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Abstract. In this paper we investigate a class of first order fuzzy dynamic equations on arbitrary time
scales for existence of solutions. We give conditions under which the considered equations have at least
one and at least two solutions. To prove our main results we propose a new approach based upon recent
theoretical results.

1. Introduction

The theory of dynamic equations has many interesting applications in control theory, mathematical
economics, mathematical biology, engineering and technology. In some cases, there exists uncertainty,
ambiguity or vague factors in such problems, and fuzzy theory and interval analysis are powerful tools for
modeling these equations on time scales.

In this paper, we investigate the following class of first order fuzzy dynamic equations

δH y = f (t, y), t ∈ (t0,T], (1)

y(t0) = y0, (2)

where

(A1) f ∈ C([t0,T] × F(R)), f : [t0,T] × F(R) → F(R), y0 ∈ F(R), y0 ≥ 0̃, D(y0, 0̃) ≤ B for some nonnegative
constant B, t0,T ∈ T, T is an arbitrary time scale with forward jump operator and delta differentiation
operator σ and ∆, respectively.

(A2) D( f (t, y(t)), 0̃) ≤ B for any t ∈ [t0,T] and for any y ∈ C f rd([t0,T]).
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Here F(R) denotes the set of all real fuzzy numbers, 0̃ denotes the zero fuzzy number and δH denotes the
first type fuzzy delta derivative on T. With D(·, ·) it is denoted the Hausdorff distance between real fuzzy
numbers.

The ordinary dynamic equations (ODE) and partial dynamic equations (PDEs) have been studied
in depth for existence of solutions, uniqueness of solutions, nonuniqueness of solutions, oscillations of
solutions (see [2], [4], [12] and references therein) and such concepts as boundary value problems (BVPs),
initial value prob lems (IVPs), and differential operators in general are the current focus in the papers being
written and published in the area.

In this paper, we will investigate the problem (1), (2) for existence of at least one solution and existence
of at least two nonnegative solutions. To the best of our knowledge, there is a gap in the references for
investigations of existence and nonuniqueness of the solutions of nonlinear fuzzy dynamic equations on
time scales. Here, in this paper we try to fill out this gap.

This paper is organized as follows. In the next section, we give some basic definitions and facts of fuzzy
dynamic calculus on time scales. In Section 3, we give some auxiliary results connected with some fixed
point theorems used in this paper. In Section 4we prove existence of at least one solution for the problem
(1), (2). In Section 5, we prove existence of at least two nonnegative solutions. In Section 6, we give an
example to illustrate our main results.

2. Fuzzy Dynamic Calculus Essentials

In this section, we will give some basic definitions and fact of fuzzy dynamic calculus on time scales.
For detailed study of fuzzy dynamic calculus on time scales we refer the reader to the book [9].

Suppose that T is a time scale with forward jump operator and delta differentiation operator σ and ∆,
respectively. With F(R) we will denote the space of the real fuzzy numbers and with D(·, ·) we will denote
the Hausdorff distance between the real fuzzy numbers. For more details for fuzzy numbers and Hausdorff
distance between the real fuzzy numbers we refer the reader to the appendix of the book [9].

Definition 2.1. ([9]) Assume that f : T→ F(R) is a fuzzy function and t ∈ Tκ. Then f is said to be first type right
fuzzy delta differentiable at t, shortly right δH-differentiable at t, if there exists an element δ+H f (t) ∈ F(R) with the
property that, for any given ϵ > 0, there exists a neighbourhood UT of t, i.e., UT = (t − δ, t + δ)

⋂
T for some δ > 0,

such that for all t + h ∈ UT the H-difference f (t + h) ⊖H f (σ(t)) exists and

D
(

f (t + h) ⊖H f (σ(t)), δ+H f (t)(h − µ(t))
)
≤ ϵ|h − µ(t)|

with 0 ≤ h < δ. In this case, δ+H f (t) is said to be first type right fuzzy delta derivative of f at t, shortly right
δH-derivative of f at t.

Definition 2.2. ([9]) Assume that f : T → F(R) is a fuzzy function and t ∈ Tκ. Then f is said to be first type
left fuzzy delta differentiable at t, shortly left δH-differentiable at t, if there exists an element δ−H f (t) ∈ F(R) with the
property that, for any given ϵ > 0, there exists a neighbourhood UT of t, i.e., UT = (t − δ, t + δ)

⋂
T for some δ > 0,

such that for all t − h ∈ UT the H-difference f (σ(t)) ⊖H f (t − h) exists and

D
(

f (σ(t)) ⊖H f (t − h), δ−H f (t)(h + µ(t))
)
≤ ϵ(h + µ(t))

with 0 ≤ h < δ.

Definition 2.3. ([9]) Let f : T → F(R) be a fuzzy function and t ∈ Tκ. Then f is said to be first type fuzzy delta
differentiable at t, shortly δH-differentiable at t, if f is both first type left and right fuzzy delta differentiable at t ∈ Tκ

and δ−H f (t) = δ+H f (t), and we will denote it by δH f (t). We call δH f (t) the first type fuzzy delta derivative of f at t,
shortly δH-derivative of f at t. We say that f is first type fuzzy delta differentiable at t, shortly δH-differentiable at
t, if its δH-derivative exists at t. We say that f is first type fuzzy delta differentiable on Tκ, shortly δH-differentiable
on Tκ, if its δH-derivative exists at each t ∈ Tκ. The fuzzy function δH f : Tκ → F(R) is then called first type fuzzy
delta derivative, shortly δH-derivative of f on Tκ.
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The defined δH-derivative has the following properties.

Theorem 2.4. ([9]) If the δH-derivative of f at t ∈ Tκ exists, then it is unique. Hence, δH-derivative is well-defined.

Theorem 2.5. ([9]) Assume that f : T→ F(R) is a continuous function at t1 ∈ Tκ and t1 is right-scattered. Then f
is δH-differentiable at t1 and

δH f (t1) =
f (σ(t1)) ⊖H f (t1)

µ(t1)
.

Theorem 2.6. ([9]) Assume that f : T→ F(R) is δH-differentiable at t ∈ Tκ. Then f is continuous at t.

Theorem 2.7. ([9]) Let f : T→ F(R) be a fuzzy function and let t ∈ Tκ be right-dense. Then f is δH-differentiable
at t if and only if the limits

lim
h→0+

f (t + h) ⊖H f (t)
h

and lim
h→0+

f (t) ⊖H f (t − h)
h

(3)

exist and satisfy the relations

lim
h→0+

f (t + h) ⊖H f (t)
h

= lim
h→0+

f (t) ⊖H f (t − h)
h

= δH f (t).

Theorem 2.8. ([9]) Let f : T→ F(R) is δH-differentiable at t ∈ Tκ. Then

f (σ(t)) = f (t) + µ(t) · δH f (t)

or

f (t) = f (σ(t)) + (−1) ·
(
µ(t) · δH f (t)

)
.

Theorem 2.9. ([9]) Let f , 1 : T→ F(R) be δH-differentiable at t ∈ Tκ. Then f + 1 : T→ F(R) is δH-differentiable
at t ∈ Tκ and

δH( f + 1)(t) = δH f (t) + δH1(t).

Theorem 2.10. ([9]) Let f : T → F(R) be δH-differentiable at t ∈ Tκ. Then for any λ ∈ R the function
λ · f : T→ F(R) is δH-differentiable at t ∈ Tκ and

δH(λ · f )(t) = λ · δH f (t).

Theorem 2.11. ([9]) Let t ∈ Tκ, f : T→ F(R) and fα(t) = [ f (t)]α, α ∈ [0, 1]. If f is δH-differentiable at t, then fα
is δH-differentiable at t and

δH[ f (t)]α = δH fα(t), α ∈ [0, 1].

Theorem 2.12. ([9]) Let t ∈ Tκ, f : T→ F(R) is δH-differentiable at t. Let also,

[ f (t)]α =
[

f α(t), f
α
(t)
]
, α ∈ [0, 1].

Then f α and f
α

are ∆-differentiable at t and

[δH f (t)]α =
[

f α∆(t), f
α∆

(t)
]
, α ∈ [0, 1].
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Theorem 2.13. ([9]) Let t ∈ Tκ and f , 1 be δH-differentiable at t, and

Iα,1f ,1 (t) ≤ 0, Iα,1
f σ,1∆

(t) ≤ 0, Iα,1
f∆,1

(t) ≤ 0,

f ◦ 1 is δH-differentiable at t. Then

δH( f ◦ 1)(t) = f σ(t) ◦ δH1(t) + δH f (t) ◦ 1(t). (4)

Theorem 2.14. ([9]) Let t ∈ Tκ and f , 1 be δH-differentiable at t, and

Iα,1f ,1 (t) ≥ 0, Iα,1f σ,δH1
(t) ≥ 0, Iα,1

δH f ,1(t) ≥ 0,

f ◦ 1 is δH-differentiable at t. Then

δH( f ◦ 1)(t) = f σ(t) ◦ δH1(t) + δH f (t) ◦ 1(t).

Theorem 2.15. ([9]) Let t ∈ Tκ and f , 1 be δH-differentiable at t, and

Iα,2f ,1 (t) ≥ 0, Iα,2f σ,δH1
(t) ≥ 0, Iα,2

δH f ,1(t) ≥ 0,

f ⊚ 1 is δH-differentiable at t. Then

δH( f ⊚ 1)(t) = f σ(t) ⊚ δH1(t) + δH f (t) ⊚ 1(t).

Now, we introduce the conception for the first type fuzzy delta integration on time scales. Let I ⊂ T.

Definition 2.16. ([9]) A function f : T → R is called a sector of the fuzzy function F : I → F(R) if f (t) ∈ F(t) for
all t ∈ I. The set of all rd-continuous sectors of F on I is denoted by SHF(I).

Theorem 2.17. ([9]) Let t0,T ∈ T, t0 < T, F,G : [t0,T] → F(R) be δH-integrable. Then F + G : [t0,T] → F(R) is
δH-integrable and∫ T

t0

(F(s) + G(s))δHs =
∫ T

t0

F(s)δHs +
∫ T

t0

G(s)δHs. (5)

Theorem 2.18. ([9]) Let t0,T ∈ T, t0 < T, F : [t0,T] → F(R) be δH-integrable. Then λ · F : [t0,T] → F(R) is
δH-integrable and∫ T

t0

λ · F(s)δHs = λ ·
∫ T

t0

F(s)δHs

for any λ ∈ R.

Theorem 2.19. ([9]) Let t0,T ∈ T, t0 < T, and F : [t0,T]→ F(R) be δH-integrable. Then∫ T

t0

F(s)δHs =
∫ t

t0

F(s)δHs +
∫ T

t
F(s)δHs

for any t ∈ [t0,T].

Theorem 2.20. ([9]) Let t0,T ∈ T, t0 < T, F : [t0,T]→ F(R) is rd-continuous. If X0 ∈ F(R) and

f (t) = X0 +

∫ t

t0

F(s)δHs, t ∈ [t0,T],

then f is δH-differentiable and

δH f (t) = F(t), t ∈ [t0,T].
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Theorem 2.21. ([9]) If f : [a, b]→ F(R) is δH-differentiable on [a, b], then∫ b

a
δH f (t) = f (b) ⊖H f (a).

Theorem 2.22. ([9]) Let f : [a, b]→ F(R) be δH-integrable. Then∫ b

a
f (t)δHt = (−1) ·

∫ a

b
f (t)δHt.

Theorem 2.23 (Integration by Parts). ([9]) Let f , 1 : [a, b] → F(R) be δH-differentiable and f ◦ 1 is also δH-
differentiable on [a, b]. If

Iα,1f ,1 (t) ≤ 0, Iα,1f σ,δH1
(t) ≤ 0, Iα,1

δH f ,1(t) ≤ 0, t ∈ [a, b]κ, (6)

then ∫ b

a f (σ(t)) ◦ δH1(t)δHt = ( f (b) ◦ 1(b)) ⊖H ( f (a) ◦ 1(a)) ⊖H
∫ b

a δH f (t) ◦ 1(t)δHt. (7)

3. Preliminary Results

Below, assume that X is a real Banach space. Now, we will recall the definitions of compact and
completely continuous mappings in Banach spaces.

Definition 3.1. Let K : M ⊂ X→ X be a map. We say that K is compact if K(M) is contained in a compact subset of
X. K is called a completely continuous map if it is continuous and it maps any bounded set into a relatively compact
set.

The concept for k-set contraction is related to that of the Kuratowski measure of noncompactness which
we recall for completeness.

Definition 3.2. LetΩX be the class of all bounded sets of X. The Kuratowski measure of noncompactness α : ΩX →

[0,∞) is defined by

α(Y) = inf

δ > 0 : Y =
m⋃

j=1

Y j and diam(Y j) ≤ δ, j ∈ {1, . . . ,m}

 ,
where diam(Y j) = sup{∥x − y∥X : x, y ∈ Y j} is the diameter of Y j, j ∈ {1, . . . ,m}.

For the main properties of measure of noncompactness we refer the reader to [5].

Definition 3.3. A mapping K : X→ X is said to be k-set contraction if there exists a constant k ≥ 0 such that

α(K(Y)) ≤ kα(Y)

for any bounded set Y ⊂ X.

Obviously, if K : X→ X is a completely continuous mapping, then K is 0-set contraction(see [7]).

Proposition 3.4. (Leray-Schauder nonlinear alternative [1]) Let C be a convex, closed subset of a Banach space E,
0 ∈ U ⊂ C where U is an open set. Let f : U → C be a continuous, compact map. Then

(a) either f has a fixed point in U,

(b) or there exist x ∈ ∂U, and λ ∈ (0, 1) such that x = λ f (x).
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To prove our existence result we will use the following fixed point theorem which is a consequence of
Proposition 3.4 (see [3], [8], [10] and references therein).

Theorem 3.5. Let E be a Banach space, Y a closed, convex subset of E, U be any open subset of Y with 0 ∈ U.
Consider two operators T and S, where

Tx = ε x, x ∈ U,

for ε > 0 and S : U→ E be such that

(i) I − S : U→ Y continuous, compact and

(ii) {x ∈ U : x = λ(I − S)x, x ∈ ∂U} = ∅, f orany λ ∈
(
0, 1
ε

)
.

Then there exists x∗ ∈ U such that

Tx∗ + Sx∗ = x∗.

Proof. We have that the operator 1
ε (I − S) : U → Y is continuous and compact. Suppose that there exist

x0 ∈ ∂U and µ0 ∈ (0, 1) such that

x0 = µ0
1
ε

(I − S)x0,

that is
x0 = λ0 (I − S)x0

where λ0 = µ0
1
ε ∈

(
0, 1
ε

)
. This contradicts the condition (ii). From Leray-Schauder nonlinear alternative, it

follows that there exists x∗ ∈ U so that

x∗ =
1
ε

(I − S)x∗

or

ε x∗ + Sx∗ = x∗,

or

Tx∗ + Sx∗ = x∗.

Definition 3.6. Let X and Y be real Banach spaces. A map K : X → Y is called expansive if there exists a constant
h > 1 for which one has the following inequality

∥Kx − Ky∥Y ≥ h∥x − y∥X

for any x, y ∈ X.

Now, we will recall the definition for a cone in a Banach space.

Definition 3.7. A closed, convex set P in X is said to be cone if

1. αx ∈ P for any α ≥ 0 and for any x ∈ P,
2. x,−x ∈ P implies x = 0.

Denote P∗ = P\{0}. The next result is a fixed point theorem which we will use to prove existence of at
least two nonnegative global classical solutions of the IVP (1). For its proof, we refer the reader to [6] and
[11].
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Theorem 3.8. Let P be a cone of a Banach space E; Ω a subset of P and U1,U2 and U3 three open bounded subsets
of P such that U1 ⊂ U2 ⊂ U3 and 0 ∈ U1. Assume that T : Ω → P is an expansive mapping, S : U3 → E is a
completely continuous map and S(U3) ⊂ (I − T)(Ω). Suppose that (U2 \U1) ∩Ω , ∅, (U3 \U2) ∩Ω , ∅, and there
exists u0 ∈ P

∗ such that the following conditions hold:

(i) Sx , (I − T)(x − λu0), for all λ > 0 and x ∈ ∂U1 ∩ (Ω+ λu0),

(ii) there exists ϵ ≥ 0 such that Sx , (I − T)(λx), for all λ ≥ 1 + ϵ, x ∈ ∂U2 and λx ∈ Ω,

(iii) Sx , (I − T)(x − λu0), for all λ > 0 and x ∈ ∂U3 ∩ (Ω+ λu0).

Then T + S has at least two non-zero fixed points x1, x2 ∈ P such that

x1 ∈ ∂U2 ∩Ω and x2 ∈ (U3 \U2) ∩Ω

or

x1 ∈ (U2 \U1) ∩Ω and x2 ∈ (U3 \U2) ∩Ω.

4. Existence of at Least One Solution

In the book [9], it is shown that the IVP (1), (2) is equivalent to the following integral equation

y(t) = y0 +

∫ t

t0

f (s, ξ(s))δHs, t ∈ [t0,T].

In X = C f rd([t0,T]), we introduce the norm

∥y∥ = sup
t∈[t0,T]

D(y(t), 0̃), y ∈ C f rd([t0,T]),

provided it exists. For u ∈ X, define the operator

S1u(t) = u(t) − y0 −

∫ t

t0

f (s, ξ(s))δHs, t ∈ [t0,T].

Note, that if u ∈ X satisfies the equation

S1u(t) = 0, t ∈ [t0,T],

then u is a solution to the IVP (1), (2). Let

B1 = B(T − t0 + 2).

Lemma 4.1. Suppose (A1) and (A2) hold. If u ∈ X, ∥u∥ ≤ B, then

D(S1u(t), 0̃) ≤ B1, t ∈ [t0,T].
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Proof. We have

D(S1u(t), 0̃) = D

u(t) − y0 −

t∫
t0

f (s, ξ(s))δHs, 0̃


≤ D(u(t), 0̃) +D(y0, 0̃) +D


t∫

t0

f (s, ξ(s))δHs, 0̃


≤ 2B +

t∫
t0

D( f (s, ξ(s)), 0̃)δHs

≤ 2B + B(T − t0)

= B(2 + T − t0)

= B1, t ∈ [t0,T].

This completes the proof.

In addition, we suppose

(A3) there exists a positive constant A1 such that A1(T − t0)B1 < B.

Set A = A1(T − t0). For u ∈ X, define the operator

S2u(t) = A1

t∫
t0

S1u(s)δHs, t ∈ [t0,T]. (8)

Lemma 4.2. Suppose (A1) -(A3) hold. If u ∈ X and ∥u∥ ≤ B, then

∥S2u∥ ≤ AB1. (9)

Proof. By Lemma 4.1, we have that
∥S1u∥ ≤ B1.

Hence,

D(S2u(t), 0̃) = D

A1

t∫
t0

S1u(s)δHs, 0̃


≤ A1

t∫
t0

∥S1u∥δHs

≤ A1(T − t0)B1

= AB1, t ∈ [t0,T].

Hence, we get (9). This completes the proof.



W. S. Ramadan et al. / Filomat 38:23 (2024), 8169–8186 8177

Lemma 4.3. Suppose (A1)-(A3) hold. If u ∈ X satisfies the equation

S2u(t) = C, t ∈ [t0,T], (10)

for some nonnegative constant C, then u is a solution to the IVP (1), (2).

Proof. We δH-differentiate the equation (10) and we get

A1S1u(t) = 0, t ∈ [t0,T],

whereupon we find
S1u(t) = 0, t ∈ [t0,T].

Therefore u is a solution to the IVP (1), (2). This completes the proof.

Our main result in this section is as follows.

Theorem 4.4. Suppose (A1)-(A3). Then the IVP (1), (2) has at least one solution in X.

Proof. Let Ỹ denote the set of all equi-continuous families in X with respect to the norm ∥ · ∥. Let also, Y = Ỹ
and

U =
{
u ∈ Y : ∥u∥ < B and if’ ∥u∥ ≥

B
2
, then u(t0) >

B
2

}
.

For u ∈ U and ϵ > 0, define the operators

Tu(t) = ϵu(t),

Su(t) = u(t) − ϵu(t) − ϵS2u(t), t ∈ [t0,T].

For u ∈ U, we have

∥(I − S)u∥ = ∥ϵu + ϵS2u∥

≤ ϵ∥u∥ + ϵ∥S2u∥

≤ ϵB1 + ϵAB1.

Thus, S : U→ X is continuous and (I − S)(U) resides in a compact subset of Y. Now, suppose that there is a
u ∈ ∂U so that

u = λ(I − S)u

or

u = λϵ (u + S2u), (11)

for some λ ∈
(
0, 1
ϵ

)
. Then, using that S2u(t0) = 0 and ∥u∥ ≥ B

2 , we get u(t0) > B
2 and

u(t0) = λϵ(u(t0) + S2u(t0)) = λϵu(t0),

whereupon λϵ = 1, which is a contradiction. Consequently

{u ∈ U : u = λ1(I − S)u, u ∈ ∂U} = ∅
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for any λ1 ∈
(
0, 1
ϵ

)
. Then, from Theorem 3.5, it follows that the operator T + S has a fixed point u∗ ∈ Y.

Therefore

u∗(t) = Tu∗(t) + Su∗(t)

= ϵu∗(t) + u∗(t) − ϵu∗(t) − ϵS2u∗(t), t ∈ [t0,T],

whereupon
S2u∗(t) = 0, t ∈ [t0,T].

From here, using Lemma 4.3, we conclude that u∗ is a solution to the problem (1), (2). This completes the
proof.

5. Existence of at Least Two Solutions

Assume that the constants B and A which appear in the conditions (A1) and (A3), respectively, satisfy
the following inequalities:

(A4) AB1 < L
5 ,where L is a positive constant that satisfies the following conditions:

r < L < R1 ≤ B,

with r and R1 are positive constants.

Our main result in this section is as follows.

Theorem 5.1. Suppose that (A1)-(A4) hold. Then the problem (1), (2) has at least two nonnegative solutions in X.

Proof. Let

P̃ = {u ∈ X : u ≥ 0 on [t0,T]}.

With Pwe will denote the set of all equi-continuous families in P̃. For v ∈ X, define the operators

T1v(t) = (1 +mϵ)v(t) − ϵ
L
10
,

S3v(t) = −ϵS2v(t) −mϵv(t) − ϵ
L
10
, (t) ∈ [t0,T],

where ϵ is a positive constant, m > 0 is large enough and the operator S2 is given by formula (8). Note that
any fixed point v ∈ X of the operator T1 + S3 is a solution to the IVP (1), (2). Define

Ω = P,

U1 = Pr = {v ∈ P : ∥v∥ < r},

U2 = PL = {v ∈ P : ∥v∥ < L},

U3 = PR1 = {v ∈ P : ∥v∥ < R1}.

1. For v1, v2 ∈ Ω, we have

∥T1v1 − T1v2∥ = (1 +mϵ)∥v1 − v2∥,

whereupon T1 : Ω→ X is an expansive operator with a constant h = 1 +mϵ > 1.
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2. For v ∈ PR1 , we get

∥S3v∥ ≤ ϵ∥S2v∥ +mϵ∥v∥ + ϵ
L
10

≤ ϵ
(
AB1 +mR1 +

L
10

)
.

Therefore S3(PR1 ) is uniformly bounded. Since S3 : PR1 → X is continuous, we have that S3(PR1 ) is
equi-continuous. Consequently S3 : PR1 → X is completely continuous.

3. Let v1 ∈ PR1 . Set

v2 = v1 +
1
m

S2v1 +
L

5m
.

Note that S2v1 +
L
5 ≥ 0 on [t0,T]. We have v2 ≥ 0 on [t0,T]. Therefore v2 ∈ Ω and

−ϵmv2 = −ϵmv1 − ϵS2v1 − ϵ
L
10
− ϵ

L
10

or

(I − T1)v2 = −ϵmv2 + ϵ
L
10

= S3v1.

Consequently S3(PR1 ) ⊂ (I − T1)(Ω).
4. Assume that for any v0 ∈ P

∗ there exist λ ≥ 0 and v ∈ ∂Pr ∩ (Ω+λv0) or v ∈ ∂PR1 ∩ (Ω+λv0) such that

S3v = (I − T1)(v − λv0).

Then

−ϵS2v −mϵv − ϵ
L
10
= −mϵ(v − λv0) + ϵ

L
10

or

−S2v = λmv0 +
L
5
.

Hence,

∥S2v∥ =
∥∥∥∥∥λmv0 +

L
5

∥∥∥∥∥ ≥ L
5
.

This is a contradiction.
5. Let ϵ1 = 2

5m . Suppose that there exist a v1 ∈ ∂PL and λ1 ≥ 1 + ϵ1 such that

S3v1 = (I − T1)(λ1v1). (12)

Moreover,

−ϵS2v1 −mϵv1 − ϵ
L
10
= −λ1mϵv1 + ϵ

L
10
,

or

S2v1 +
L
5
= (λ1 − 1)mv1.
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From here,

2
L
5
>

∥∥∥∥∥S2v1 +
L
5

∥∥∥∥∥ = (λ1 − 1)m∥v1∥ = (λ1 − 1)mL

and

2
5m
+ 1 > λ1,

which is a contradiction.

Therefore all conditions of Theorem 3.8 hold. Hence, the problem (1), (2) has at least two solutions u1 and
u2 so that

∥u1∥ = L < ∥u2∥ < R1

or

r < ∥u1∥ < L < ∥u2∥ < R1.

6. An Example

Below, we will illustrate our main results. Let T = 2N0 , t0 = 1, T = 16, B = 1000 and

R1 =
9

10
, L =

3
5
, r =

2
5
, m = 1050, A =

1
10B1

.

Then

B1 = 1000(2 + 16 − 1) = 17000.

Next,

r < L < R1 < B, AB1 <
L
5
.

i.e., (A3) and (A4) hold. Take

f (t, y) =

h1(t)
(
y − 1

2 −
1
2α
) 1

3

1 +
(
y − 1

2 −
1
2α
) 2

3

,
h2(t)

(
y − 3

2 +
1
2α
)

1 +
(
y − 3

2 +
1
2α
)2
 , t ∈ [1, 16], α ∈ [0, 1],

where

h1(t) =


7t(1 + t2), t ∈ [1, 4],

0, t ∈ [8, 16],

h2(t) =


3(1+t4)

t , t ∈ [1, 4],

0, t ∈ [8, 16].

We have that

D( f (t, y), 0̃) ≤ 1000, t ∈ [t0,T].
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Next, let y0 =
(

1
2 , 1,

3
2

)
. Then (A1) and (A2) hold. Therefore for the problem

δH y = f (t, y), t ∈ [t0,T],

y(t0) =
(1

2
, 1,

3
2

)
are fulfilled all conditions of Theorem 4.4 and Theorem 5.1. Two nonnegative solutions of the considered
problem are as follows

y1(t) =
[1
2
+

1
2
α,

3
2
−

1
2
α
]
, t ∈ [1, 16], α ∈ [0, 1],

and

y2(t) =


[
t3 + 1

2 +
1
2α, t

2 + 3
2 −

1
2α
]
, t ∈ [1, 4], α ∈ [0, 1],[

1
2 +

1
2α,

3
2 −

1
2α
]
, t ∈ [8, 16], α ∈ [0, 1].

Then, we have

1. for α = 1
5

y1(t) =
[3
5
,

7
5

]
, t ∈ [1, 16],

and

y2(t) =


[
t3 + 3

5 , t
2 + 7

5

]
, t ∈ [1, 4],[

3
5 ,

7
5

]
, t ∈ [8, 16].

2. for α = 1
4

y1(t) =
[5
8
,

11
8

]
, t ∈ [1, 16],

and

y2(t) =


[
t3 + 5

8 , t
2 + 11

8

]
, t ∈ [1, 4],[

5
8 ,

11
8

]
, t ∈ [8, 16].

3. for α = 3
4

y1(t) =
[7
8
,

9
8

]
, t ∈ [1, 16],

and

y2(t) =


[
t3 + 7

8 , t
2 + 9

8

]
, t ∈ [1, 4],[

7
8 ,

9
8

]
, t ∈ [8, 16].

In the first four figures are shown y1 for α = 1
5 , α = 1

4 , α = 3
4 and α = 1, respectively. In the second four

figures are shown y2 for α = 1
5 , α = 1

4 , α = 3
4 and α = 1, respectively.
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