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Abstract. Since longitudinal and survival data are often obtained together in applications, studies on
joint modelling that reveal the relationship between these two data have increased considerably in recent
years. These models are generally defined by a linear mixed-effects model for longitudinal data and Cox
regression model for survival data, which are connected by a shared random effect. However, in order to
use the Cox regression model in the analysis of survival data, the proportional hazards assumption must
be satisfied. In cases where the proportional hazards assumption is not satisfied and survival data have a
certain distribution, parametric joint models should be used to obtain more unbiased parameter estimates
in the analysis of the relationship between two data. In this paper, we propose a two-stage approach
in a Bayesian framework to obtain parameter estimates in parametric joint modelling. To examine the
performance of the proposed method, we perform a simulation study in scenarios with different censoring
and sample sizes and compare the method with classical approaches. In addition, to demonstrate the
applicability of the proposed method, we perform an application on the aortic valve replacement surgery
data, which is frequently used in the literature, and test the methods on real data. Simulation studies
from different scenarios show that in all cases our approach, which consists of a longitudinal measurement
and of survival data that does not require the assumption of proportional hazards, gives more unbiased
estimates compared to the other two classical approaches. As a result of the application of the real data set
to demonstrate the applicability of the simulation findings, we obtained results similar to the simulation
results according to the AIC and BIC.

1. Introduction

Longitudinal models are frequently used, especially in medical research, to determine the associations
of disease progression. Generally, in this type of models, the effects of strong biomarkers on the disease or
treatment are investigated within the survival time of patient. These types of data sets include both survival
information of individuals and information from longitudinal markers obtained repeatedly over time. In
such studies, the effects of repeated measurements on the survival time of individuals, the changes in
patients whose longitudinal measurements cannot be followed, and the relationships between biomarkers
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and the time until a certain event occurs are investigated. In order to obtain the complete inference of the
relationship between these two data and the appropriate estimates unbiasedly, joint models were developed
in which longitudinal models and survival time models were connected by common latent random effects.

Joint modelling consists of a longitudinal sub-model and survival sub-model, and different random
effect structures are used to combine these two sub-models. Although the linear mixed effect model (LMM)
for the longitudinal sub-model and the Cox regression model for the survival sub-model are generally used
in the literature, studies on different joint models have increased with the increasing interest in the last
twenty years. The first studies based on the two-stage approach for joint modelling of univariate survival
and longitudinal data were done by Self and Pawitan [32], DeGruttola and Tu [9], Tsiatis, DeGruttola and
Wulfsohn [36], Faucett and Thomas [12] and Wulfsohn and Tsiatis [40]. Elashoff et al. [23], Williamson
et al. [37] and Hu et al. [18] studied on joint modelling in case of competing risks and multiple failures.
Albert and Shih [1] proposed a new joint model for the combined modelling of multiple longitudinal
observations and discrete survival data. Su and Wang [34] examined the joint modelling of left truncation
survival data and longitudinal observations. In their study, they showed that the joint model methods
available in the literature have low performance in the presence of left-truncated data and proposed a new
likelihood approach to obtain joint model parameter estimates from the presence of such data. Efendi
et al. [10] proposed a joint model that combines continuous and binary longitudinal observations with
survival data. Tang and Tang [35] proposed a semi-parametric multivariate skew-normal joint model for
multivariate survival and longitudinal data. Hickey et al. [17] developed the “JoineRML” package in the R
program to obtain parameter estimates in the joint modelling of survival data with multivariate longitudinal
observations. Mwanyekange et al. [26] proposed the Bayesian joint model approach for longitudinal data
and multi-state survival data. In their proposed model, they used a LMM for the longitudinal sub-model
and a proportional density function for the multi-state process as the survival analysis sub-model, and
obtained the parameter estimates with the Bayesian approach. Yıldırım and Karasoy [42] developed the
“gsem” code in the Stata program for the joint modelling of LMM and parametric survival data. Alsefri et
al. [3] examined the Bayesian estimation methods used in joint modelling of longitudinal and survival data
in the literature. They examined 89 articles consisting of different model structures, model assumptions,
estimation methods and dynamic estimates. They stated that the most commonly used joint model in the
literature is the linear mixed effect model for longitudinal data and the Cox regression model for survival
data. They also found that the Markov Chain Monte Carlo (MCMC) algorithm was used for parameter
estimates in Bayesian joint models. Furgal [15] used the Bayesian approach in the joint modelling of survival
data containing different competing risk situations and longitudinal data. Additionally, they conducted a
simulation study to examine joint model structures consisting of different random effects structures. Xu [41]
developed a multivariate mixed-effects joint modelling for survival data consist of skew distribution and
skewed-longitudinal. Alkhathami [2] proposed a new joint model structure for the LMM and the Weibull
Frailty model. They used random effects structures with different distributions to examine the parameter
estimates of the model he developed.

Due to the complex structure of joint models, another focus of researchers has been to obtain parameter
estimates. Joint model parameter estimates are generally obtained by the maximum likelihood approach
based on maximizing the likelihood function. However, the likelihood function of the joint model has a
complex structure and high-dimension integrals in the likelihood function must be taken to obtain parameter
estimates with the maximum likelihood approach. Due to the complex structure of the likelihood function
and the lack of a closed solution, different parameter estimation approaches have been proposed in the
literature. Wulfsohn and Tsiatis [40] simultaneously obtained the parameter estimates of the joint model for
longitudinal and survival data by using the full likelihood approach in parameter estimates. Faucett and
Thomas [12] obtained joint model parameter estimates using the MCMC method and Gibbs sampling. Song
et al. [33] used the EM algorithm approach to obtain joint model parameter estimates. Li et al. [23] proposed
joint modelling consisting of competing risks and longitudinal ordinal measurements. They used the EM
algorithm to obtain parameter estimates of the joint model they created. Wu et al. [38] used the Laplace
approach and Monte Carlo Expectation Maximization (MCEM) methods in joint model parameter estimates
and compared the performance of the two methods with real data and simulation study. Huang et al. [19]
worked on a model that formulates model errors with skewed-normal distributions for joint modelling of
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longitudinal dynamical processes and time-to-event data.To obtain the parameter estimates of the model
they proposed, they used a Bayesian approach that focuses on the time-to-event process associated with
response, covariate, and random effects. Rizopoulos [30] proposed an integration method based on rescaling
the adaptive Gauss-Hermite (AGH) approach as an alternative for solving the joint modelling likelihood.
Baghfalaki [8] proposed a new model for joint modelling of multivariate longitudinal data containing mixed
continuous and ordinal responses and the time-to-event variable. They modeled the relationship structure
between longitudinal mixed data and time-to-event data with a multivariate zero-mean Gaussian process.
In the joint model, they used the Gaussian mixed effect model for longitudinal data and the accelerated
failure time model with log-normal and Weibull distribution for survival data. They considered a Bayesian
approach using the MCMC algorithm to obtain parameter estimates. Rizopoulos [31] developed the
“JMBayes” package in the R program, which obtains Bayesian estimates using the Monte Carlo algorithm
for joint model parameter estimation. Dagne [8] proposed a joint model consisting of a bent-cable Tobit
model for longitudinal data and an accelerated failure time model for survival data. A Bayesian approach
with multivariate skew-t distributions is proposed to obtain parameter estimates of this model. Furgal et
al. [14] conducted a simulation study to compare the performance of statistical programming packages
developed for the classical approaches and the Bayesian approach used to obtain parameter estimates in
the joint model. Atlı [4] compared the classical approach with the Bayesian approach to obtain parameter
estimates in the joint modelling of the LMM and the Cox regression model. Random effect structures with
different distributions were used to examine the parameter estimates of the model developed in the study.
Leiva-Yamaguchi and Alvares [22] proposed a new two-stage approach to obtain more unbiased parameter
estimates in joint modelling of longitudinal and survival data. They compared their proposed approach
with the joint specification approach and standard two-stage approaches in the Bayesian framework and
examined the performance of the methods. Lin and Luo [24] proposed a new artificial neural network
architecture to obtain joint model parameter estimates of survival data and multiple longitudinal data and
examined the performance of their proposed approach with a simulation study. Murray and Philipson
[25] proposed an alternative EM algorithm approach, addressing the difficulty in obtaining parameter
estimates with classical approaches in multidimensional joint modelling of survival data with one or more
longitudinal data. Khan and Basharat [21] worked on a joint model consisting of a linear mixed effect model
for longitudinal data and an accelerated failure time model for survival data. They proposed a Bayesian
two-stage approach based on the full likelihood approach to obtain parameter estimates for the joint model
consisting of log-logistic and Weibull sub-models, and examined the performance of the two models on
simulation study and real data application.

In this paper, we examine parameter estimation approaches for the parametric joint modelling consist
of LMM for longitudinal data and Weibull accelerated failure time (AFT), which can be used when the
proportional hazards assumption is not satisfied for survival data. To obtain parametric joint modelling
parameter estimates, we proposed a two-stage approach using the parameters estimated in the Weibull
AFT sub-model after estimating the longitudinal sub-model under the Bayesian approach. We examined
the parameter estimation performance of the proposed approach with the Gauss-Hermite (GH) and AGH
approaches available in the literature through simulation studies consisting of the different sample sizes
and censoring rate. In this paper, unlike the literature, we proposed a new Bayesian two-stage approach
on the joint modelling of Weibull AFT and LMM models and examined the performance of the developed
method with classical approaches such as AGH and GH at different sample sizes and censoring rates.

The paper is organized as follow: Section 2 describes a general formulation of parametric joint models.
Sections 3 introduces the parameter estimation methods for parametric joint modelling. Section 4 presents
simulation study and compares the performance of our proposal against the other standard approaches.
Section 5 presents a real data analysis. Finally, Section 6 discusses the advantages and extensions of our
methodology.

2. The Joint Model

We assume that there are n individuals with repeated observation values and an associated event of
interest. We also assume the event time does not satisfy the assumption of proportional hazards and has a
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Weibull distribution. We will first define the standard parametric joint model structure and then define the
parametric joint model structure consisting of the Weibull AFT model for the survival sub-model.

2.1. Longitudinal Sub-Model

To model repeated measures over time for the i-th subject, we use LMM that allow for both fixed effects
and subject-specific random effects. We can express the response variable yi (t) for subject i at time t as
follows:

yi (t)=x
′

i (t) β+z
′

i (t) bi+εi (t)

mi (t)=z
′

i (t) bi (1)

where the x′i (t) and z′i (t) are the design vectors for fixed effects β and random effects bi, respectively, and
mi (t) refers to linear combinations between the random effect. The random effects bi have a KxK variance-
covariance matrix G, where K is the number of random effects and a multivariate normal distribution with
zero mean. ϵi (t) is the normally distributed measurement error term with mean 0 and variance σ2 and is
assumed to be independent of each other (cov

(
ϵi, ϵ j

)
= 0 for i = j ). Moreover, since there is cov

(
bi, ϵ j

)
= 0

for ∀i, j, the error terms and random effects are assumed to be independent of each other [13].

2.2. AFT Sub-Model

Let Ti denote the observed survival time for the i-th subject (i = 1, 2, . . . ,n), T∗i the true survival time,
and Ci the censoring time. Accordingly, we can write Ti = min(T∗i ,Ci), the event indicator δi = I(T∗i ≤ Ci)
and the observed survival time and the event indicator for the i-th subject as (Ti, δi). So, we can express the
AFT survival sub-model with repeated measurements over as follows [6], [21]:

hi(t|Mi(t) , xi) =h0
(
1i (t)
)

exp
{
−x

′

iγ−αmi(t)
}
, t> 0 (2)

where Mi (t) = {mi (s) , 0 ≤ s ≤ t} is the history of the set of mi(t) values of the follow-up until t for i-th subject
and 1i (t) =

∫ ti

0 exp
(
−x′iγ − αmi (u)

)
du. x′i shows baseline covariates with coefficients γ and h0(.) denotes the

baseline hazard function. α denotes the effect of the association. If α = 0, there is no association between
longitudinal and survival data. In such cases, it is recommended to employ separate standard models,
including a LMM and survival models, instead of a joint model.

Additionally, we can write the probability density function and survival function for AFT models as
follows, respectively:

fi(t|Mi(t) , xi) = f0
(
1i (t)
)

exp
{
−x

′

iγ−αmi(t)
}
, t> 0,

Si(t|Mi(t) , xi) =S0
(
1i (t)
)
, t> 0, (3)

It is very important to choose the basic hazard function h0(t) to analyze the survival sub-model given in
Equation 2. In cases where the proportional hazards assumption, which assumes that the hazard is constant
over time, is provided, the Cox regression model can be chosen as the hazard function. However, AFT
models should be used when the PH assumption is not satisfied, and the hazard function has a certain
distribution. There are different AFT models that can be used in the joint model which consists of a
longitudinal measurement and of survival data that does not require the assumption of PH. These models
can be listed as exponential, log-logistic, logistic, log-normal and gamma sub-models [21]. In this paper,
we focused on the Weibull AFT sub-model since the situations where survival data do not satisfied the PH
assumption and are suitable for the Weibull distribution will be discussed.
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2.3. Weibull AFT Sub-Model

In this paper, we will study the Weibull AFT sub-model for the joint modelling of longitudinal, and
survival data that does not provide the PH assumption and has a Weibull distribution. Therefore, we
will first redefine the hazard function for i-th subject defined in Equation 2 with κ and λ shape and scale
parameters, respectively, as follows.

hi(ti) = λκ
(
λ1i(ti)

κ−1
)

exp
(
−x

′

iγ−αmi(t)
)

(4)

Similarly, we can obtain the survival functions and probability density distribution for the Weibull AFT
sub-model, respectively, as follows.

Si (ti)=exp
[
−
(
λ1i (ti)

)κ] ,
f (ti, δi|θ, bi) =

{
λκ
(
λ1i(ti)

κ−1
)

exp
(
−x

′

iγ−αmi(t)
) }δi

exp
[
−
(
λ1i (ti)

)κ] (5)

where θ is full parameter vector and since 1i (t) =
∫ ti

0 exp
(
−x′iγ − αz′i (u) bi

)
du does not have a closed

formula, the Gauss-Kronrod or Gauss-Legendre quadrature rule can be used to calculate this integral [21].

3. Parameter Estimates for Parametric Joint Modelling

In joint modelling, two-stage approaches and joint likelihood methods are generally used to obtain
parameter estimates [39]. We will propose a two-stage approach in the Bayesian perspective to obtain
parameter estimates in parametric joint modelling and compare it with the likelihood approaches frequently
used in the literature.

3.1. Gaussian Hermite and Adaptive Gaussian Hermite Approaches

The likelihood function for longitudinal and survival data described by time-independent random
effects bi for the i-th subject is,

lo1p
(
Ti, δi, yi;θ

)
= lo1

∫
p
(
Ti, δi, yi, bi; θ

)
dbi = lo1

∫
p
(
Ti, δi|bi; θt, β

) ∏
j

p
{
yi(ti j)|bi;θy

} p (bi;θb) dbi (6)

Where θ =
(
θ′t, θ

′
y, θ

′

b

)
is the full parameter vector θt, θy and θb are survival data parameters, longitudi-

nal data parameters and covariance matrix parameters of random effects, respectively. p
(
Ti, δi|bi;θt, β

)
is

the conditional probability density function of the survival sub-model and p
(
yi|bi;θ

)
p (bi;θ) is the joint

probability density function of longitudinal measurements and random effects. To obtain the parameter
estimates of the joint model, researchers have proposed different integration methods such as Gauss Her-
mite, Laplace, and EM approach due to the complex structure of the likelihood function and the difficulty
of calculation ([40]; [16]; [33]; [29]). Since our focus is on Gauss Hermite and Adaptive Gauss Hermite
approaches, we only explained these two approaches in detail.

Let’s rewrite the score vector of the joint likelihood in Equation 6 in the following form:

S(θ) =
∂ℓ(θ)
∂θ′

=
∑

i

∂
∂θ′

lo1
∫

p (Ti, δi|bi;θ) p
(
yi|bi;θ

)
p (bi;θ) dbi =

∑
i

∫
A (θ, bi)p

(
bi|Ti, δi, yi;θ

)
dbi (7)

Here, A(·), A(θ, bi) = ∂
{
log p(Ti, δi|bi;θ) + log p(yi|bi;θ) + log p(bi;θ)

} /
∂θ′ refers to the score vector obtained

from all data. Since the integrals do not have a closed form solution in the formulas of this vector, the
integral solution can be made by the Gauss Hermite rule, which approximates the integral by the weighted
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sums of integrant measurements in predetermined abscissas [28]. Under the quadratic rule and random
effects, the score vector for each form of A(·) is calculated as follows [30]:

E
{
A (θ, bi) |Ti, δi, yi;θ

} ∫
A (θ, bi)p

(
bi|Ti, δi, yi;θ

)
dbi

≈ 2
q
2

∑
t1,...,tq

πtA(θ, bt
√

2 )p( bt
√

2 |Ti, δi, yi; θ)exp( ∥bt∥
2) (8)

Since the Gauss-Hermite rule requires integrant calculations on the Cartesian product of abscissas for each
random effect, the computational burden increases as the size of the q random effects vector increases.

The adaptive Gauss Hermite rule, developed to solve the problems in the Gauss Hermite rule, appro-
priately averages and measures the integrator in each iteration of the optimization algorithm:

E
{
A (θ, bi) |Ti, δi, yi;θ

}
≈ 2

q
2

∑
t1,...,tq

πtA(θ, r̂t
√

2)p( r̂t
√

2|Ti, δi, yi; θ)exp( ∥r̂t∥
2) (9)

where r̂t = b̂i +
√

2B̂−1
i bt, b̂i = ar1maxb

{
lo1p

(
Ti, δi, yi, b;θ

)}
and it represents the Choleski factor of B̂i,

Ĥi =
−∂2lo1p (Ti,δi,yi,b;θ )

∂b∂b′ |b=b̂i
.

In order to obtain the same size approximation error in the adapted Gauss-Hermite rule, fewer square
points must be used than in the standard Gauss-Hermite rule. However, the need to locate the mode bi and
the second-order derivative matrix Ĥi for each subject in each iteration increases the processing load [30].

3.2. Two Stage Approach with Bayesian Framework

The two-stage approach is often used in parameter estimation of the joint model because of the complex
structure in the likelihood of joint model and to speed up the estimation process. The two-stage approach
was first proposed by Tsiatis et al. [36]. In this approach, in the first stage, longitudinal data are modeled
with a LMM and subject-specific values of covariates are calculated, and in the second stage, the survival
sub-model is calculated using the estimated values obtained in the first step. We used this two-stage
approach developed by Tsiatis et al. [36] to obtain parametric joint modelling parameter estimates by
adapting it for the Weibull AFT sub-model with a Bayesian perspective.

In the first stage, we estimated the parameters of the longitudinal sub-model using the LMM (β̂ = E
(
β|y
)
)

model and the random effects shared with the Weibull AFT sub-model (b̂ = E
(
b|y
)
). In the second stage,

we estimate the posterior distribution of (γ, α, h0) by using the m̂i(t) estimates obtained from the first stage
in the Weibull AFT sub-model. In addition, we used the prior distributions assigned by Leiva-Yamaguchi
and Alvares [22] to determine parameters and hyperparameters in the Bayesian parametric joint model.
Accordingly, we get β ∼ N (0, 100) , α, γ ∼ N (0, 10), σ ∼ hal f − Cauchy (0, 5) and Σ ∼ inverse −Wishart(V, r)
where V denotes KxK matrix and r = K shows the degree of freedom parameter.

4. Simulation Study

To examine the performance of the two-stage approach proposed for the parameter estimate of paramet-
ric joint modelling, we compared our proposed approach with the GH and AGH methods frequently used
in the literature for joint modelling parameter estimates. AGH and GH methods are frequentist approaches
and are obtained by solving the likelihood given in Equation (6) with the integral approaches given in
section 3.1. In this paper, we applied the AGH and GH methods with the integration approaches given in
section 3.1 and the proposed two-stage approach using the prior distributions given in section 3.2. We first
establish a parametric joint model for the i-th subject at time t using the sub-models in Equations (1) and
(4) as follow.

yi (t)=x
′

i (t) β+z
′

i (t) bi+εi (t) = β0 + b0i +
(
β1 + b1i

)
ti j + β2xi + ϵi(t)
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hi(ti) = λκ
(
λ1i(ti)

κ−1
)

exp
(
−x

′

1γ1−αmi(t)
)

(10)

where (b0i, b1i) ∼ N (0,Σ) and ϵi (t) ∼ N
(
0, σ2
)
. x is group covariate simulated from Bernoulli distribution

with 0.5 probability. In addition, we used the 5-point Gauss-Legendre Quadrature rule with the R-package
“statmod” to solve 1i (t) =

∫ ti

0 exp
(
−x′iγ − αz′i (u) bi

)
du.

4.1. Simulating Data for Parametric Joint Modelling
To examine the performance of parameter estimates in the parametric joint model, we generate data

in accordance with this model. The true parameter values were used as β0 = 2, β1 = 1.5, β2 = 0.5,
σ = 0.8, Σ11 = 0.8, Σ12 = Σ21 = −0.025 and Σ22 = 0.15 for longitudinal sub-model, and γ1 = −0.3, α = 0.6,
λ = 0.75, κ = 1.5 for survival sub-model in Equation 10. In addition, we assigned the longitudinal time
ti j = 0, 2, . . . , 8 (5 time points including tmin = 0 and tmax = 8), the sample size n = 30, 100, 500, and the
censoring rate c = 0.10, 0.30, 0.60. The correct survival time for the i-th unit in the Weibull AFT sub-model
was obtained using inverse transform sampling (T∗i = S−1

i (u)) in the survival function (Si) derived from
Equation 10, where u is obtained from uniform distribution. The censoring time for each unit is obtained
from Ci ∼ Uni f (tmin = 0, tmax = 8), c is a control parameter used to determine the censoring rate and T∗i is
calculated based on this determined censoring rate and then, is produced as Ti = min

(
T∗i ,Ci

)
and the event

indicator as δ = I
(
T∗i ≤ Ci

)
(0: lost to follow up and 1: death.). We examined scaled Schoenfeld residuals

test and log
(
−lo1 (S)

)
plots using the R-package “survival” to test whether the survival data satisfied the

proportional hazards assumption after each data generated. To show that the assumption was not satisfied
at each iteration (p < α = 0.05), we recorded the p values obtained from the scaled Schoenfeld residuals
test in different scenarios and displayed the results graphically. Longitudinal observations yi (ti) for the
ith subject were calculated according to the longitudinal sub-model in Equation 10. Recording times of
repeated measurements were produced balanced across five time points. The random effects βi are derived
from a normal distribution with mean 0 and variance Σ, and the random error term ϵi is derived from a
normal distribution with mean 0 and variance σ2.

4.2. Simulation Algorithm
We can summarize the simulation steps for jointly producing longitudinal and Weibull AFT model and

calculating the parameter estimation methods as follows.
1. Generate longitudinal and Weibull AFT data jointed with random effects.

• Set initial values for all parameters, censoring rate, and sample size.

• Assign longitudinal time points to each subject as ti = 0, 2, 4, 6, 8.

• Generate xi ∼ Bernoulli (0.5), (b0i, b1i) ∼ N (0,Σ) and ϵi (t) ∼ N
(
0, σ2
)

in accordance with the initial
parameters.

• Generate yi (ti) in accordance with the longitudinal sub-model given in Equation 10.

• Generate T∗i in accordance with the Weibull AFT sub-model given in Equation 10 using m̂i(t), and set
the Ci ∼ U (tmin, tmax).

• Define Ti = min
(
T∗i ,Ci

)
and δi = I

(
T∗i ≤ Ci

)
.

• Record the p-value values obtained from the scaled Schoenfeld residuals test for the created data set.

2. Obtain parameter estimates of the created data set using methods.

• Obtain parameter estimates with the GH and AGH approaches mentioned in Section 3.1.

• Obtain parameter estimates with the Bayesian two-stage (BTS) approach mentioned in Section 3.2.
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• Calculate MSE and absolute bias values of the results obtained from the methods. Here, the group
parameter corresponds to the γ1 coefficient in the Weibull AFT model (Equation 10) and the alpha
parameter corresponds to the associated coefficient.

We obtained the joint model parameter estimates of the longitudinal and Weibull AFT sub-model given
in Equation 10, in accordance with the prior distributions specified in Section 3.2 for the BTS approach
proposed for parametric joint models in the R- package “rstan”. For the proposed two-stage approach, we
set the MCMC configuration to 2000 iterations with 1000 warm-ups for the longitudinal sub-model and
1000 iterations with 500 warm-ups for the Weibull AFT sub-model. We used R-package “JM” to obtain GH
and AGH estimates. We compared the performances of the three methods with 1000 repetitions for all
scenarios. That is, we used 1000 repetitions for n=30 and c=0.10, 0.30 and 0.60, 1000 repetitions for n=100
and c=0.10, 0.30 and 0.60, and 1000 repetitions for n=500 and c=0.10, 0.30 and 0.60.

4.3. Simulation Results

To examine the performance of the three methods at different censoring rates and samples sizes, we

calculated parameter values, MSE = 1
1000

∑1000
i=1

(
pari − p̂ari

)2
values and |Bias| = 1

1000

∑1000
i=1 |pari − p̂ari| values

following the above simulation steps. Table 1-2 and Figures 2-5 show these values obtained from the
methods comparatively. We also showed the p-values for the scaled Schoenfeld residuals test for the
proportional hazard assumption for each scenario in Figure 1.

Figure 1: p-value values obtained from the scaled Schoenfeld residuals test for testing the proportional hazards assumption. The red
horizontal line indicates α = 0.05.
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According to the proportional hazards assumption results obtained in Figure 1, it is seen that the p-value
values obtained in all simulation results are less than α = 0.05. Accordingly, we can say that data suitable
for AFT is produced for all cases.

Table 1: The average absolute bias and MSE values of the methods in different sample and censoring situations for α parameter.

AGH GH BTS
|Bias| MSE |Bias| MSE |Bias| MSE

n=30 c=0.60 0.6716 0.5280 0.6638 0.5114 0.5993 0.3713
c=0.30 0.6680 0.5351 0.6365 0.4757 0.6027 0.3745
c=0.10 0.6066 0.4399 0.6061 0.4544 0.5993 0.3712

n=100 c=0.60 0.7909 0.6329 0.7817 0.6328 0.5969 0.3682
c=0.30 0.7461 0.5622 0.7232 0.5335 0.6056 0.3795
c=0.10 0.6603 0.4406 0.6262 0.4046 0.6009 0.3724

n=500 c=0.60 0.7215 0.5222 0.7359 0.5436 0.5958 0.3668
c=0.30 0.6364 0.4054 0.6396 0.4095 0.5988 0.3705
c=0.10 0.6041 0.3649 0.6042 0.3650 0.5492 0.3112

Table 1 and Figures 2 and 3 show that the BTS approach gives less biased estimates than the AGH and
GH approaches for all censoring rates when the sample width for the α parameter is small (n = 30 and
n = 100). Although the three methods give similar results when n = 500, especially when c = 0.10, it is
seen that the BTS approach gives relatively less biased estimates. In addition, it was observed that the BTS
approach gave less biased results for c = 0.10 compared to other censoring situations at all sample sizes.

Table 2: The average absolute bias and MSE values of the methods in different sample and censoring situations for group parameter(γ1).

AGH GH BTS
|Bias| MSE |Bias| MSE |Bias| MSE

n=30 c=0.60 0.8524 1.1267 0.8465 1.1084 0.5755 0.5205
c=0.30 0.7510 0.8941 0.7285 0.8528 0.5300 0.4458
c=0.10 0.3408 0.2181 0.3652 0.2701 0.3008 0.1024

n=100 c=0.60 0.6851 0.6818 0.6915 0.6818 0.4034 0.2371
c=0.30 0.5620 0.4313 0.5617 0.4386 0.3749 0.1993
c=0.10 0.4688 0.3093 0.4850 0.3473 0.3751 0.1947

n=500 c=0.60 0.4409 0.2630 0.4754 0.2924 0.3411 0.1323
c=0.30 0.3437 0.1541 0.3598 0.1650 0.3361 0.1228
c=0.10 0.3244 0.1449 0.3215 0.1424 0.2930 0.0949

When the estimated values for the group parameter are examined in Figures 4 and 5, it is seen that
the results are similar to the results of α parameter. However, when n = 500, it can be said that the BTS
approach gives more unbiased values compared to other approaches. In addition, it is observed that the
BTS approach gave less biased results for c = 0.10 compared to other censoring situations at all sample
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Figure 2: Graph of α parameter estimation values obtained for 1000 random samples from AGH, GH and BTS approachs. The true
parameter value is shown with a red horizontal line.

Figure 3: MSE values obtained from three methods for the α parameter.



E. Yıldırım, D. Karasoy / Filomat 38:23 (2024), 8265–8281 8275

Figure 4: Graph of group parameter (γ1) estimation values obtained for 1000 random samples from AGH, GH and BTS approachs.
The true parameter value is shown with a red horizontal line.

Figure 5: MSE values obtained from three methods for the group parameter.
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sizes.
To examine the results of the estimation methods at different values, we conducted a different simulation

study with 1000 repetitions in the case of n = 30 and c = 0.30. For this scenario, we set the parameter values
as β0 = 2, β1 = 1.5, β2 = 0.5, σ = 0.8, Sigma11 = 0.8, Σ12 = Σ21 = −0.025 and Σ22 = 0.15 for longitudinal
sub-model, and γ1 = 1.2, α = −1.5, λ = 0.75, κ = 1.5. In particular, the results were compared by changing
only the values of the α and group (γ1) parameters. According to the simulation results given in Appendex
A, it was seen that the results were similar to the other scenario. According to the results of this scenario, it
is seen that the BTS approach gives less biased estimates than the AGH and GH methods for the group and
α parameters, but this difference is lower for the α parameter. In addition, the average computation times
of the GH, AGH and BTS methods for HP laptop with 1.60 GHz Intel Core i5, 16 GB RAM OS Windows
were calculated as 18.619, 18.433 and 12.832, respectively. Accordingly, it can be seen that the BTS approach
has less computational time compared to the other two classical approaches. The reason for this may be
the integral approach used by AGH and GH methods in solving likelihood functions [7]. Additionally,
sensitivity analysis for the prior distribution of α and group parameters for scenario 2 is given in Appendix
B. We can say that the BTS approach gives less biased estimates when the variance values of the prior
distribution are not small.

5. Application

To examine the performance of our proposed BTS approach, we apply our procedure to the aortic valve
replacement surgery data set, which is publicly available in the R-package “joineR” [27]. The study was
conducted to investigate the effect of implanting different types of heart valves in aortic positions on the
survival time of patients who had aortic valve replacement surgery. The 256 patients participating in the
study were followed for at least one year between 1991 and 2001, and echocardiographic measurements
were taken annually. The heart valve functions examined in the study are grad, lvmi and ef. Grad, lvmi and
ef show the valve gradient, left ventricular mass index (standardized) and ejection fraction at the follow-up
visit, respectively. To examine the method developed in accordance with our model structure, we selected
a subsample from the original data with an 83% censoring rate. Sample selection was made randomly to
ensure approximately 80% censoring rate, small sample condition and other model assumptions.This new
data set consists of balanced left ventricular mass index (log.lvmi) values of 43 patients, measured in 3
different years (time). Survival time (fuyrs) refers to the period from the date of surgery to the time of the
event and the event (status) is considered as 1: death, 0: lost to follow up. In this study, we considered
the binary hs variable as a covariate and it indicates 1: homograft, 0: stentless porcine tissue. This variable
provides information about the type of heart valve implanted during surgery according to tissue types.

To investigate the effects of hs on longitudinal measurements and risk of death, we first examined the
proportional hazards assumption. According to the scaled Schoenfeld residuals test results, we obtained
p = 0.032 < α = 0.05 for the hs variable and the model. We also used a plot of scaled Schoenfeld residuals
against transformed time (Figure 6a) and a log

(
−log (S)

)
plot (Figure 6b) for assumption checking and

concluded that the proportional hazards assumption was not satisfied for the hs variable.
We used the Kolmogorov-Smirnov test and the Q-Q plot to test whether the survival time was suitable

for the Weibull distribution. According to the Kolmogorov-Smirnov test result, we can say that the data is
suitable for Weibull distribution since D = 0.134 and p = 0.387 > α = 0.05. In addition, according to the Q-Q
plot result in Figure 7, it is seen that the survival time of the data is suitable for the Weibull distribution.

Since the hs variable does not satisfy the proportional hazards assumption and the survival time is in
accordance with the Weibull distribution, we use the parametric joint model consisting of the longitudinal
and Weibull AFT model to investigate the effect of hs on the longitudinal and survival data.

Parameter estimation values obtained from three different parameter estimation approaches are given
in Table 3. We used AIC = 2k − 2ln

(
L̂
)

and BIC = kln (n) − 2ln
(
L̂
)

values to compare model performances.
According to the results obtained from real data, we can say that the BTS results are better than other

methods, since the AIC and BIC values are lowest in the model obtained with the BTS method.



E. Yıldırım, D. Karasoy / Filomat 38:23 (2024), 8265–8281 8277

Figure 6: Proportional hazards assumption for the variable hs a) log
(
−log (S)

)
graph b) scaled Schoenfeld residuals against trans-

formed time graph.

Figure 7: Q-Q plot of survival time (fuyrs)

Table 3: Parameter values of the Weibull AFT parametric joint model obtained from different approaches for the aortic valve
replacement surgery data.

GH AGH BTS
Estimation(Std. Er.) Estimation(Std. Er.) Estimation(Std. Er.)

Longitudinal sub-model Time 0.0158 (0.0096) 0.0125 (0.0163) 0.0220 (0.0076)
hs -0.0448 (0.0573) 0.0164 (0.0813) -0.0521 (0.0011)

Survival sub-model hs -0.9896 (0.9049) 0.8546 (1.6384) -0.4419 (0.1225)
α (Assoc.) 0.0614 (0.0096) -0.0433 (0.0256) 0.1225 (0.0074)

AIC 217.3215 405.9841 80.3352
BIC 236.6947 425.3573 85.6189
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6. Discussion

There are many studies in the literature on parameter estimates in joint modelling of longitudinal and
survival data ([4],[14],[18],[22]). However, there are very few studies on the AFT submodel, which is used
in cases where survival data do not stasfied the proportional hazards assumption and are suitable for a
certain distribution [21]. In this paper, we firtsly proposed a BTS approach to obtain parameter estimates
in parametric joint modelling of survival data and longitudinal data where the proportional hazards
assumption is not satisfied, and survival data follow a certain distribution. To examine the performance
of our proposed approach, we conducted a simulation study in scenarios consisting of different censoring
rates and samples sizes, and compared the proposed approach with the full likelihood approaches such as
AGH and GH. Accordingly, in this study we showed researchers which parameter estimation approaches
can obtain more unbiased results at different sample sizes and censoring rates. We also examined the
applicability of the Bayesian two-stage approach as an alternative to frequentist approaches such as AGH
and GH in parametric joint models.

According to the MSE and absolute bias values obtained in two different scenarios, we discovered that
the group parameter of our proposed approach gives more unbiased results than the other two approaches
in all scenarios. We also discovered that when the censoring rate was 0.10 for all sample sizes in the first
scenario, parameter estimates were less biased than other censoring rates. Although similar results were
seen for the alpha parameter jointing the two models, it was observed that all three approaches gave similar
results when the sample size was 500. Similar to the other parameter, since the censoring rate is 0.10,
it has been observed that our proposed method gives more unbiased results compared to the other two
methods. For the second scenario, we observed that the BTS approach gave more unbiased parameter
estimates for the alpha parameter compared to the AGH and GH approaches. Moreover, according to
the computation times obtained for the second scenario, we obtained that the BTS approach has a shorter
computation time compared to the other two approaches. The reasons why the parameter estimates of the
AGH and GH approaches are biased and have a longer computation time compared to the BTS approach
may be that the AGH and GH methods are solved by integration approaches.The two-stage approach has
faster computational time than the full likelihood approach because it avoids high-dimensional integrals.
However, since the two-stage approach consists of fitting longitudinal data in the first stage and using as a
covariate these estimates into the survival model in the second stage, not using real unobserved longitudinal
processes in survival models may lead to bias in parameter estimates [20]. This may be the reason why the
BTS approach gives more biased estimates in the α parameter compared to the group parameter. However,
we observed that the BTS approach gives less biased estimates compared to the full likelihood approaches
AGH and GH.

To demonstrate the applicability of the proposed method, we compared the performance of the meth-
ods on the aortic valve replacement surgery data and concluded that our proposed approach is the best
model according to the model comparison criteria (AIC and BIC). In addition, it is seen that the standard
error values of the parameter estimation values of our proposed approach are lower than the other two
approaches.

As a result, when the proportional hazards assumption is not satisfied for survival data and the data has
a certain distribution, the parameter estimation values of the proposed BTS approach are more unbiased
compared to the GH and AGH approaches when the joint model is used when testing the relationship
between a single longitudinal measurement and survival data.

There are some limitations to this paper. First of all, there are different sub-models for parametric joint
models such as log-logistic, logistic, log-normal and gamma. In this study, we only considered the Weibull
sub-model. In future studies, other models can be examined by generating appropriate data for different
models. Secondly, in our proposed Bayesian two-stage approach, some correction terms can be added
to obtain less biased estimates, and the performance of the developed method can be examined through
simulation studies. In addition, we only considered AGH and GH methods among the frequentist methods.
However, there are different frequentist approaches in the literature. In future studies, other approaches
available for joint modelling in the literature can be included in the study and it can be examined which
methods give less biased estimates in different situations.
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9. Appendix A

Different simulation scenario results Parameter setting: β0 = 2, β1 = 1.5, β2 = 0.5, σ = 0.8, Sigma11 = 0.8,
Σ12 = Σ21 = −0.025, Σ22 = 0.15, γ1 = 1.2, α = −1.5, λ = 0.75, κ = 1.5. We performed 1000 simulation
repetitions to compare the performances of the AGH, GH and BTS methods for the these parameter values.

Table 4: The average absolute bias and MSE values of the methods in different sample and censoring situations for group and α
parameters for second scenario (n=30 and c= 0.30).

AGH GH BTS
|Bias| MSE |Bias| MSE |Bias| MSE

α 1.3868 1.9598 1.6748 63.0880 1.0746 1.3750
Group 1.1900 2.1994 1.2427 3.8142 0.4197 0.2858
Average Comp. Time 18.619 18.433 12.832

10. Appendix B

Sensitivity Analysis for Prior Distribution of Alpha and Group Parameter
We considered the a prior distribution for alpha and group parameters as a normal distribution with 0

mean and 100 variance for Scenario 2. Sensitivity analysis for the variance value in the prior distribution
for these parameters for Scenario 2 is given in Figure 9.

In Figure 9, x-axis values express the variance values of the prior distributions for the group and α
parameters for Scenario 2, respectively. For example; 0.5, 0.5: α ∼ N (0, 0.5) and γ1 ∼ N (0, 0.5) and 15, 5:
α ∼ N (0, 5) and γ1 ∼ N (0, 15).
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Figure 8: Graph of group (γ1) and alpha parameter estimation values obtained for 1000 random samples from AGH, GH and BTS
approachs (n=30 and c=0.30).The true parameter value is shown with a red horizontal line.
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Figure 9: Sensitivity analysis for alpha and group parameter from 100 datasets with n=30, c=0.30, γ1 = 1.2 and α = −1.5


