to periodic ultradistributions which (according
to Definition 4.4) have compatible coefficient estimates. Then, in Theorem 4.5 we transfer this result to the
product of elements of finitely generated shift-invariant spaces Vs. Since our approach was motivated by
Hörmander notion of Sobolev’s wave fronts, we devote Section 5 to the product of periodic distributions
and of shift-invariant distributions (and vice versa) relating the wave front sets with the compatibility
coefficient condition in the expansions of f1 and f2.

2. Notation

Let x = (x1, . . . , xd) ∈ Kd, whereKd
∈ {Rd,Zd

}. We use notations |x| =
√

x2
1 + · · · + x2

d and ⟨x⟩s = (1+ |x|2)s/2,
s ∈ R. Obviously, |x| ⩽ ⟨x⟩. Let 0 < η ⩽ 1. As in [20], we use the notation

Tη,x =
d∏

j=1

(
x j −

η

2
, x j +

η

2

)
and Tη := Tη,0, T = T1.

Define the Fourier transform f̂ of an integrable function f by F f (t) = f̂ (t) =
∫
Rd f (x)e−2π

√
−1⟨x,t⟩ dx, t ∈ Rd

(F −1 f (t) = f̂ (−t)), where ⟨x, t⟩ =
∑d

i=1 xiti, x, t ∈ Rd. Further on,

ℓp
s = ℓ

p
s (Zd) =

{
(ck)k∈Zd :

∑
k∈Zd

|ck|
p
⟨k⟩p·s < +∞

}
, s ∈ R, p ⩾ 1.

We will consider the case p = 2. Then, the scalar product is given by ⟨(ck)k∈Zd , (dk)k∈Zd⟩ℓ2
s
=

∑
k∈Zd ckdk⟨k⟩2s.

In the sequel we will denote by C constants which are not the same in general; from the context will be
clear that in various inequalities they are different.
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2.1. Periodic distributions

Our framework is the space of functions and distributions on Rd which are periodic of period 1 in
each variable, i.e. Tn f (x) = f (x − n) = f (x), x ∈ Rd,n ∈ Zd. We refer to the next literature [7], [8], [24],
[26]. Let x, y ∈ Kd. We use notation ey(x) = e2π

√
−1⟨y,x⟩ (⟨y, x⟩ =

∑d
i=1 yixi). The space of periodic

test functions P = P(Rd) consists of smooth periodic functions of the form φ =
∑

n∈Zd φnen such that∑
n∈Zd |φn|

2
⟨n⟩2k < +∞ for every k ∈ Z (φn =

∫
T
φ(x)e−n(x) dx, n ∈ Zd); its topology is given via the sequence

of norms ∥φ∥k = supx∈T,|α|⩽k |φ
(α)(x)|, k ∈ N0 = N ∪ {0}. The dual space of P , the space of periodic

distributions, is denoted by P ′. One has: f =
∑

n∈Zd fnen ∈ P ′ if and only if
∑

n∈Zd | fn|2⟨n⟩−2k0 < +∞, for
some k0 ∈ N. We use notation P ′k0 when this holds. If f =

∑
n∈Zd fnen ∈P ′ and φ =

∑
n∈Zd φnen ∈P , then

their dual pairing is given by
〈

f , φ
〉
=

∑
n∈Zd fnφn.

Denote by Pp,s, p ⩾ 1, s ∈ R, the space of elements h ∈ D′(Rd) with the property that h =
∑

n∈Zd anen,
where (an)n∈Zd ∈ ℓ

p
s . These spaces are subspaces of P ′ for s ⩽ 0. Note,

⋂
s⩾0 Pp,s =P and

⋃
s⩽0 Pp,s =P ′.

Let x0 ∈ Rd, ψ ∈ D(Tη,x0 ) and f ∈ D′(Rd). Then ( fψ)per is defined as the periodic extension, by
( fψ)per(t) = ( fψ)(x), where t + k = x ∈ Tη,x0 , k ∈ Zd (this k is unique). So,

( fψ)per(t) =
∑
k∈Zd

akek(t), t ∈ Rd,

where ak =
∫
Tη,x0

( fψ)(t)e−k(t) dt, k ∈ Zd. We denoted by P
p,s
loc the local space which contains distributions

f ∈ D′(Rd) such that ( fψ)per ∈ Pp,s, for all x0 ∈ Rd and ψ ∈ D(T1,x0 ). In particular, we consider the cases
p = 1, 2.

2.2. Shift-invariant spaces

Recall ([4]), the Hilbert space H(T, ℓ2
s ) consists of all vector valued measurable square integrable functions

F : T→ ℓ2
s with the norm ∥F∥H(T,ℓ2

s ) =
( ∫
T
∥F(t)∥2

ℓ2
s

dt
)1/2

< +∞. In the case s = 0, it is denoted by L2(T, ℓ2). If

Ar ⊂ L2(Rd), thenAs,r = {φ ∈ S′(Rd) : φ̂ = ψ̂⟨·⟩−s for some ψ ∈ Ar}.
Note that any space W ⊂ Hs is called shift-invariant if φ ∈W implies Tkφ ∈W, for any k ∈ Zd. We define

Vs = span{(1 − ∆
4π2 )−s/2Tkψ : ψ ∈ Ar, k ∈ Zd

}, where ∆ is the Laplacian. It is a shift-invariant space.
Following the definition of the mapping T : L2

→ L2(T, ℓ2) ([11]), we define in [4], Ts : Hs
→ H(T, ℓ2

s )
(T = Ts, for s = 0) by

Tsφ(t) =
( ψ̂(t + k)
⟨k⟩s

)
k∈Zd

, t ∈ T, φ ∈ Hs,

where
(
1 − ∆

4π2

)s/2
φ = ψ(∈ L2(Rd)).

Lemma 2.1 ([4]). Let s ∈ R.

a) Ts : Hs
→ H(T, ℓ2

s ) is an isometric isomorphism.

b) The following diagram of isometries commutes

L2 T
−→ L2(T, ℓ2)

↓ αs ↓ βs

Hs Ts
−→ H(T, ℓ2

s ),

where αs(1) = F −1
(
1̂(·)
⟨·⟩s

)
and βs

(
( fk(·))k∈Zd

)
=

( fk(·)
⟨k⟩s

)
k∈Zd

; in particular, βs

(
(1̂(· + k))k∈Zd

)
=

(
1̂(·+k)
⟨k⟩s

)
k∈Zd

.

c) Let φ ∈ S(Rd). Then TsT jφ(·) = e− j(·)Tsφ(·), j ∈ Zd.
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3. Structural theorems

We introduce the following assumptions on generators ψi, i = 1, . . . , r, of Vs(ψ1, . . . , ψr), in order to have
that their linear combinations determine subspaces of Hs and of L2

s :

ψi
∈ Hs

∩ L2
s ∩ L

∞, i = 1, . . . , r. (1)

Recall [6], the Wiener amalgam type space, denoted by L∞ is defined by

L
∞ =

{
ψ : ∥ψ∥L∞ = sup

t∈T

∑
j∈Zd

|ψ(t + j)| < +∞
}

and following this paper in the case p = 2, in [21] is defined:

V
2
s =

{
f : f =

r∑
i=1

∑
k∈Zd

ci
kT−kψ

i, (ci
k)k∈Zd ∈ ℓ2

s , i = 1, . . . , r
}
. (2)

Theorem 3.1 ([4]). Let s ⩾ 0, and (1) hold.

a) Assume that V2
s and F (V2

s ) are closed in L2
s . Then, V2

s ⊂ Hs and V2
s = Vs(ψ1, . . . , ψr). In particular, any

element f ∈ Vs(ψ1, . . . , ψr) has the frame expansion as in (2).

b) Assume that s > 1
2 and thatV2

s is closed in L2
s . Then, F (V2

s ) is closed in L2
s and both assertions in a) hold true.

c) Assume that the conditions of assertion a) or conditions of assertion b) hold. Then in (both cases),

(i) (V2
s )′ =V2

−s, whereV2
−s is the space of formal series of the form

F(·) =
r∑

i=1

∑
k∈Zd

bi
kψ

i(· + k) such that
r∑

i=1

∑
k∈Zd

|bi
k|

2
⟨k⟩−2s < +∞,

with the dual pairing ⟨F, f ⟩ =
∑r

i=1
∑

k∈Zd bi
kci

k, ( f is of the form given in (2)).

(ii) V2
−s = V−s.

Theorem 3.2 ([4]). Assumeψi
∈ S(Rd), i = 1, . . . , r. Then,

⋂
s⩾0V

2
s =

⋂
s⩾0 Vs and the expansion for their elements

has the form as in (2) with
sup
k∈Zd

|ci
k||k|

s < +∞, i = 1, . . . , r, for every s > 0.

Moreover, F
(⋂

s⩾0V
2
s

)
=

{∑r
i=1 ψ̂

i(·)Φi(·) : Φi ∈ P
}
, where Φi(·) =

∑
k∈Zd ci

kek(·), (ci
k)k∈Zd ∈ ℓ2

s for every s ⩾ 0,

i = 1, . . . , r, and V′s = V2
−s,

⋃
s⩾0 V′s =

⋃
s⩾0V

2
−s. Also, F

(⋃
s⩽0V

2
s

)
=

{∑r
i=1 ψ̂

i(·)Fi(·) : Fi ∈ P ′
}
, where

Fi(·) =
∑

k∈Zd ci
kek(·), (ci

k)k∈Zn ∈ ℓ2
s for some s ⩽ 0, i = 1, . . . , r.

4. Multiplication

Let f1 =
∑

n∈Zd f1,nen ∈P1,s and f2 =
∑

n∈Zd f2,nen ∈P2,s. Their product is defined as

f = f1 f2 :=
∑
n∈Zd

fnen, where fn =
∑
j∈Zd

f1,n− j f2, j, n ∈ Zd.

Then ([20]), f ∈P2,s and the mapping

P1,s
×P2,s

∋ ( f1, f2) 7→ f1 f2 ∈P2,s

is continuous. If s, s1, s2 ∈ R satisfy s1 + s2 ⩾ 0 and s ⩽ min{s1, s2}, then the mapping

P1,s1 ×P2,s2 ∋ ( f1, f2) 7→ f1 f2 ∈P2,s (3)

is continuous.
This implies the following assertion.
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Proposition 4.1. Let f1(·) =
∑

k∈Zd f1,kφ(· + k), so that ( f1,k)k∈Zd ∈ ℓ1
s1

, f2(·) =
∑

k∈Zd f2,kϕ(· + k), so that ( f2,k)k∈Zd ∈

ℓ2
s2

, where φ ∈ Hs1 , ϕ ∈ Hs2 ∩ F
−1

(
L∞(Rd)

)
and s1 + s2 ⩾ 0. Then f = f1 ∗ f2 ∈ Vs, where s ⩽ min{s1, s2}, is

generated by φ ∗ ϕ ∈ Hs, i.e. f (·) =
∑

n∈Zd fn(φ ∗ ϕ)(· + n), where ( fn)n∈Zd ∈ ℓ2
s .

Proof. By the assumptions, φ̂ϕ̂ ∈ L2
s (Rd). Since

f̂1 f̂2 = φ̂ϕ̂
∑
n∈Zd

fnen,

where fn =
∑

j∈Zd f1,n− j f2, j, n ∈ Zd belongs to ℓ2
s , by (3) one has that

f (t) = ( f1 ∗ f2)(t) = (φ ∗ ϕ)(t) ∗
∑
n∈Zd

fnδ(t + n) =
∑
n∈Zd

fn(φ ∗ ϕ)(t + n), t ∈ Rd,

whence the assertion follows.

The previous considerations allow us to introduce multiplication in the local versions of these spaces.
Let f1 ∈P1,s

loc and f2 ∈P2,s
loc . To define their product f = f1 f2, we proceed locally. Let x0 ∈ Rd and 0 < η < 1.

Let ϕ ∈ D(T1,x0 ) be such that ϕ(x) = 1 for x ∈ Tε,x0 , ε < η. We define fη,x0 as the restriction to Tη,x0 of the
product (ϕ f1)per(ϕ f2)per. So, fη,x0 ∈ D ′(Tη,x0 ). By the use of the partition of unity the authors of [20] have the
next assertion.

Corollary 4.2 ([20]). The product f = f1 f2 of f1 ∈ P1,s1
loc and f2 ∈ P2,s2

loc is an element of P2,s
loc , where s1 + s2 ⩾ 0

and s ⩽ min{s1, s2}. Moreover, the mapping

P1,s1
loc ×P2,s2

loc ∋ ( f1, f2) 7→ f1 f2 = f ∈P2,s
loc

is continuous.

Now we consider the product of two periodic distributions.

Theorem 4.3. Let f1, f2 ∈P ′, i.e.

f1 =
l1∑

i=1

∑
k∈Zd

ai
1,kek, f2 =

l2∑
j=1

∑
k∈Zd

a j
2,kek,

such that there exist sets Λ1
i , i = 1, . . . , l1, and Λ2

j , j = 1, . . . , l2, subsets of Zd so that∑
k∈Λ1

i

|ai
1,k|

2
⟨k⟩−2α1 < +∞,

∑
k∈Zd\Λ1

i

|ai
1,k|

2
⟨k⟩2β1 < +∞, i = 1, . . . , l1, (4)

∑
m∈Λ2

j

|a j
2,m|

2
⟨m⟩−2α2 < +∞,

∑
m∈Zd\Λ2

j

|a j
2,m|

2
⟨m⟩2β2 < +∞, j = 1, . . . , l2, (5)

for some β1 ⩾ α2 ⩾ 0, β2 ⩾ α1 ⩾ 0, and Λ1
i ∩ (−Λ2

j ) = ∅, i = 1, . . . , l1, j = 1, . . . , l2. Moreover, we assume that for
every i = 1, . . . , l1, for every j = 1, . . . , l2 and every n ∈ Zd, there exist C > 0 and γ ⩾ 1 such that

c1
i, j(n) = card{k ∈ Zd : n − k ∈ Λ2

j ∧ k ∈ Λ1
i } ⩽ C|n|γ. (6)

Then there exists τ ∈ R such that f1 f2 ∈P ′τ.

We give the proof of Theorem 4.3 immediately after the following definition, which seems reasonable.
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Definition 4.4. It is said that f1, f2 ∈ P ′ have compatible coefficient estimates if (4)-(6) hold. We say that f1,
f2 ∈ D′(Rd) have compatible coefficient estimates in a neighborhood of x0 if for some φ ∈ D(Tη,x0 ), ( f1φ)per and
( f2φ)per have Fourier expansions so that (4)-(6) hold. The sequences (ai

1,k)k∈Zd , i = 1, . . . , l1, and (a j
2,k)k∈Zd , j = 1, . . . , l2,

are compatible if (4)-(6) hold.

Proof. [Proof of Theorem 4.3] First, we note that if c2
j,i(n) = card{k ∈ Zd : n − k ∈ Λ1

i ∧ k ∈ Λ2
j }, then

c1
i, j(n) = c2

j,i(n).
The proof will be given for l1 = l2 = 1. The transfer to the general case is just repetition of arguments

which are to follow. So, we will cancel indexes i and j. Thus, we have

f1 f2 =
( ∑

k∈Λ1

+
∑

k∈Zd\Λ1

)
a1,kek ·

( ∑
m∈Λ2

+
∑

m∈Zd\Λ2

)
a2,mem = f 1

1 f 1
2 + f 1

1 f 2
2 + f 2

1 f 1
2 + f 2

1 f 2
2 ,

and assume that
2τ ⩾ max

{
4γ(α1 + α2) + 2γ + d + 1, 2α1 + d + 1, 2α2 + d + 1

}
.

We will estimate separately all the summaries. We have

f 1
1 f 1

2 =
∑
n∈Zd

a11
n en, where a11

n =
∑

n−k∈Λ1
k∈Λ2

a1,n−ka2,k, n ∈ Zd.

There holds,

∑
n∈Zd

|a11
n |

2
⟨n⟩−2τ ⩽

∑
n∈Zd

( ∑
n−k∈Λ1

k∈Λ2

|a1,n−k|⟨n − k⟩−α1 |a2,k|⟨k⟩−α2 · ⟨n − k⟩α1⟨k⟩α2

)2

⟨n⟩−2τ.

By (6), for k ∈ Λ2 and (n − k) ∈ Λ1,

⟨n − k⟩ ⩽
〈
(n1 + |n|γ, . . . ,nd + |n|γ)

〉
⩽ C⟨n⟩2γ, ⟨k⟩ ⩽ C⟨n⟩2γ.

We continue,

∑
n∈Zd

|a11
n |

2
⟨n⟩−2τ ⩽ C

∑
n∈Zd

( ∑
n−k∈Λ1

k∈Λ2

|a1,n−k|⟨n − k⟩−α1 |a2,k|⟨k⟩−α2

)2
⟨n⟩4γ(α1+α2)+2γ

⟨n⟩2τ

⩽ C
∑
n∈Zd

( ∑
n−k∈Λ1

k∈Λ2

|a1,n−k|
2
⟨n − k⟩−2α1

)( ∑
n−k∈Λ1

k∈Λ2

|a2,k|
2
⟨k⟩−2α2

)
1

⟨n⟩d+1
⩽ C

∑
n∈Zd

1
⟨n⟩d+1

< +∞.

Let us estimate
f 1
1 f 2

2 =
∑
n∈Zd

a12
n en, where a12

n =
∑

n−k∈Λ1

k∈Zd\Λ2

a1,n−ka2,k, n ∈ Zd.

There holds, ∑
n∈Zd

|a12
n |

2
⟨n⟩−2τ ⩽

∑
n∈Zd

( ∑
n−k∈Λ1

k∈Zd\Λ2

|a1,n−k|⟨n − k⟩−α1 |a2,k|⟨k⟩β2 ·
⟨n − k⟩α1

⟨k⟩β2

)2

⟨n⟩−2τ.

Since, ⟨n − k⟩α1 ⩽ C⟨n⟩α1⟨k⟩α1 and β2 ⩾ α1 ⩾ 0, we have∑
n∈Zd

|a12
n |

2
⟨n⟩−2τ ⩽ C

∑
n∈Zd

1
⟨n⟩2τ−2α1

< +∞.
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Further, we will use the inequality

⟨y⟩r ⩽ C⟨x⟩r⟨y − x⟩|r|, x, y ∈ Rd, r ∈ R, (7)

which we now show holds. Indeed, since (1 + t)2 = 1 + 2t + t2 ⩽ 2(1 + t2) for every t ⩾ 0, if we choose
t = |y − x| then we get

⟨y⟩ ⩽ ⟨x⟩ + |y − x| ⩽ ⟨x⟩(1 + |y − x|) ⩽ 21/2
⟨x⟩⟨y − x⟩.

Thus, for r ⩾ 0 inequality (7) holds. For r < 0 we have

⟨y⟩r

⟨x⟩r
=
⟨x⟩|r|

⟨y⟩|r|
⩽

C⟨y⟩|r|⟨y − x⟩|r|

⟨y⟩|r|
= C⟨y − x⟩|r|.

Hence, the inequality (7) holds for every r ∈ R.
Now, by (7) for k, n ∈ Zd and α2 ⩾ 0, we have that ⟨k⟩α2 ⩽ C⟨k−n⟩α2⟨n⟩α2 holds. Using the last inequality

and β1 ⩾ α2 ⩾ 0, the estimate for f 2
1 f 1

2 simply follows:

∑
n∈Zd

|a21
n |

2
⟨n⟩−2τ ⩽

∑
n∈Zd

( ∑
n−k∈Zd\Λ1

k∈Λ2

|a1,n−k|⟨n − k⟩β1 |a2,k|⟨k⟩−α2 ·
⟨k⟩α2

⟨n − k⟩β1

)2

⟨n⟩−2τ

⩽ C
∑
n∈Zd

( ∑
n−k∈Zd\Λ1

k∈Λ2

|a1,n−k|
2
⟨n − k⟩2β1

)( ∑
n−k∈Zd\Λ1

k∈Λ2

|a2,k|
2
⟨k⟩−2α2

)
⟨n⟩2α2

⟨n⟩2τ
⩽ C

∑
n∈Zd

1
⟨n⟩d+1

< +∞.

The estimate for f 2
1 f 2

2 is proved in a similar way. Hence, f1 f2 ∈P ′τ.

Theorem 4.5. Let 11 ∈ Vs1 (φ1
1, . . . , φ

l1
1 ), 12 ∈ Vs2 (φ1

2, . . . , φ
l2
2 ), s1, s2 ⩾ 0, so that

11(·) =
l1∑

i=1

∑
k∈Zd

ai
1,kφ

i
1(· + k), 12(·) =

l2∑
j=1

∑
k∈Zd

a j
2,kφ

j
2(· + k),

and that there exist sets Λ1
i , i = 1, . . . , l1, and Λ2

j , j = 1, . . . , l2, subsets ofZd such that Λ1
i ∩ (−Λ2

j ) = ∅, i = 1, . . . , l1,
j = 1, . . . , l2. Moreover, assume that (4) and (5) hold and that c1

i, j(n) (c2
j,i(n)), i = 1, . . . , l1, j = 1, . . . , l2, satisfy (6).

Then, there exists s ∈ R such that for φi
1, φ j

2 ∈ Vs ∩V
2
s , i = 1, . . . , l1, j = 1, . . . , l2, we have

11 ∗ 12 ∈ Vs

(
φi

1 ∗ φ
j
2, i = 1, . . . , l1, j = 1, . . . , l2

)
.

More precisely,

(11 ∗ 12)(·) =
l1∑

i=1

l2∑
j=1

∑
n∈Zd

∑
n−k∈Zd

ai
1,n−ka j

2,k(φi
1 ∗ φ

j
2)(· + n).

Proof. Again, we discuss only the case l1 = l2 = 1 and cancel indices i and j. We have

1̂1(x) = φ̂1(x) f1(x), 1̂2(x) = φ̂2(x) f2(x), x ∈ Rd,

where f1 and f2 are the same as in Theorem 4.3. Thus,

1̂1(x)1̂2(x) = φ̂1(x)φ̂2(x)
∑
n∈Zd

anen(x), x ∈ Rd,

and coefficients an, n ∈ Zd satisfy ∑
n∈Zd

|an|
2
⟨n⟩−2τ < +∞,
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by Theorem 4.3. This implies

(11 ∗ 12)(t) = (φ1 ∗ φ2)(t) ∗
∑
n∈Zd

anδ(t + n) =
∑
n∈Zd

an(φ1 ∗ φ2)(t + n), t ∈ Rd.

Let s = −τ. Hence, 11 ∗ 12 ∈ Vs(φ1 ∗ φ2).
The general case is again the repetition of the given proof but with much more complex notation which

we skip.

5. Wave front characterizations

We analyze the product of distributions considering them in the space of periodic distributions and then
we transfer the obtained results to the shift-invariant spaces Vs. We recall Hörmander’s definition [18].

Definition 5.1 ([18]). Let f ∈ D ′(Rd), (x0, ξ0) ∈ Rd
× (Rd

\ {0}), and s ∈ R. We say that f is Sobolev microlocally
regular at (x0, ξ0) of order s, that is (x0, ξ0) < WFs( f ), if there exist an open cone Γ around ξ0 and ψ ∈ D(Rd) with
ψ ≡ 1 in a neighborhood of x0 such that ∫

Γ

|ψ̂ f (ξ)|2⟨ξ⟩2s dξ < +∞.

The next theorem is the characterization through the localization and the representation through the
Fourier coefficients.

Theorem 5.2 ([20]). Let f ∈ D ′(Rd). The following two conditions are equivalent.

a) There exist an open cone Γ around ξ0, ϕ ∈ D(Tη,x0 ) with η ∈ (0, 1) and ϕ ≡ 1 in a neighborhood of x0, such
that ∑

n∈Γ∩Zd

|an|
2
⟨n⟩2s < +∞, where ( fϕ)per =

∑
n∈Zd

anen.

b) (x0, ξ0) <WFs( f ).

The next assertion is interesting in itself.

Theorem 5.3. Let Γ be an open convex cone inRd
\ {0} and f =

∑
n∈Zd anen ∈P ′, so that

∑
n∈Γ∩Zd |an|

2
⟨n⟩2s < +∞.

Then (x0, ξ0) <WFs( f ) for any x0 ∈ Rd and ξ0 ∈ Γ.

Proof. Let φ ∈ D(Tη,x0 ), φ ≡ 1 inTε,x0 , 0 < ε < η. We know that φ̂ ∈ S(Rd). Let Γξ0 ⊂ Γ and Γ1 ⊂⊂ Γξ0 (that is,
Γ1 ∩ Sd−1 is a compact subset of Γξ0 ∩ S

d−1, where Sd−1 is the unit sphere). Then there exists C > 0 such that

ξ ∈ Γ1 ∧ n ∈ Zd
∩

(
(Rd
\ {0}) \ Γξ0

)
⇒ ⟨ξ − n⟩ ⩾ C⟨n⟩. (8)

We have, by (7) (with y = ξ, x = −n, r = 2s),∫
Γ1

⟨ξ⟩2s
|φ̂ f (ξ)|2 dξ =

∫
Γ1

⟨ξ⟩2s
|(φ̂ ∗ f̂ )(ξ)|2 dξ =

∫
Γ1

⟨ξ⟩2s
∣∣∣∣φ̂(ξ) ∗

∑
n∈Zd

anδ(ξ + n)
∣∣∣∣2 dξ

=

∫
Γ1

⟨ξ⟩2s
∣∣∣∣ ∑

n∈Zd

anφ̂(ξ + n)
∣∣∣∣2 dξ ⩽

∫
Γ1

⟨ξ⟩2s
( ∑

n∈Zd

|an|
2
|φ̂(ξ + n)|

)( ∑
n∈Zd

|φ̂(ξ + n)|
)

dξ

⩽ C
∫
Γ1

( ∑
n∈Zd

|an|
2
⟨n⟩2s
|φ̂(ξ + n)|⟨ξ + n⟩2|s|

)
dξ = C · I,

where we have used that
∑

n∈Zd |φ̂(ξ + n)| < +∞, ξ ∈ Rd, because φ̂ ∈ S(Rd). Further on,

I =
∫
Γ1

∑
n∈Zd∩Γξ0

|an|
2
⟨n⟩2s
|φ̂(ξ + n)|⟨ξ + n⟩2|s| dξ +

∫
Γ1

∑
n∈Zd\Γξ0

|an|
2
⟨n⟩2s
|φ̂(ξ + n)|⟨ξ + n⟩2|s| dξ = I1 + I2.
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For I1, we have

I1 =
∑

n∈Zd∩Γξ0

|an|
2
⟨n⟩2s

∫
Γ1

|φ̂(ξ + n)|⟨ξ + n⟩2|s| dξ ⩽ C
∑

n∈Zd∩Γξ0

|an|
2
⟨n⟩2s < +∞,

since
∫
Rd |φ̂(ξ+ n)|⟨ξ+ n⟩2|s| dξ ⩽ C, n ∈ Zd, also because φ̂ ∈ S(Rd). Concerning I2, we note first that f ∈P ′

implies
∑

n∈Zd |an|
2
⟨n⟩−2m < +∞ for some m ∈N. By (8), we have

⟨n⟩2(m+s)

⟨ξ + n⟩2(m+s)
⩽ C, ξ ∈ Γ1, n ∈ Zd

\ Γξ0 .

So

I2 =

∫
Γ1

∑
n∈Zd\Γξ0

|an|
2
⟨n⟩−2m ⟨n⟩2(m+s)

⟨ξ + n⟩2(m+s)
⟨ξ + n⟩2(m+s+|s|)

|φ̂(ξ + n)|dξ

⩽ C
∑

n∈Zd\Γξ0

|an|
2
⟨n⟩−2m

∫
Γ1

⟨ξ + n⟩2(m+s+|s|)
|φ̂(ξ + n)|dξ < +∞,

where we used that
∫
Rd⟨ξ + n⟩2(m+s+|s|)

|φ̂(ξ + n)|dξ < +∞. This completes the proof.

We have the following corollary.

Corollary 5.4. Let φ ∈ D(Rd) and h ∈ Vs(φ), so that

h(·) =
∑
k∈Zd

akφ(· + k) and
∑

k∈Zd∩Γ

|ak|
2
⟨n⟩2s < +∞

for an open cone Γ ⊂ Rd
\ {0}. If

∑
k∈Zd |ak|

2
⟨k⟩−2s0 < +∞ for some s0 ∈N, then for every x ∈ Ω (Ω ⊂ Rd is open set)

and ξ ∈ Γ, (x, ξ) <WFs (̂h).

Proof. Let h0 =
∑

k∈Zd akek. Then, ĥ = φ̂h0. We know by Theorem 5.3 that for any x ∈ Rd and ξ ∈ Γ,
(x, ξ) < WFs(h0). Since the multiplication by a function in S(Rd) does not decrease the set of Sobolev
microlocal regular points, we conclude that (x, ξ) <WFs (̂h).

Next, we consider the case when Lambdas are the sets of intersections of cone and Zd, where the cones
are such that the projection of the wave front on the second variable is contained in them. This is an
interesting case. Thus, we will take

Λ1 = Γ1 ∩Z
d and Λ2 = Γ2 ∩Z

d,

such that pr2

(
WFs1 ( f1)

)
⊂ Γ1 and pr2

(
WFs2 ( f2)

)
⊂ Γ2, where pr2(x, ξ) = ξ, x, ξ ∈ Rd.

Theorem 5.5. Let f1, f2 ∈P ′ (i.e. f1 ∈P ′τ1 , f2 ∈P ′τ2 ), Γ1 and Γ2 be cones of Rd so that Γ1 ∩ (−Γ2) = ∅ and that
the following conditions be fulfilled.

a) There exist C > 0 and γ ⩾ 1 such that

card{k ∈ Zd : n − k ∈ Γ1 ∧ k ∈ Γ2} ⩽ C|n|γ, n ∈ Zd.

b) Let (x0, ξ0) ∈ Rd
× (Rd

\ {0}) and let ψ ∈ D(Tη,x0 ) with η ∈ (0, 1) and ψ ≡ 1 in Tε,x0 , ε < η, so that

pr2

(
WFs1 ( f1ψ)

)
⊂ Γ1, pr2

(
WFs2 ( f2ψ)

)
⊂ Γ2,

where s1 ⩾ τ2 and s2 ⩾ τ1.



A. Aksentijević et al. / Filomat 38:23 (2024), 8011–8021 8020

Then, f = ( f1ψ)per( f2ψ)per exists inD′(Rd). Moreover, f ∈P ′.

Proof. Let
( f1ψ)per =

∑
k∈Zd

a1,kek, ( f2ψ)per =
∑
k∈Zd

a2,kek.

Note, if x ∈ suppψ and ξ ∈ (Rd
\ {0}) \ Γ1, then (x, ξ) < WFs1 ( f1ψ). The same holds for f2ψ. Since f1 ∈P ′τ1

and f2 ∈P ′τ2 , we know that∑
k∈Zd∩Γ1

|a1,k|
2
⟨k⟩−2τ1 < +∞,

∑
k∈Zd∩Γ2

|a2,k|
2
⟨k⟩−2τ2 < +∞. (9)

Now as in the proof of Theorem 4.3, we show that f = ( f1ψ)per( f2ψ)per exists and f ∈P ′.

Remark 5.6. Theorem 5.5 can be easily transferred to the case when one has several cones Γi
1, i = 1, . . . , l1 (related

to f1) and Γ j
2, j = 1, . . . , l2 (related to f2) so that Γi

1 ∩Z
d and Γ j

2 ∩Z
d contain index sets for f1 and f2, i = 1, . . . , l1,

j = 1, . . . , l2 which are compatible index sets.

Remark 5.7. We will show below that under the assumption that Γ1 ∩ (−Γ2) = ∅ then condition in a) of Theorem
5.5 holds in the case d = 2 with γ = 2. Our hypothesis is that condition a) also holds (with γ = d) for d ⩾ 3, but the
structure of cones is more complex and we do not have the proof of this hypothesis for d ⩾ 3.

Proof. [Proof of the assertion in the Remark 5.7 in the case d = 2] We can assume that cones are acute because
if it is not the case, we divide them into finite sets of such cones. So, assume that cones Γ1 and −Γ2 are acute
and have empty intersection. By translation with vector

−−−−−−−−−−−→
(0, 0), (n1,n2), there are several different positions

of cones so that they have different surface of the domain laying between them. It can be equal to zero but
the optimal case (maximal number of points with integer coordinates inside the intersection) is when they
intersect in four points. Let us explain this case. We present the simplest position of cones (by rotations,
this is not the restriction)

Γ1 = {(t, s) : k1t ⩾ s, t ⩾ 0}, −Γ2 = {(t, s) : k2t ⩾ s, t ⩽ 0}, k2 > k1 > 0.

Now translating −Γ2 so that the tip of the cone is (n1,n2), one can calculate the points of intersection of
cones Γ1 ∩Z2 and

(
(n1,n2) − Γ2

)
∩Z2. Coordinates of the sets of intersections, set points A1,A2,A3,A4 are

linear combinations of the form

(αi
1,1n1 + α

i
1,2n2, α

i
2,1n1 + α

i
2,2n2), i = 1, 2, 3, 4,

where αi
j,l depend on k1 and k2. Now, by calculating the surface of the area of the intersection of these cones,

we conclude that the domain surface between two cones can be estimated by C(n2
1+n2

2), for some C > 0.

Using Theorems 4.5 and 5.5, we obtain the following statement.

Corollary 5.8. Let φi ∈ Hsi , i = 1, 2, and let Γ1 and Γ2 be cones so that Γ1 ∩ (−Γ2) = ∅. Assume that assertion a) in
Theorem 5.5 holds.

a) Let x0 ∈ Rd, f1, f2 ∈ D ′(Rd) and ψ ∈ D(Tη,x0 ) with η ∈ (0, 1) so that ψ ≡ 1 in Tε,x0 , ε < η. Assume that

(̂ f1ψ) = φ̂1

∑
k∈Zd

akek, (̂ f2ψ) = φ̂2

∑
k∈Zd

bkek,

and that (9) holds for
∑

k∈Zd akek and
∑

k∈Zd bkek. Moreover, assume that condition b) of Theorem 5.5 holds.
Then, there exists s ∈ R so that

f1ψ(·) =
∑
k∈Zd

akφ1(· + k), f2ψ(·) =
∑
k∈Zd

bkφ2(· + k)

are elements of Vs(φ1), Vs(φ2), respectively, and their product ( f1ψ) ∗ ( f2ψ) ∈ Vs(φ1 ∗ φ2).
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b) Let 1i ∈ Vsi (φi), i = 1, 2, and let (x0, ξ0) ∈ Rd
× (Rd

\ {0}). For 1̂i = φ̂i fi we assume that pr2

(
WFsi ( fi)

)
⊂ Γi,

i = 1, 2. Moreover, we assume that (9) holds, where s1 ⩾ τ2 ⩾ 0 and s2 ⩾ τ1 ⩾ 0. Then, there exists s ∈ R so
that

1 = 11 ∗ 12 ∈ Vs(φ1 ∗ φ2) and 1(·) =
∑
n∈Zd

an(φ1 ∗ φ2)(· + n).
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