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Abstract. In the context of five-dimensional Euclidean space E5, the definition of the helical surface is
established. Its geometric attributes are elucidated by calculating three normals. Subsequently, Bour’s
theorem within E5 is employed to determine an isometric mapping among helical-rotational surfaces,
contributing to a better understanding of their structural interplay.

1. Introduction

In Euclidean 3-spaceE3, the deformation of the family of surfaces is described by the parametric equation

xβ (s, t) =

 x(s, t)
y(s, t)
z(s, t)

 =
 cos β sin s sinh t + sin β cos s cosh t
− cos β cos s sinh t + sin β sin s cosh t

s cos β + t sin β

 ,
where s, β ∈ [−π, π] , t ∈ (−∞,∞) , β is a deformation parameter. xβ denotes the minimal surfaces, which have
the same first fundamental form and normal vector field. Specifically, x0-xπ/2 describe the helicoid-catenoid,
respectively, which are locally isometric surfaces with identical Gauss maps.

This leads us to Bour’s theorem in [2]:

Theorem 1.1. Bour’s Theorem A helical surface is isomorphic to a rotational surface, implying that the helices on
the helical surface correspond to circles on the rotational surface under an isometric mapping.

Bour’s theorem establishes a profound connection between helical and rotational surfaces, highlighting
their equivalence in terms of intrinsic geometric properties despite their distinct appearances. It was
formulated by Bour, emphasizing the significant relationship between helical and rotational surfaces,
elucidating how their respective curvature and metric properties align under suitable transformations. It
serves as a valuable tool for analyzing and comprehending the geometric characteristics of these surfaces,
providing insights into their structural similarities and disparities. Additionally, Bour’s theorem carries
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considerable implications in various disciplines, including differential geometry, where it facilitates the
examination of surface mappings and isometries.

The readers can explore different versions of this theorem, including the Euclidean and Lorentz-
Minkowski variants, in [1]-[16], where they can delve into the specificities and applications of each formu-
lation.

The aim of this paper is to thoroughly investigate and analyze helical surfaces within five-dimensional
Euclidean space, with a focus on their construction, properties, and geometric relationships. The paper is
structured as follows:

In Section 1, definitions relevant to E5 are provided.
In Section 2, the concept of helical surfaces and their representation within E5 is introduced. The para-

metric equations governing these surfaces are defined, and their fundamental characteristics are explored.
In Section 3, the notion of local isometry on helical surfaces is delved into. The preservation of local

geometric properties, such as distances and angles, by certain transformations is examined, and their
implications for the study of helical surfaces are analyzed.

In Section 4, the analysis is extended to consider global isometry properties of helical surfaces. Building
upon the concepts discussed in the previous section, how these surfaces maintain their intrinsic geometry
under broader transformations is explored, and their role within the broader context of differential geometry
is investigated.

Finally, in the concluding section, the findings are summarized, and the key insights gained from the
exploration of helical surfaces in E5 are highlighted. Potential avenues for future research are discussed,
and the significance of helical surfaces in understanding the geometric properties of higher-dimensional
spaces is emphasized.

Through this structured approach, our paper aims to contribute to the deeper understanding of heli-
cal surfaces and their geometric properties within five-dimensional Euclidean space, providing valuable
insights for researchers and practitioners in the fields of mathematics.

2. Preliminaries

Moving forward, our focus shifts to the geometry of Euclidean 5-space, denoted asE5. Here, we employ
the inner product notation

〈
−→x ,−→y

〉
:=

∑5
i=1 xiyi to represent the inner product operation withinE5. This inner

product, akin to the dot product in lower dimensions, plays a fundamental role in defining the geometric
properties and relationships within the five-dimensional Euclidean space.

Definition 2.1. Let x : D ⊂ E2
→ E5, be a parametric surface of E5. At point p = x(s, t), tangent space to M is

constructed by {xs, xt}. The fundamental form
(
1i j

)
of M are described by

(
1i j

)
:=

(
111 112
121 122

)
=

(
⟨xs, xs⟩ ⟨xs, xt⟩
⟨xt, xs⟩ ⟨xt, xt⟩

)
. (1)

Here, 112 = 121.

We assume Q2 := det(1i j) = 111122 −
(
112

)2 > 0. That is, M is a regular surface.

Definition 2.2. Let {e1, e2,N1,N2,N3} be a orthonormal frame field of M; e1, e2 are tangents to M, and alsoN1,N2,N3

are normals to M. The fundamental form
(
hk

i j

)
of M depend on Nk, k = 1, 2, 3, are determined by

(
hk

i j

)
:=

(
hk

11 hk
12

hk
21 hk

22

)
=

(
⟨xss,Nk⟩ ⟨xst,Nk⟩

⟨xts,Nk⟩ ⟨xtt,Nk⟩

)
. (2)

Here, i, j = 1, 2, h12 = h21. Also det(hk
i j) = hk

11hk
22 −

(
hk

12

)2
.
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Definition 2.3. We denote by (a) Hk :=
hk

11122+hk
22111−2hk

12112

2Q2 , the mean curvature depends on nk, k = 1, 2, 3,

(b)
−→
H :=

∑3
k=1 Hknk, the mean curvature vector, k = 1, 2, 3,

(c)
−→
H = 0, the minimal surface,

(d) K :=
∑3

k=1 det(hk
i j)

Q2 , the Gaussian curvature, i, j = 1, 2, k = 1, 2, 3, of M, respectively.

Definition 2.4. An orthonormal tangent frame field {e1, e2} on M is described by

e1 :=
1
√
111
xs, e2 :=

1
Q
√
111

(
111xt − 112xs

)
.

Definition 2.5. Gauss map of x is defined by

G :=
1
Q

(xs ∧ xt) .

3. Helical Surfaces of E5

Let (a,b,c,d,e) of E5 be identified with its transpose. We define the rotational-helical surfaces of E5.

Definition 3.1. Let γ denote a curve inE5 defined over an open interval I ⊂ R, and letΠ represent a plane. Suppose
ℓ is a line within Π. A rotational surface is characterized by a generating curve γ rotating about the axis ℓ.

Definition 3.2. While γ undergoes rotation about the axis ℓ, it simultaneously displaces parallel lines orthogonal to
ℓ, with the rate of displacement being proportional to the rate of rotation. The resultant surface is termed a helical
surface with axis ℓ and pitch a ∈ R\{0}.

Assuming ℓ is defined by the line generated by (0, 0, 0, 0, 1), the orthogonal matrix can be described as

A (t) = dia1 (Ct,Ct, 1) , (3)

where v ∈ R, Ct =

(
cos t − sin t
sin t cos t

)
and A.ℓ = ℓ, A.AT = AT.A = I5, detA = 1, I5 denotes the identitiy

matrix, AT describes the transpose of A. The generating curve is regarded by

γ(s) =
(

f (s) , 0, 1 (s) , 0, h (s)
)
.

In this context, the functions defined on γ are differentiable for every s ∈ I. The helical surface, constructed
with an axis of (0, 0, 0, 0, 1) and a pitch a ∈ R\{0}, is specified as follows

H(s, t) = A(t).γ(s)T︸     ︷︷     ︸
rotation

+ atℓT︸︷︷︸
translation

.

Thus, the helical surface is defined by the equation

H(s, t) =
(

f (s) cos t, f (s) sin t, 1 (s) cos t, 1 (s) sin t, h (s) + at
)
, (4)

where the functions f , 1, h are differentiable, s, a ∈ R\{0}, 0 ≤ t < 2π. When a = 0, it represents merely a
rotational surface of E5.

We derive the following first fundamental quantities for equation (4):

111 = f ′2 + 1′2 + h′2, 112 = ah′, 122 = f 2 + 12 + a2.

Subsequently, we obtain

Q2 =
(

f 2 + 12
) (

f ′2 + 1′2 + h′2
)
> 0.



E. Güler, N.C. Turgay / Filomat 38:23 (2024), 8121–8129 8124

We compute following three normals of the surface (4):

N1 =
1
Q1



−

(
λ f ′′ + a2 f ′h′h′′

)
cos t − a f h′′ sin t

−

(
λ f ′′ + a2 f ′h′h′′

)
sin t + a f h′′ cos t

−

(
λ1′′ + a21′h′h′′

)
cos t − a1h′′ sin t

−

(
λ1′′ + a21′h′h′′

)
sin t + a1h′′ cos t

−

(
f 2 + 12

)
h′′


, (5)

N2 =
1
Q2

(k, l,m, n, o) , (6)

N3 =
1
Q3


λ21

[
h′

(
1 f ′′ − f1′′

)
+

(
−1 f ′ + f1′

)
h′′

]
sin t

−λ21
[
h′

(
1 f ′′ − f1′′

)
+

(
−1 f ′ + f1′

)
h′′

]
cos t

λ2 f
[
h′

(
−1 f ′′ + f1′′

)
+

(
1 f ′ − f1′

)
h′′

]
sin t

−λ2 f
[
h′

(
−1 f ′′ + f1′′

)
+

(
1 f ′ − f1′

)
h′′

]
cos t

0

 , (7)

respectively, where

Q1 =
√
λ2 (

f ′′2 + 1′′2
)
+ λ (λ − a2) h′′2,

Q2 = λ
(

f ′′2 + 1′′2
)
+

(
λ − a2

)
h′′2,

Q3 =

√
λ4 (

f 2 + 12) [h′ (−1 f ′′ + f1′′
)
+

(
1 f ′ − f1′

)
h′′

]2,

λ = f 2 + 12 +
(
1 − h′2

)
a2,

k = λ



[−13 (
h′ f ′′ − f ′h′′

) (
h′1′′ − 1′h′′

)
+ f 3 (

h′1′′ − 1′h′′
)2

+ f121′2h′′2 + f12h′21′′2 − 2 f121′h′1′′h′′ − f 21h′2 f ′′1′′

− f 21 f ′h′1′′h′′ − f 21 f ′1′h′′2 + f 211′h′ f ′′h′′] cos t
+[−a f11′h′

(
f ′′2 + 1′′2 + h′′2

)
+ a f 21′h′ f ′′1′′

+a f 2
(
−1 + h′2

)
f ′′h′′ − a f11′′h′′ − a f 2 f ′h′

(
1′′2 + h′′2

)
] sin t


,

l = λ



[a f121′′h′′ + a f121′h′
(

f ′′2 + 1′′2 + h′′2
)
− a f 21′h′ f ′′1′′

+a f 2
((

1 − h′2
)

f ′′h′′ + f ′h′
(
1′′2 + h′′2

))
] cos v

+[−13 (
h′ f ′′ − f ′h′′

) (
h′1′′ − 1′h′′

)
+ f 3 (

h′1′′ − 1′h′′
)2

+ f121′2h′′2 + f12h′21′′2 − 2 f121′h′1′′h′′ − f 211′ f ′h′′2

− f 21h′1′′
(
h′ f ′′ − f ′h′′

)
+ f 211′h′ f ′′h′′] sin v


,

m = λ



[− f 3 (
h′ f ′′ − f ′h′′

) (
h′1′′ − 1′h′′

)
− f12h′1′′

(
h′ f ′′ − f ′h′′

)
+1

(
f 2 + 12

) (
21′h′1′′h′′ +

(
1 − 1′2

)
h′′2 + h′2

(
f ′′2 + h′′2

))
− f121′ f ′h′′2 + f121′h′ f ′′h′′] cos t

+[a f1
(
1′h′ f ′′1′′ +

(
−1 + h′2

)
f ′′h′′ − f ′h′

(
1′′2 + h′′2

))
−a121′′h′′ − a121′h′

(
f ′′2 + 1′′2 + h′′2

)
] sin t


,

n = λ



[a f1
(
−1′h′ f ′′1′′ +

(
1 − h′2

)
f ′′h′′ + f ′h′

(
1′′2 + h′′2

))
+a121′′h′′ + a121′h′

(
f ′′2 + 1′′2 + h′′2

)
] cos t

+[− f 3 (
h′ f ′′ − f ′h′′

) (
h′1′′ − 1′h′′

)
+1

(
f 2 + 12

) (
21′h′1′′h′′ +

(
1 − 1′2

)
h′′2 + h′2

(
f ′′2 + h′′2

))
− f121′′h′

(
h′ f ′′ − f ′h′′

)
− f f ′121′h′′2 + f121′h′ f ′′h′′] sin t


,
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o = λ
(

f 2 + 12
)  f

[
1′h′ f ′′1′′ +

(
−1 + h′2

)
f ′′h′′ − f ′h′

(
1′′2 + h′′2

)]
−1

[
1′′h′′ + 1′h′

(
f ′′2 + 1′′2 + h′′2

)]  .
By calculating the second derivatives of equation (4) with respect to both s and t, we derive:

Hss =
(

f ′′ cos t, f ′′ sin t, 1′′ cos t, 1′′ sin t, h′′
)
,

Hst =
(
− f ′ sin t, f ′ cos t,−1′ sin t, 1′ cos t, 0

)
,

Htt =
(
− f cos t,− f sin t,−1 cos t,−1 sin t, 0

)
,

and concerning the normals (5), (6), (7), we ascertain the second fundamental forms of equation (4):

h1
11 = −

λ
(

f ′′2 + 1′′2
)
+

(
f 2 + 12

)
h′′2 + a2 (

f ′ f ′′ + 1′1′′
)

h′h′′

Q1
,

h1
12 =

a
(

f f ′ + 11′
)

h′′

Q1
,

h1
22 =

λ
(

f f ′′ + 11′′
)
+ a2 (

f f ′ + 11′
)

h′h′′

Q1
,

h2
11 =

(
p f ′′ + r1′′

)
cos t +

(
q f ′′ + s1′′

)
sin t + th′′

Q2
,

h2
12 =

(
q f ′ + s1′

)
cos t −

(
p f ′ + r1′

)
sin t

Q2
,

h2
22 =

−
(
p f + r1

)
cos t −

(
q f + s1

)
sin t

Q2
,

h3
11 = 0,

h3
12 =

λ2 (
f1′ − 1 f ′

) [(
1 f ′′ − f1′′

)
h′ +

(
f1′ − 1 f ′

)
h′′

]
Q3

,

h3
22 = 0.

The curvatures Hi (i = 1, 2, 3) and K are demonstrated by

H1 =



−a4 f ′ f ′′h′h′′ − a41′1′′h′h′′ − a2 f 2 f ′ f ′′h′h′′ − a2 f 21′1′′h′h′′ − a2 f 2h′′2

+a2 f f ′3h′h′′ + a2 f f ′1′2h′h′′ + a2 f f ′h′3h′′ − 2a2 f f ′h′h′′ − a212 f ′ f ′′h′h′′

−a2121′1′′h′h′′ − a212h′′2 + a21 f ′21′h′h′′ + a211′3h′h′′ + a211′h′3h′′

−2a211′h′h′′ − λa2 f ′′2 − λa21′′2 − f 4h′′2 − 2 f 212h′′2 − λ f 2 f ′′2

−λ f 21′′2 + λ f f ′2 f ′′ + λ f1′2 f ′′ + λ f f ′′h′2 − 14h′′2 − λ12 f ′′2

−λ121′′2 + λ1 f ′21′′ + λ11′21′′ + λ11′′h′2


2Q2Q1

,

H2 =


[(

f 2 + 12 + a2
) (

q f ′ + s1′
)
+ 2a

(
p f + r1

)
h′ −

(
p f + r1

) (
f ′2 + 1′2 + h′2

)]
cos t

+
[
−

(
f 2 + 12 + a2

) (
p f ′ + r1′

)
+ 2a

(
q f + s1

)
h′ −

(
q f + s1

) (
f ′2 + 1′2 + h′2

)]
sin t


2Q2Q2

,

H3 = −
aλ2 (

f1′ − 1 f ′
)

h′
[
1h′ f ′′ − f h′1′′ +

(
f1′ − 1 f ′

)
h′′

]
Q2Q3

,

K =
1
Q2

(
Υ1

(Q1)2 +
Υ2

(Q2)2 +
Υ3

(Q3)2

)
,
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where

Υ1 = −

(
λ
(

f ′′2 + 1′′2
)
+

(
f 2 + 12

)
h′′2 + a2 (

f ′ f ′′ + 1′1′′
)

h′h′′
)

.
(
λ
(

f f ′′ + 11′′
)
+ a2 (

f f ′ + 11′
)

h′h′′
)
−

(
a
(

f f ′ + 11′
)

h′′
)2 ,

Υ2 =
((

p f ′′ + r1′′
)

cos t +
(
q f ′′ + s1′′

)
sin t + th′′

) (
−

(
p f + r1

)
cos t −

(
q f + s1

)
sin t

)
−

(
−

(
p f ′ + r1′

)
sin t +

(
q f ′ + s1′

)
cos t

)2 ,

Υ3 = −

{
λ2 (

f1′ − 1 f ′
) [(
1 f ′′ − f1′′

)
h′ +

(
f1′ − 1 f ′

)
h′′

]}2
.

4. Local Isometry on Helical Surface of E5

Following, we introduce a theorem employing the helical surface defined in the preceding section
through the classical Bour’s theorem in E5.

Theorem 4.1. LetH denote the helical surface given by equation (4). Then, locally,H is isometric to the rotational
surface described by

R(s, t) =



√
f 2 + 12 + a2 cos

(
t +

∫
ah′

f 2+12+a2 ds
)√

f 2 + 12 + a2 sin
(
t +

∫
ah′

f 2+12+a2 ds
)√

f 2 + 12 + a2 cos
(
t +

∫
ah′

f 2+12+a2 ds
)√

f 2 + 12 + a2 sin
(
t +

∫
ah′

f 2+12+a2 ds
)

∫ √
( f 2+12+a2)( f 2+12)h′2−( f+1)2

f 2+12+a2 ds


. (8)

That is, the helices on the helical surface correspond to the circles on the rotational surface.

Proof. The helical surface (4) has the line element

ds2 =
(

f ′2 + 1′2 + h′2
)

ds2 + 2ah′dsdt +
(

f 2 + 12 + a2
)

dt2. (9)

Setting s = s, t = t+
∫

ah′
f 2+12+a2 ds, the helical surface (4) becomes toH(s, t). Regarding the parameters s, t, the

line element reduces to

ds2 =

 f ′2 + 1′2 +

(
f 2 + 12

)
h′2

f 2 + 12 + a2

 ds2
+

(
f 2 + 12 + a2

)
dt

2
. (10)

Putting

s :=
∫ √

f ′2 + 1′2 +
(

f 2 + 12) h′2

f 2 + 12 + a2 ds, Φ(s) :=
√

f 2 + 12 + a2,

the line element of the helical surface is given by

ds2 = ds2
+ Φ2(s)dt

2
. (11)

On the other side, in E5, the rotational surface

R(s, t) = (f (s) cos t, f (s) sin t, g (s) cos t, g (s) sin t, h (s))

has following line element

ds2 =
(
f′2 + g′2 + h′2

)
ds2 +

(
f2 + g2

)
dt2. (12)
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Again setting f2 + g2 = f 2 + 12 + a2, p(s) = g′, q(s) = h′,we obtain

g =

∫
f p(s)√

f 2 + 12 + a2
ds, h =

∫
f q(s)√

f 2 + 12 + a2
ds.

Thus, the helical surface represented by equation (4) demonstrates a local isometric correspondence with
the rotational surface defined by equation (8).

A helix onH is characterized by f = s0, where s0 is a constant corresponding to the curves f2 = s2
0 + a2 on

R, which represent circles on the plane defined by x3 = g (s) , x5 = h (s), or it can be defined by g = s0 on R,
which is defined by g2 = s2

0 + a2, representing circles on the plane x1 = f (s) , x5 = h (s).

In light of the surfaces exhibiting isometry as per Theorem 3.1, the following theorem is derived.

Theorem 4.2. ConsiderH andR, respectively, as the helical-rotational surfaces that are interconnected isometrically
by Theorem 3.1. When these surfaces share identical Gauss maps, they are both minimal and hyperplanar.

Proof. Let {k1, k2, k3, k4, k5} denote the orthonormal frame of E5. Consider i, j = 1, 2, 3, 4, 5, where i < j. Then,
define ki j = ki ∧ k j. Referring to Definition 1.6, the Gauss map of the helical surface defined by equation (4)
can be expressed as

GH =
1
Q


f f ′ k12 + ( f1′ − f ′1) cos t sin t k13 +

(
f ′1 cos2 t + f1′ sin2 t

)
k14

+
(
a f ′ cos t + f1′ sin t

)
k15 − ( f1′ cos2 t + f ′1 sin2 t) k23

+( f ′1 − f1′) cos t sin t k24 +
(
a f ′ sin t − f h′ cos t

)
k25 + 11

′ k34
+

(
a1′ cos t − 1h′ sin t

)
k35 +

(
a1′ sin t − 1h′ cos t

)
k45

 . (13)

The Gauss map of the rotational surface specified by equation (8) is described as

GR =
1
Q


f f ′ k12 + ( f p − f ′1) cosΩ sinΩ k13 +

(
f ′1 cos2Ω+ f p sin2Ω

)
k14

+ f p sinΩ k15 −
(

f p cos2Ω+ f ′1 sin2Ω
)

k23

+( f ′1 − f p) cosΩ sinΩ k24 − f q cosΩ k25 + 1p k34
−1q sinΩ k35 − 1q cosΩ k45

 , (14)

where Ω = t +
∫

ah′
f 2+12+a2 ds. Given that G = GR, identically, equations (13) and (14) result in:

( f1′ − f ′1) cos t sin t = ( f p − f ′1) cosΩ sinΩ, (15)
f ′1 cos2 t + f1′ sin2 t = f ′1 cos2Ω+ f p sin2Ω, (16)
f1′ cos2 t + f ′1 sin2 t = f p cos2Ω+ f ′1 sin2Ω, (17)

a f ′ cos t + f1′ sin t = f p sinΩ, (18)
a f ′ sin t − f h′ cos t = − f q cosΩ, (19)
a1′ cos t − 1h′ sin t = −1q sinΩ, (20)
a1′ sin t − 1h′ cos t = −1q cosΩ. (21)

Here, (16) + (17) reduces to p = 1′, where f , 0. Hence, we have p(s) = g′ = 1′, and then g =
∫ f 1′
√

f 2+12+a2
ds.

Or more clear way, by using (13) and (14), we can see that 11′ k34 = 1p k34, then p = 1′.
On the other hand, (19) + (21) reduces to

a
(

f ′ + 1′
)

sin t −
(

f + 1
)

h′ cos t = −
(

f + 1
)

q cosΩ.

So, we get q = h′, a
(

f ′ + 1′
)

sin t = 0, and also v = Ω (i.e.,
∫

ah′
f 2+12+a2 ds = 0). That is, t = t. Therefore, we find

h =
∫ f h′
√

f 2+12+a2
ds.
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Corollary 4.3. ConsiderH-R as the helical-rotational surfaces sharing the same Gauss map and connected isomet-
rically by Theorem 4.1. Subsequently, these surfaces are characterized by

H(s, t) =
(

f (s) cos t, f (s) sin t, 1 (s) cos t, 1 (s) sin t, h (s) + at
)

and

R(u, v) =



√
f 2 + a2 cos

(
t +

∫
ah′

f 2+12+a2 ds
)√

f 2 + a2 sin
(
t +

∫
ah′

f 2+12+a2 ds
)√

12 + a2 cos
(
t +

∫
ah′

f 2+12+a2 ds
)√

12 + a2 sin
(
t +

∫
ah′

f 2+12+a2 ds
)

∫ √
a2+( f 2+12)(1+h′2)−( f f ′+11′)2

f 2+12+a2 ds


.

Proof. The expression is deduced by employing the identity

∫ √
f ′2 + 1′2 +

(
f 2 + 12) h′2

f 2 + 12 + a2 ds =
∫ √

f′2 + g′2 + h′2ds,

whereby the following

f′2 + g′2 + h′2 =
a2

(
f ′2 + 1′2

)
+

(
f 2 + 12

) (
f ′2 + 1′2 + h′2

)
(

f f ′ + 11′
)2

is derived. Subsequently,

h′ds =
∫ √

a2 +
(

f 2 + 12) (1 + h′2) −
(

f f ′ + 11′
)2

f 2 + 12 + a2 ds

is obtained.

5. Conclusion

In the context of five-dimensional Euclidean spaceE5, our study has established the definition of helical
surfaces. Through rigorous mathematical analysis, we have calculated three normals and elucidated
their geometric attributes, providing a detailed understanding of their structural properties. Additionally,
leveraging Bour’s theorem within E5, we have determined an isometric mapping among helical-rotational
surfaces, further enhancing our comprehension of their interplay and geometric relationships.

Looking ahead, our findings pave the way for deeper investigations into the properties and behaviors
of helical surfaces within higher-dimensional spaces. Further research could focus on exploring addi-
tional geometric properties and developing new mathematical techniques to analyze these surfaces more
comprehensively.

In conclusion, our study contributes to the mathematical understanding of helical surfaces within E5,
providing valuable insights into their geometric attributes and structural interplay. Through continued
research, we aim to expand our knowledge of these surfaces and their applications in various mathematical
contexts.
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[8] E. Güler and Y. Yaylı, Generalized Bour’s theorem, Kuwait J. Sci. 42 (1) (2015), 79-90.
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