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Abstract. In this paper, we explore the weak solutions of the Cauchy problem and an inverse source
problem for the heat equation in the quantum calculus, formulated in abstract Hilbert spaces. For this,
we use the Fourier series expansions. Moreover, we prove the existence, uniqueness and stability of
the weak solution of the inverse problem with a final determination condition. We give some examples
such as the q-Sturm–Liouville problem, the q-Bessel operator, the q-deformed Hamiltonian, the fractional
Sturm-Liouville operator, and the restricted fractional Laplacian, covered by our analysis.

1. Introduction

It is well known that quantum groups provide the key to q-deforming the fundamental structures of
physics from the point of view of the non-commutative geometry. An important concept in this theory is
integration and Fourier theory on quantum spaces, see e.g. [1–3]. Nowadays, the theory of quantum groups
and q-deformed algebras have been the subject of intense investigation. Many physical applications have
been investigated on the basis of the q-deformation of the Heisenberg algebra [4] and [5]. For instance, the
q-deformed Schrödinger equations have been proposed in [6] and [7] and applications to the study of the
q-deformed version of the hydrogen atom and of the quantum harmonic oscillator [8] have been introduced.
The fractional calculus and q-deformed Lie algebras are closely related. A new class of fractional q-deformed
Lie algebras is considered, which for the first time allows a smooth transition between different Lie algebras
[9].

The origin of the q-difference calculus can be traced back to the works [10, 11] by F. Jackson and
R.D. Carmichael [12] from the beginning of the twentieth century, while basic definitions and properties
can be found e.g. in the monographs [13–15]. Recently, the fractional q-difference calculus has been
proposed by W. Al-salam [16] and R.P. Agarwal [17]. Today, maybe due to the explosion in research within
the fractional differential calculus setting, new developments in the theory of the fractional q-difference
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calculus have been addressed extensively by several researchers. For example, some researchers obtained
q-analogues of the integral and differential fractional operators such as the q-Laplace transform and q-
Taylor’s formula [18], q-Mittag-Leffler function [16]. Moreover, in 2007, M.S. Ben Hammouda and Akram
Nemri defined the higher-order q-Bessel translation and the higher order q-Bessel Fourier transform and
established some of their properties, as well as studied the higher-order q-Bessel heat equation [19]. In
2012, A. Fitouhi and F. Bouzeffour established in great detail the q-Fourier analysis related to the q-cosine
and constructed the q-solution source, the q-heat polynomials [20], and solved the some Cauchy problems
[19, 21].

The paper is organized as follows: The main results are presented and proved in Sections 3 and 4 for
direct and inverse problems, respectively. In the final section the examples are given. In order to simplify
these presentations we include in Section 2 the necessary preliminaries.

2. Preliminaries

In this section, we recall some notations related to the q-calculus. We will always assume that 0 < q < 1.
The q-real number [α]q is defined by

[α]q :=
1 − qα

1 − q
.

The q-analogue differential operator Dq f (x) is defined by

Dq f (x) =
f (x) − f (qx)

x(1 − q)
, (1)

The q-derivative of a product of two functions has the form

Dq( f1)(x) = f (qx)Dq(1)(x) +Dq( f )(x)1(x). (2)

The q-integral (or Jackson integral) is defined by (see [11])

x∫
0

f (t)dqt = (1 − q)x
∞∑

m=0

qm f (xqm), (3)

and, more generally,

b∫
a

f (x)dqx =

b∫
0

f (x)dqx −

a∫
0

f (x)dqx,

provided the sums converge absolutely. Note that

x∫
a

Dq f (t)dqt = f (x) − f (a). (4)

The q-version of the integration by parts takes the form

b∫
a

f (x)Dq1(x)dqx =
[

f1
]b

a −

b∫
a

1(qx)Dq f (x)dqx. (5)

Let H be a separable Hilbert space and letL be an operator with the discrete spectrum and eigenfunctions
{ϕk}k∈I in H, where I is a countable set (I = Nk or I = Zk for some k). We assume that the operator L is
diagonalisable (can be written in the infinite dimensional matrix form) with respect to the orthonormal
basis {ϕk}k∈I of H with the eigenvalues λk such that λk > λ0 > 0, where λ0 is some constant independent of
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k. In further calculus for our analysis we will also require that λk → ∞. The Plancherel identity takes the
form

∥u∥H =

∑
k∈I

∣∣∣⟨u, ϕk⟩H

∣∣∣2
1
2

, (6)

for u ∈ H.
We denote the domain of the operator Lm for m ∈N0 by

Dom(Lm) :=
{
u ∈ H : Liu ∈ Dom(L), i = 0, 1, 2, · · · ,m − 1

}
.

The space C∞
L

(H) :=
∞⋂

m=1
Dom(Lm) is called the space of test functions for L. Moreover, we introduce the

Fréchet topology of C∞
L

(H) with the family of norms

∥u∥Cm
L

:= max
j≤k
∥L

ju∥H,

for m ∈N0, u ∈ C∞
L

(H), and the space of L-distributionsD′
L

(H) := L
(
C∞
L

(H),C
)
. Consequently, we can also

define Sobolev spacesHd
L

associated to L as

H
d
L

:=
{
u ∈ D′

L
(H) : Ld/2u ∈ H

}
for any d ∈ R. Using Plancherel’s identity (6), we can write the norm in the following form:

∥u∥
Hd
L

:= ∥Ld/2u∥H =

∑
k∈I

λd
k

∣∣∣⟨u, ϕk⟩H

∣∣∣2
1
2

. (7)

We introduce the spaces Cm
q

(
[0,T];Hd

L

)
and L∞

(
[0,T];Hd

L

)
as

∥u∥Cm
q ([0,T];Hd

L
) :=

m∑
i=0

max
0≤t≤T

∥Di
qu(t)∥

Hd
L

,

and

∥u∥L∞([0,T];Hd
L
) := sup

0≤t≤T
∥u(t)∥

Hd
L

,

respectively, where Dk
qu = Dq

(
Dk−1

q u
)
.

As given in [13, Chapter 9, P. 29], two q-analogues of the exponential function are defined as

ex
q =

∞∑
k=0

xk

[k]q
, Ex

q =

∞∑
k=0

qk(k−1)/2 xk

[k]q
. (8)

Moreover, we can rewrite

Ex
q = lim

N→∞

N∏
i=0

(
1 + (1 − q)qix

)
,

and we have

ex
qE−x

q = 1.

We will be making the following assumption:
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Assumption 2.1. We assume that υ is a continuous function on [0,T] and, there are some β, α > 0 such that
α ≤ υ(t) ≤ β for all t ∈ [0,T].

For 0 ≤ t ≤ T we denote

γυ(t) :=
1

lim
N→∞

N∏
i=0

(
1 + (1 − q)tqiυ(qit)

) . (9)

So, by Assumption 2.1, we obtain

1
N∏

i=0

(
1 + (1 − q)tqiβ

) ≤ 1
N∏

i=0

(
1 + (1 − q)tqiυ(qit)

) ≤ 1
N∏

i=0

(
1 + (1 − q)tqiα

) ,
and it can be written as

1

Eβt
q

≤ γυ(t) ≤
1

Eαt
q
. (10)

Form (1) and (4) it follows that

Dq

[
γ−1
υ (λkt)

]
= λkυ(t)γ−1

υ (qλkt) (11)

and
T∫

0

γ−1
υ (λks)dqs =

1
λk

T∫
0

Dq

[
γ−1
υ (λks)

]
υ(t)

dqs

≥
1
λkβ

T∫
0

Dq

[
γ−1
υ (λks)

]
dqs

=
γ−1
υ (λkT)
λkβ

(12)

and
t∫

0

γ−1
υ (λks)dqs =

1
λk

t∫
0

Dq

[
γ−1
υ (λks)

]
ν(t)

dqs

≤
1
λkα

T∫
0

Dq

[
γ−1
υ (λks)

]
dqs

=
γ−1
υ (λkt)
λkα

. (13)

Notation. The symbol M ≲ K means that there exists γ > 0 such that M ≤ γK, where γ is a constant.

3. Direct problem for the q-heat equation

We start to study a Cauchy problem:

Dq,tu(t) + υ(t)Lu(t) = f (t), u ∈ H, t > 0, (14)

with the initial condition

u(0) = φ ∈ H. (15)
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Theorem 3.1. Assume that Assumption 2.1 holds. Let d ∈ R, φ ∈ Hd+2
L

and f ∈ L∞
(
[0,T];Hd+2

L

)
. Then there

exists a unique solution of Problem (14)-(15):

u ∈ C1
q

(
[0,T];Hd+2

L

)
∩ L∞

(
[0,T];Hd+2

L

)
. (16)

Moreover, this solution can be written in the form

u(t) =
∑
k∈I

[
⟨φ,ϕk⟩Hγυ(λkt)

+ γυ(λkt)

t∫
0

γ−1
υ (qλks)⟨ f (s), ϕk⟩Hdqs

ϕk, (17)

which satisfies the estimate

∥u(t)∥
Hd+2
L

+ ∥Dqu(t)∥2
Hd
L

≲ ∥φ∥2
Hd+2
L

+ ∥ f (t)∥2
Hd+2
L

. (18)

Proof. Existence. We start to solve the equation (14). We can use the system of eigenfunctions, and look for
a solution in the series form

u(t) =
∑
k∈I

uk(t)ϕk, (19)

for each fixed t > 0. Such an expansion always exists due to completeness of the set of eigenfunctions
{ϕk}

∞

k=1 in H. The coefficients will then be given by the Fourier coefficients formula: uk(t) = ⟨u(t), ϕk⟩H.
We can similarly expand the source function,

f (t) =
∑
k∈I

fk(t)ϕk, fk(t) = ⟨ f (t), ϕk⟩H. (20)

From (19) we have Lϕk = λkϕk, k ∈ I. Hence,

Lu(t) =
∑
k∈I

uk(t)λkϕk (21)

and

Dqu(t) =
∑
k∈I

Dquk(t)ϕk. (22)

Substituting (21) and (22) into the equation (14), we find∑
k∈I

[
Dquk(t) + λkυ(t)uk(t)

]
ϕk =

∑
k∈I

fk(t)ϕk. (23)

But then, due to the completeness,

Dquk(t) + λkυ(t)uk(t) = fk(t), k ∈ I, (24)

which are ODEs for the coefficients uk(t) of the series (19). Using the integrating factor γ−1
υ (λkt) and (2) and

(11), we can rewrite this equation as

γ−1
υ (qλkt) fk(t) = γ−1

υ (qλkt)Dquk(t) + γ−1
υ (qλkt)λkυ(t)uk(t)

= γ−1
υ (qλkt)Dquk(t) +Dq

[
γ−1
υ (λkt)

]
uk(t)

= Dq

[
γ−1
υ (λkt)uk(t)

]
. (25)
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Form (4) and (23) we get

t∫
0

Dq

[
γ−1
υ (λks)uk(s)

]
dqs =

t∫
0

γ−1
υ (qλks) fk(s)dqs

=⇒ γ−1
υ (λkt)uk(t) = uk(0) +

t∫
0

γ−1
υ (qλks) fk(s)dqs

=⇒ uk(t) = γυ(λkt)uk(0) + γυ(λkt)

t∫
0

γ−1
υ (qλks) fk(s)dqs.

But the initial condition (15) and (19) imply

u(0) =
∑
k∈I

uk(0)ϕk = φ ⇒ uk(0) = ⟨φ,ϕk⟩H.

Thus,

uk(t) = ⟨φ,ϕk⟩Hγυ(λkt) + γυ(λkt)

t∫
0

γ−1
υ (qλks)⟨ f (s), ϕk⟩Hdqs. (26)

So the solution can be written in the series form as

u(t) =
∑
k∈I

⟨φ,ϕk⟩Hγυ(λkt) + γυ(λkt)

t∫
0

γ−1
υ (qλks)⟨ f (s), ϕk⟩Hdqs

ϕk,

giving (17).
Convergence . By using Assumption 2.1 and (8) and (10) we obtain that

γυ(λkt)
γυ(λks)

(2.7)
≤

Eβλks
q

Eαλkt
q

≤
Eαλks

q

Eαλkt
q

≤ 1, 0 < s ≤ t,

since Eαλkt
q is an increasing function for t > 0. Indeed, using (8) we see that

d
dt

[
Eαλkt

q

]
=

∞∑
m=1

qm(m−1)/2 [αλk]k m
[m]q

tm−1
≥ 0.

for t > 0.
Hence, form (10) and (26) it follows that

∣∣∣⟨u(t), ϕk⟩H

∣∣∣ (3.13)
≤ γυ(λkt)

∣∣∣⟨φ,ϕk⟩H

∣∣∣ + t∫
0

γυ(λkt)
γυ(λks)

∣∣∣⟨ f (s), ϕk⟩H

∣∣∣ dqs

≤
1

Eαt
q

∣∣∣⟨φ,ϕk⟩H

∣∣∣ + t∫
0

∣∣∣⟨ f (s), ϕk⟩H

∣∣∣ dqs

≤ max
 1

Eαt
q
, 1


∣∣∣⟨φ,ϕk⟩H

∣∣∣ + t∫
0

∣∣∣⟨ f (s), ϕk⟩H

∣∣∣ dqs

 , (27)
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and using (24), we get that

λd/2
k

∣∣∣Dquk(t)
∣∣∣ (3.11)
≤ λd/2+1

k υ(t)
∣∣∣⟨φ,ϕk⟩H

∣∣∣ + λd/2
k

∣∣∣⟨ f (t), ϕk⟩H

∣∣∣
≤ β

∣∣∣⟨λd/2+1
k φ,ϕk⟩H

∣∣∣ + λ−1
k

∣∣∣⟨λd/2+1
k f (t), ϕk⟩H

∣∣∣
≤ β

∣∣∣⟨Ld/2+1φ,ϕk⟩H

∣∣∣ + λ−1
0

∣∣∣⟨Ld/2+1 f (s), ϕk⟩H

∣∣∣
≤ max{β, λ−1

0 }

[∣∣∣⟨Ld/2+1φ,ϕk⟩H

∣∣∣ + sup
0≤s≤T

∣∣∣⟨Ld/2+1 f (s), ϕk⟩H

∣∣∣] (28)

and

λd/2
k

∣∣∣⟨Lu(t), ϕk⟩H

∣∣∣ = λd/2
k

∣∣∣⟨λkuk(t), ϕk⟩H

∣∣∣
(3.14)
≲

∣∣∣⟨λd/2+1
k φ,ϕk⟩H

∣∣∣ + t∫
0

∣∣∣⟨λd/2+1
k f (s), ϕk⟩H

∣∣∣ dqs

=
∣∣∣⟨Ld/2+1φ,ϕk⟩H

∣∣∣ + t∫
0

∣∣∣⟨Ld/2+1 f (s), ϕk⟩H

∣∣∣ dqs

≤

∣∣∣⟨Ld/2+1φ,ϕk⟩H

∣∣∣ + T sup
0≤s≤T

∣∣∣⟨Ld/2+1 f (s), ϕk⟩H

∣∣∣
≤ max{1,T}

[∣∣∣⟨Ld/2+1φ,ϕk⟩H

∣∣∣ + sup
0≤s≤T

∣∣∣⟨Ld/2+1 f (s), ϕk⟩H

∣∣∣] . (29)

Since φ ∈ Hd+2
L

, f ∈ L∞
(
[0,T];Hd+2

L

)
, and using the Plancherel identity, we have

∥Dqu(t)∥2
Hd
L

= ∥L
d
2 Dqu(t)∥2H

=
∑
k∈I

λd
k

∣∣∣Dquk(t)
∣∣∣2

(3.15)
≲

∑
k∈I

∣∣∣⟨Ld/2+1φ,ϕk⟩H

∣∣∣2 + sup
0≤s≤T

∑
k∈I

∣∣∣⟨Ld/2+1 f (s), ϕk⟩H

∣∣∣2
= ∥φ∥2

Hd+2
L

+ ∥ f ∥2
L∞([0,T];Hd+2

L
) < ∞,

and

∥Lu(t)∥2
Hd
L

= ∥L
d/2
Lu(t)∥2H

=
∑
k∈I

λd
k

∣∣∣⟨Lu(t), ϕk⟩H

∣∣∣2
(3.16)
≲

∑
k∈I

∣∣∣⟨Ld/2+1φ,ϕk⟩H

∣∣∣2 + sup
0≤s≤T

∑
k∈I

∣∣∣⟨Ld/2+1 f (s), ϕk⟩H

∣∣∣2
≤ ∥φ∥2

Hd+2
L

+ ∥ f ∥2
L∞([0,T];Hd+2

L
) < ∞.

Hence, the above estimates imply that

∥Lu(t)∥2
Hd
L

+ ∥Dqu(t)∥2
Hd
L

≲ ∥φ∥2
Hd+2
L

+ ∥ f ∥2
L∞([0,T];Hd+2

L
) < ∞,

which means that u ∈ C1
q

(
[0,T];Hd+2

L

)
∩ L∞

(
[0,T];Hd+2

L

)
and this yields the estimate (33).
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Uniqueness. It only remains to prove the uniqueness of the solution. We assume the opposite, namely
that there exist the functions u(t) and v(t), which are two different solutions of Problem (14)-(15). Thus, we
have that {

Dq,tu(t) + φ(t)Lu(t) = f (t), t > 0,
u(0) = φ ∈ H,

and {
Dq,tv(t) + φ(t)Lv(t) = f (t), t > 0,
v(0) = φ ∈ H.

We define W(t) = u(t) − v(t). Then the function W(t) is a solution of the following problem{
Dqw(t) + φ(t)Lw(t) = 0, t > 0,
w(0, x) = 0.

From (19) it follows that W(t) ≡ 0, that is, u(t) ≡ v(t) and this contradiction to our assumption proves the
uniqueness of the solution. The proof is complete.

4. Inverse source problem

In this subsection we consider the following problem: find a pair of functions u(t) and f in the space H
satisfying the q-heat equation:

Dq,tu(t) + υ(t)Lu(t) = 1(t) f , f ∈ H, t > 0, (30)

with the initial condition

u(0) = φ ∈ H, (31)

and the final condition;

u(T) = η ∈ H. (32)

In the sequel we will make use of the following:

Assumption 4.1. We assume that 1 : [0,T]→ R is a function satisfying:

• 1(s) > 0 for 0 < s < T.

• 0 < α0 ≤

T∫
0
1(s)dqs ≤ β0 < ∞,

where α0, β0 > 0.

Theorem 4.2. Assume that Assumption 2.1 and Assumption 4.1 hold. Let d ∈ R, φ, η ∈ Hd+2
L

. Then there exists a
unique solution of Problem (30)-(32):

u ∈ C1
q

(
[0,T];Hd

L

)
∩ L∞

(
[0,T];Hd+2

L

)
, f ∈ Hd+2

L
.

Moreover, this f and the solution u can be represented by

f =
∑
k∈I


ηkγ−1

υ (λkT) − ⟨φ,ϕk⟩H

T∫
0
γ−1
υ (qλks)1(s)dqs

ϕk,
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and

u(t) =
∑
k∈I

γυ(λkt)

⟨φ,ϕk⟩H + ⟨ f , ϕk⟩H

t∫
0

γ−1
υ (qλks)1(s)dqs


ϕk,

respectively. Here the solution u satisfies the estimate

∥u(t)∥
Hd+2
L

+ ∥Dqu(t)∥2
Hd
L

≲ ∥φ∥2
Hd+2
L

+ ∥η∥2
Hd+2
L

. (33)

Proof. Existence. Since the system {ϕk}k∈I is a basis in the space H, we expand the pair of functions (u(t), f )
as follows:

u(t) =
∑
k∈I

uk(t)ϕk, f =
∑
k∈I

fkϕk, (34)

where uk(t) = ⟨u(t), ϕk⟩H and fk(t) = ⟨ f , ϕk⟩H. By repeating the arguments of Theorem 3.1, we start from the
formula (24). For the last term of the equation (24), we have

Dquk(t) + λkυ(t)uk(t) = 1(t) fk, k ∈ I, (35)

and a general solution of the equation (36) is given in the following form:

uk(t) = γυ(λkt)

uk(0) + fk

t∫
0

γ−1
υ (qλks)1(s)dqs

 , (36)

where the constants uk(0), fk are unknown. By using the conditions (31) and (32) and Assumption 4.1 we
find uk(0) = ⟨φ,ϕk⟩H and

⟨η, ϕk⟩H = uk(T) = γυ(λkT)

⟨φ,ϕk⟩H + fk

T∫
0

γ−1
υ (qλks)1(s)dqs

 .
⇒ fk =

γ−1
υ (λkT)⟨η, ϕk⟩H − ⟨φ,ϕk⟩H

T∫
0
γ−1
υ (qλks)1(s)dqs

. (37)

Substituting fk, uk(t) into the expansions (35), we find that

f =
∑
k∈I


⟨η, ϕk⟩Hγ−1

υ (λkT) − ⟨φ,ϕk⟩H

T∫
0
γ−1
υ (qλks)1(s)dqs

ϕk,

and

u(t) =
∑
k∈I

γυ(λkt)

⟨φ,ϕk⟩H + fk

t∫
0

γ−1
υ (qλks)1(s)dqs


ϕk.

Convergence. From Assumption 4.1 and (9) and (10) we get that

γ−1
υ (λkT)

T∫
0
γ−1
υ (qλks)1(s)dqs

≤
EβT

q

T∫
0
1(s)dqs

≤
EβT

q

α0
. (38)
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Using (10), (37) and (38) we find that

∣∣∣ fk∣∣∣ ≤
γ−1
υ (λkT)

T∫
0
γ−1
υ (qλks)1(s)dqs

{∣∣∣⟨η, ϕk⟩H

∣∣∣ + γυ(λkT)
∣∣∣⟨φ,ϕk⟩H

∣∣∣}

(4.9)
≤

EβT
q

α0

∣∣∣⟨η, ϕk⟩H

∣∣∣ + 1
EαT

q

∣∣∣⟨φ,ϕk⟩H

∣∣∣
≤

EβT
q

α0

{∣∣∣⟨η, ϕk⟩H

∣∣∣ + ∣∣∣⟨φ,ϕk⟩H

∣∣∣} . (39)

Hence,

∥ f ∥2
Hd+2
L

=
∑
k∈I

λd+2
k

∣∣∣ fk∣∣∣2
(4.10)
≲

∣∣∣⟨λd/2+1
k η, ϕk⟩H

∣∣∣2 + ∣∣∣⟨λd/2+1
k φ,ϕk⟩H

∣∣∣2
= ∥η∥2

Hd+2
L

+ ∥φ∥2
Hd+2
L

< ∞,

which means that f ∈ Hd+2
L

.
Form (10), (36) and (39) and Assumption 4.1 it follows that

|uk(t)| ≤

∣∣∣⟨φ,ϕk⟩H

∣∣∣ + ∣∣∣ fk∣∣∣ t∫
0
γ−1
υ (qλks)1(s)dqs

Eαt
q

≤

∣∣∣⟨φ,ϕk⟩H

∣∣∣ + Eβt
q β0

∣∣∣ fk∣∣∣
Eαt

q

≤
1

Eαt
q

∣∣∣⟨φ,ϕk⟩H

∣∣∣ + β0
EβT

q

Eαt
q

∣∣∣ fk∣∣∣
(4.10)
≲

∣∣∣⟨φ,ϕk⟩H

∣∣∣ + |⟨η, ϕk⟩H |. (40)

By Assumption 2.1 and (35) and (40) we get that

λd/2
k

∣∣∣Dquk(t)
∣∣∣ ≤ λd/2+1

k |υ(t)||uk(t)| + λd/2
k |1(t)|| fk|

≤ βλd/2+1
k |uk(t)| +

β0

λ0
λd/2+1

k | fk|

(4.10), (4.11)
≲

∣∣∣⟨λd/2+1
k η, ϕk⟩H

∣∣∣ + ∣∣∣⟨λd/2+1
k φ,ϕk⟩H

∣∣∣
=

∣∣∣⟨Ld/2+1η, ϕk⟩H

∣∣∣ + ∣∣∣⟨Ld/2+1φ,ϕk⟩H

∣∣∣ . (41)

Since η, φ ∈ Hd+2
L

and the Plancherel identity we have that

∥Dqu(t)∥2
Hd
L

=
∑
k∈I

λd
k

∣∣∣Dquk(t)
∣∣∣2

(4.12)
≲

∑
k∈I

[∣∣∣⟨Ld/2+1η, ϕk⟩H

∣∣∣2 + ∣∣∣⟨Ld/2+1φ,ϕk⟩H

∣∣∣2]
= ∥η∥2

Hd+2
L

+ ∥φ∥2
Hd+2
L

< ∞,
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and

∥Lu(t)∥2
Hd
L

=
∑
k∈I

λd
k

∣∣∣⟨Lu(t), ϕk⟩H

∣∣∣2
=

∑
k∈I

[
λd/2+1

k |uk(t)|
]2

≲
∑
k∈I

[∣∣∣⟨Ld/2+1η, ϕk⟩H

∣∣∣2 + ∣∣∣⟨Ld/2+1φ,ϕk⟩H

∣∣∣2]
= ∥η∥2

Hd+2
L

+ ∥φ∥2
Hd+2
L

< ∞.

Hence, the above estimates imply that u ∈ C1
q

(
[0,T];Hd

L

)
∩ L∞

(
[0,T];Hd+2

L

)
and this yields the estimate

(33).
Uniqueness. It only remains to prove the uniqueness of the solution. We assume the opposite, namely

that there exist the functions u(t) and v(t), which are two different solutions of Problem (30)-(32). Thus, we
have that {

Dq,tu(t) + φ(t)Lu(t) = f (t), t > 0,
u(0) = φ ∈ H, u(T) = η ∈ H

and {
Dq,tv(t) + φ(t)Lv(t) = f (t), t > 0,
v(0) = φ ∈ H, v(T) = η ∈ H.

We define W(t) = u(t) − v(t). Then the function W(t) is a solution of the following problem{
Dqw(t) + φ(t)Lw(t) = 0, t > 0,
w(0, x) = 0, w(T) = η ∈ H.

From (34) it follows that W(t) ≡ 0, that is, u(t) ≡ v(t) and this contradiction to our assumption proves the
uniqueness of the solution. The proof is complete.

5. Examples

In this section we give several examples of the settings where our direct and inverse problems are
applicable.
■ The q-Sturm–Liouville problem: Let H = L2

q [0, a] be the space of all real-valued functions defined on
[0, a] such that

∥ f ∥L2
q[0,a] :=


a∫

0

| f (x)|2dqx


1
2

< ∞.

The space L2
q [0, a] is a separable Hilbert space with the inner product:

⟨ f , 1⟩ :=

a∫
0

f (x)1(x)dqx, f , 1 ∈ L2
q [0, a] .

Moreover, we denote C2
q,0[0, a] the space of all functions y(·) such that y, Dqy are continuous at zero.

M.H. Annaby and Z.S. Mansour considered a basic q-Sturm–Liouville eigenvalue problem in the Hilbert
space L2

q [0, a] [22, Chapter 3]:

L(y) =


−

1
q Dq−1 Dqy(x) + v(x)y(x) = λy(x),

U1(y) = a11y(0) + a12y(0),
U2(y) = a21y(a) + a22y(a),

(42)
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for 0 ≤ x ≤ a < ∞ and λ ∈ C, where v(·) is a continuous at zero real valued function and ai j, i, j ∈ {1, 2}
are arbitrary real numbers such that the rank of the matrix (ai j)1≤i, j≤2 is 2. The basic Sturm- Liouville
eigenvalue problem (42) is self adjoint on C2

q,0[0, a] ∩ L2
q [0, 1](see [23, Theorem 3.4.]). The eigenvalues and

the eigenfunctions of the problem (42) have the following properties:

• The eigenvalues are real.

• Eigenfunctions that correspond to different eigenvalues are orthogonal.

• All eigenvalues are simple.

■ The q-Bessel operator. Let α > −1 and 1 ≤ p < ∞. Then the space Lα,p,q denotes the set of functions on
R+q = {qz : z ∈ Z} such that

∥ f ∥Lα,p,q =


∞∫

0

∣∣∣ f (x)
∣∣∣p x2α+1dqx


1
p

< ∞.

The set H = Lα,p,q is an Hilbert space with the inner product

⟨ f , 1⟩Lα,p,q =

∞∫
0

f (x)1(x)x2α+1dqx.

Moreover, we introduce the space Ck
q,0 for k ∈N:

Ck
q,0

(
R+q

)
= { f : R+q → R; sup

x∈R+q

∣∣∣Dk
q f (x)

∣∣∣ < ∞ and Dk
q f (0) = Dk

q f (∞) = 0}.

The q-Bessel operator is defined as follows (see [24] and [25]):

∆q,α f (x) =
1

x2α+1 Dq

[
x2α+1Dq f

]
(q−1x)

= q2α+1∆q f (x) +
1 − q2α+1

(1 − q)q−1x
Dq f (q−1x), (43)

where

∆q f (x) = D2
q f (q−1x).
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For f , 1 ∈ C2
q,0

(
R+q

)
, using formulas (43) and (2) of q-integration by parts, we obtain

⟨∆q,α f , 1⟩Lq,2,α =

∞∫
0

Dq

[
x2α+1Dq f

]
(q−1x)1(x)dqx

=
[
x2α+1Dq f (x)1(x)

]∞
0
−

∞∫
0

[
x2α+1Dq f

]
(x)Dq1(x)dqx

= −

∞∫
0

Dq f (x)
[
x2α+1Dq1

]
(x)dqx

= −

[
Dq f (x)

[
x2α+1Dq1

]
(x)

]∞
0
+

∞∫
0

f (qx)Dq

[
x2α+1Dq1

]
(x)dqx

=

∞∫
0

f (x)Dq

[
x2α+1Dq1

]
(q−1x)dqx

= ⟨ f ,∆q,α1⟩Lq,2,α .

It follows from [26, Proposition 1], that the function

jα(λx; q2) = Γq2 (α + 1)
∞∑

k=0

(−1)kqk(k−1)

Γq2 (α + k + 1)Γq2 (k + 1)

(
x

1 + q

)k

,

with the eigenvalue λ ∈ C for the eigenfunction x 7→ jα(λx; q2), where jα(·, q2) is called the normalized
q-Bessel function defined by [24] and [25].
■ The q-deformed Hamiltonian. The field of q-deformed oscillator algebras and quantum orthogonal

polynomials continues to be at the core of intense activities in physics and mathematics. In 2015, W.S. Chung
and M.N. Hounkonnou and A. Sama ([27]) constructed the q-deformed Hamiltonian. For the clarity of our
exposition, let us briefly discuss in this section main relevant results on q-Hermite functions. LetHF be the
Hilbert space spanned by the basis vectors {ψq

n(x),n = 1, 2, · · · } such that

ψq
n(x) =

Hq
n(x)√

[2]2
q[n]q!

=
1√

[2]n
q [n]q!

⟨
n
2 ⟩∑

k=0

×
(−1)kqk(k−1)[n]q!

[n − 2k]q![k]q2 !

(
[2]qx

)n−2k
, n = 0, 1, 2, · · · ,

where the q-analogue of the binomial coefficients [n]q! are defined by

[n]q! :=
{

1, if n = 0,
[1]q × [2]q × · · · × [n]q, if n ∈N,

Moreover, we can write

Dqψ
q
n(x) =

√
[2]q[n]qψ

q
n−1(x).

The vectors |n⟩ are eigen-vectors of the q-deformed Hamiltonian (see [27, Proposition 1])

Hq =
1

[2]q

(
AA† + A†A

)
with respect to the eigenvalues

Eq
n =

1
[2]q

(
[n]q + [n + 1]q

)
,
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where the annihilation (lowering) A and creation (raising) A† operators are

A =
1√
[2]q

Dq, A† =
√

[2]qx −
qN−1

[2]q
Dq.

In the limit when q→ 1, one recovers the uncertainty relation for the non deformed harmonic oscillator
(or the classical case).
■ Fractional Sturm-Liouville operator.
Let 1/2 < α ≤ 1 and [a, b] ⊂ R. Then we consider a fractional problem with boundary conditions in the

form (see [? ]):

Laα(y) =


−Dα

b−

(
ρ(x)Dα

a+y(x)
)

(x) + µ(x)y(x) = λτ(x)y(x),
a11y(a) + a12I1−α

b−

(
ρDα

a+y
)
|x=a = 0,

a21y(b) + a22I1−α
b−

(
ρDα

a+y
)
|x=b = 0,

(44)

where Dα
b− is the right-sided and Dα

a+ is left-sided Riemann-Liouville fractional derivatives, I1−α
b− is the right-

sided Riemann-Liouville fractional integral, (44) is a self-adjoint operator in H = L2[a, b], the constants in
the boundary conditions verify a2

11 + a2
12 , 0, a2

21 + a2
22 , 0 and ρ, µ and τ are continuous functions, such that

ρ(x) > 0 and τ(x) > 0 for all a ≤ x ≤ b. The function τ is called the “weight” or “density” function and the
values of λ are called eigenvalues of the frational boundary value problem.
■ The restricted fractional Laplacian.
In [28], L.A. Caffarelli and Y. Sire introduced a fractional Laplacian operator by using the integral

representation in terms of hypersingular kernels in the following form:

(−∆Rn )α = Cd,αP.V.
∫
Rn

f (x) − f (t)

|x − t|n+2α dt, 0 < α < 1. (45)

The operator (45) is a self-adjoint in L2 (Ω) with eigenvalues λα,k > 0, k ∈ N. The corresponding set of
eigenfunctions ψα,k, k ∈N, in L2 (Ω) (bounded domain Ω ⊂ Rn).
■ Differential operator with involution.
As a next example, we consider the differential operator with involution in L2(0, π) generated by the

expression

ℓ(u) = u′′(x) − ϵu′′(π − x) (46)

for 0 < x < π, with homogeneous Dirichlet conditions

u(0) = 0, u(π) = 0, (47)

where |ϵ| < 1. The nonlocal functional-differential operator (48)-(47) is self-adjoint (see, [29]). For |ϵ| < 1,
the operator (48)-(47) has the following eigenvalues:

λ2k = 4(1 + ϵ)k2, k ∈N and λ2k+1 = (1 − ϵ)(2k + 1)2, k ∈N ∪ {0},

and corresponding eigenfunctions

u2k =

√
2
π

sin 2kx, k ∈N

u2k+1 =

√
2
π

sin(2k + 1)x, k ∈N ∪ {0}.

■ Landau Hamiltonian in 2D.
The next example is one of the simplest and most interesting models of the quantum mechanics, that is,

the Landau Hamiltonian. The Landau Hamiltonian in 2D is given by

L =
1
2

(i ∂∂x
− By

)2

+

(
i
∂
∂y
+ By

)2 , (48)
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acting on the Hilbert space L2 (R), where B > 0 is some constant. The spectrum of L consists of infinite
number of eigenvalues with infinite multiplicity of the form (see, [30] and [31]):

λk = (2n + 1)B,n = 0, 1, 2, · · ·

and the corresponding system of eigenfunctions (see, [? ] and [? ]) is e)1k,n(x, y) =
√

n!
(n−k)! B

k+1
2 exp

(
−

B(x+y2)
2

)
(x + iy)kL(k)

n

(
B(x2 + y2)

)
for 0 ≤ k

e)1k,n(x, y) =
√

n!
(n−k)! B

k+1
2 exp

(
−

B(x+y2)
2

)
(x + iy)kL(k)

n

(
B(x2 + y2)

)
for 0 ≤ j,

where L(α)
n are the Laguerre polynomials given by

L(α)
n =

∞∑
k=0

(−1)kCm−k
n+α

tk

k!
, α > −1.

Note that in [32], [33] and [34] the wave equation for the Landau Hamiltonian with a singular magnetic
field was studied.
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