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Du-subsets of ordered Banach spaces and their best approximation
properties with applications

Bahareh Azadifara, Mahdi Iranmanesha,∗, Fatemeh Soleimanya

aFaculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Semnan, Iran

Abstract. The main goal of this paper is to investigate the best approximation of sets that do not correspond
to proximal sets. We call these new sets “Du-sets”. “D” and “u” refer to the relationship that these sets can
have with downward and upward. The closed Du-sets are not necessarily convex, upward, downward, or
star-shaped, but are nevertheless proximal. We will also achieve some useful and practical results.

1. Introduction

Mathematicians have developed a well-developed theory of best approximation based on elements
of convex and reverse convex sets (complements of convex sets). Despite this, convexity can be a very
restrictive assumption, so it is vital to conduct the study of the best approximation by looking at sets that
aren’t necessarily convex. A theoretical solution to the problem of best approximating downward subsets
of the spaces RI has been developed by Martinez-Legaz, Rubinov, and Singer in [4]. These properties were
studied by Mohebi and other researchers for the Banach lattice space (for example see [8]). In [3], authors
defined the new set of sets called Im-quasi-upward sets and discussed how these sets are connected to
upwards or downwards sets.
In this article we develop the theory of best approximation by subsets of ordered Banach spaces which are
not necessarily convex, nor is it necessarily upward or downward, nor is it necessarily star-shaped, but
it is proximal. We use the results obtained in downward and upward sets as a tool for finding the best
approximation of a point to this new set.
The structure of the paper is as follows: In section 2, we recall the main definitions and some results on
best approximation by elements of downward and upward sets. In section 3, we define the new sets that
we call Du-sets and discuss the connection between Du-sets with downward hull and upward hull sets. In
particular, we present the characterizations of best approximation by Du-sets in terms of separation from
outside points.

2. Preliminaries

This section presents the first hypotheses and results.
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Definition 2.1. Let X be a normed vector space. For a non-empty subset W of X and x ∈ X, define

d(x,W) = inf
w∈W
∥x − w∥.

An element w0 ∈W is called a best approximation for x ∈ X if

∥x − w0∥ = d(x,W).

The set of all best approximation to x from W will be denoted by PW(x). In other words, PW(x) = {w ∈W : ∥x−w∥ =
d(x,W)}.

It is well-known that PW(x) is a closed and bounded subset of X. If x < X, then PW(x) is located in the
boundary of W.
Let X be a vector space. Assume that X is equipped with a convex and pointed cone K ⊂ X. (The latter
means that K∩ (−K) = {0}.) Assume that the algebraic interior intK of K is non-empty, that is, there exists an
element 1 ∈ K such that for each x ∈ X there exists ε > 0 with the property 1 + αx ∈ K for all α with |α| < ε.
The cone K generates the order relation ≤ on X. By definition x ≤ y if and only if y − x ∈ K.We say that y is
greater than x and write y > x if y − x ∈ K\{0}.
let 1 ∈ intK. Using 1 we can define the following function:

P(x) = inf{λ ∈ R : x ≤ λ1}, (x ∈ X). (1)

Since 1 ∈ intK, it follows that P is finite (for more details, see [6]). It is easy to check that P is increasing, and

x ≤ P(x)1 (x ∈ X). (2)

Now, consider the function

∥x∥ := max(P(x),P(−x)), x ∈ X. (3)

It is easy to establish that ∥.∥ is a norm on X. It follows from (2) that

x ≤ ∥x∥1, −x ≤ ∥x∥1, (x ∈ X). (4)

Then, by (2) and (3) we have

B(t, r) := {x ∈ X : ∥x − t∥ ≤ r} = {x ∈ X : t − r1 ≤ x ≤ t + r1}. (5)

We assume that X is equipped with the norm ∥.∥ and the cone K is closed in the normed space X.
To continue, we shall use the functions φ+ and φ− defined on X by:

φ+(x, y) = −P(−(x + y)) = sup{λ ∈ R : λ1 ≤ x + y} x, y ∈ X, (6)

and

φ−(x, y) = P(x + y) = inf{λ ∈ R : x + y ≤ λ1} x, y ∈ X. (7)

Since 1 ∈ intK, it follows that the set {λ ∈ R : λ1 ≤ x + y} is non-empty and bounded from above (by the
number ∥x + y∥). This set is closed. The following properties of φ+ are evident from its definition:

−∞ < φ+(x, y) ≤ ∥x + y∥ f or each x, y ∈ X, (8)

φ+(x, y)1 ≤ x + y f or all x, y ∈ X, (9)

φ+(x, y) = φ+(y, x) f or all x, y ∈ X, (10)
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φ+(x,−x) = sup{λ ∈ R : λ1 ≤ x − x = 0} = 0 f or all x ∈ X (11)

Clearly

φ+(x, y) = −φ−(−x,−y) and φ−(x, y) = −φ+(−x,−y), (12)

so all properties of φ− can be derived from the corresponding properties of φ+. Recall that a function
f : X→ R is called topical if it is increasing (x ≥ y⇒ f (x) ≥ f (y)) and plus-homogeneous ( f (x+α1) = f (x)+α
for all x ∈ X and all α ∈ R).

Lemma 2.2. [7] The function φ+(., y) is topical.

Proposition 2.3. [7] The function φ+(., y) is Lipschitz continuous.

Recall that a set D ⊂ X is called downward if (w ∈ D, x ≤ w)⇒ x ∈ D, also, a set U ⊂ X is called upward if
(u ∈ U, x ≥ u)⇒ x ∈ U.

Theorem 2.4 (Theorem 3.1, [7]). For a subset D of X, the following statements are equivalent:
(1) D is downward, (resp. is upward).
(2) For each x ∈ X\D we have

φ+(w,−x) < 0 (w ∈ D).

(resp. φ−(w,−x) > 0 (w ∈ D)).
(3) For each x ∈ X\D there exists l ∈ X such that

φ+(w, l) < 0 ≤ φ+(x, l) (w ∈ D).

(resp. φ−(x, l) < 0 ≤ φ−(w, l) (w ∈ D)).

Proposition 2.5. [6] Let D be a downward subset of X, (resp. U ⊂ X be an upward set) and x ∈ X. Then the
following assertions are true:
(1) If x ∈ D (resp. x ∈ U), then x − ε1 ∈ intD (resp. x + ε1 ∈ intU) for all ε > 0.
(2) We have

intD = {x ∈ X : x + ε1 ∈ D f or some ε > 0}

(resp. intU = {x ∈ X : x − ε1 ∈ U f or some ε > 0})

Theorem 2.6. [5] Let φ be the function defined by (6). Then for a function f : X → R the following assertion are
equivalent:
(1) f is a topical function.
(2) For each y ∈ X there exists ly ∈ X such that

φly (x) ≤ f (x) ∀x ∈ X, and φly (y) = f (y).

(3) f is Xφ-convex, where Xφ = {φl := φ(., l) : l ∈ X}.

3. Best approximations of Du-sets with their separation properties

In this paper, we consider X to be an ordered Banach space. Our first step is to introduce the new Du-set,
and then we will describe its best approximation. For any subset W of X,we denote by intW, clW, bdW, bduW,
bdlW, W∗ and W∗ the interior, closure, boundary, upper boundary (the boundary of W∗), lower boundary
(the boundary of W∗), downward hull and upward hull of W, respectively. In this paper, we assume that
W,W∗,W∗ are closed sets. Let W be a subset of X and a, b ∈ X such that a < b. Set [a, b]W := {x ∈W | a ≤ x ≤ b}.

Definition 3.1. A set W ⊂ X is called a Du-set if
(i) [a, b]X = [a, b]W , for each a, b ∈W where a < b.
(ii) [a, b]W , ∅, for a ∈W∗ and b ∈W∗ where a < b.
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In the above definition, every downward or upward subset of X is a Du-set. Also a set W ⊂ X is a Du-set if
for each y1, y2 ∈W and each y where y1 ≤ y ≤ y2, we get y ∈W. Let I = {1, ...,n} and R = (−∞,+∞), the real
line. Denote by RI the space of all vectors (xi)i ∈ I, endowed with the max-norm and the coordinatewise
order relation. We shall use the following notation:
If x, y ∈ RI, then x ≥ y⇔ xi ≥ yi for all i ∈ I.
If x, y ∈ RI, then x≫ y⇔ xi > yi for all i ∈ I.
RI
+ = {x = (xi)i ∈ I ∈ RI : xi ≥ 0 f or all i ∈ I}.
RI
++ = {x = (xi)i ∈ I ∈ RI : xi > 0 f or all i ∈ I}.

1 = (1, ..., 1).
Three examples of Du-sets are shown below. The Du-sets shown in figures 1 and 2 are neither convex

nor star-shaped.

Figure 1: W ⊆ R2

Figure 2: W ⊆ R3

In figure 3, w2 is an upper boundary point, w1,w4 are lower boundary points, and w3 is an interior point.

Figure 3: W ⊆ R2

Proposition 3.2. Let W be a Du-subset of X then W =W∗ ∩W∗.

Proof. Clearly W ⊂ W∗ ∩W∗. We show that W∗ ∩W∗
⊂ W. Let x ∈ W∗ ∩W∗, we have a, b ∈ W such that

a ≤ x ≤ b. So, x ∈ [a, b]X. Thus x ∈ [a, b]W , since W is a Du-set. Therefore, x ∈W.
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Corollary 3.3. Each Du-set is the intersection of a downward and an upward set.

Proof. Because of Proposition 3.2, this is a trivial matter.

With an example, we demonstrate that the inverse of the proposition 3.2 is not necessarily true.

Example 3.4. Let ≥ be an order defined in the space R2 by x ≥ y⇔ xi ≥ yi for all i = 1, 2. Then if W1 = {w ∈ R2 :
0 ≤ x1 ≤ 1, 1 ≤ x2 ≤ 2}, W2 = {w ∈ R2 : 3 ≤ x1 ≤ 4, −1 ≤ x2 ≤ 0} and W = W1 ∪W2. We have W = W∗ ∩W∗,
but for a = (2, 0) ∈W∗ and b = (2, 1) ∈W∗, we obtained [a, b]W = ∅.

Figure 4: W ⊆ R2

Proposition 3.5. Let W be a Du-subset of X and x ∈ X. Then

intW = {x ∈W : x ± ε1 ∈W f or some ε > 0}. (13)

Proof. Let x ∈ intW. Then there exists ε > 0 such that the closed ball B(x, ε) ⊂W. So, by (5) x ± ε1 ∈W.
Conversely, suppose that x ∈W and for a given ε > 0

x ± ε1 ∈W.

As W is a Du-set by Proposition 3.2, W = W∗ ∩ W∗. Since, x + ε1 ∈ W∗ and W∗ is a downward set, by
proposition 2.5, we have

x = x + ε1 − ε1 ∈ intW∗.

Similarly, since x − ε1 ∈W∗ and W∗ is an upward set, by proposition 2.5,

x = x − ε1 + ε1 ∈ intW∗.

Therefore, x ∈ intW.

The proof of the following corollary is trivial.

Corollary 3.6. Let W be a Du-subset of X and w ∈ W̄. Then the following assertions are true:
(1) w ∈ bduW i f f w + λ1 <W ∀λ > 0,
(2) w ∈ bdlW i f f w − λ1 <W ∀λ > 0.

Lemma 3.7. Let W be a Du-subset of X, and φ+, φ− be the function defined by (6) and (7). Then the following
assertions are true:
(1)If y ∈ bduW then φ+(w,−y) ≤ 0 f or all w ∈W.
(2)If y ∈ bdlW then φ−(w,−y) ≥ 0 f or all w ∈W.
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Proof. (1) Assume that y ∈ bduW and there exists w0 ∈ W such that φ+(w0,−y) > 0. Then we have
sup{λ ∈ R; λ1 ≤ w0 − y} > 0. So there exists λ0 > 0 such that λ01 ≤ w0 − y. This means that y < λ01+ y ≤ w0.
As y ∈ bduW and w0 ∈W, this make a contradiction by part (1) of Corollary 3.6, which completes the proof
of this part.
(2) Assume y ∈ bdlW and there exists w0 ∈ W s.t. φ−(w0,−y) < 0. Then inf{λ ∈ R; w0 − y ≤ λ1} < 0. So there
exists λ′0 < 0 such that w0 − y ≤ λ′01. This means that λ′01 + y ≥ w0. Therefore, w0 ≤ y + λ′01 ≤ y. Since W is a Du-set, we
obtained y + λ′01 ∈W.Which contradicts part (2) of Corollary 3.3. This completes the proof.

Lemma 3.8. Let W be a closed Du-subset of X, w0 ∈W and l = −w0. Then if φ+, φ− be the functions defined by (6)
and (7), the following assertions are true:
(1)If w0 ∈ bduW then φ+(w, l) ≤ 0 = φ+(w0, l) for all w ∈W.
(2)If w0 ∈ bdlW then φ−(w0, l) = 0 ≤ φ−(w, l) f or all w ∈W.

Proof. (1) Since w0 ∈ bduW, it follows, by Lemma 3.7 that

φ+(w, l) = φ+(w,−w0) ≤ 0, ∀w ∈W.

Also, we have
φ+(w0, l) = φ+(w0,−w0) = sup{λ ∈ R; λ1 ≤ w0 − w0} = 0.

(2) In a similar fashion, we observe

φ−(w0, l) = 0 ≤ φ−(w, l) f or all w ∈W.

Theorem 3.9. Let W be a closed Du-set, x ∈ X and r = dist(x,W). Then
(i) W is proximal and dist(x,W) = max{dist(x,W∗), dist(x,W∗)}.
(ii) PW(x) = PW∗ (PW(x)) = PW∗ (PW(x)).

Proof. Since W ⊆W∗ and W ⊆W∗,we obtained

dist(x,W) ≥ max{dist(x,W∗), dist(x,W∗)}. (14)

Let r′ = max{dist(x,W∗), dist(x,W∗)},we have x− r′1 ∈W∗, x+ r′1 ∈W∗ and x− r′1 ≤ x+ r′1.As W is a Du-set,
there exists w ∈ W such that x − r′1 ≤ w ≤ x + r′1. So, ∥x − w∥ ≤ r′. Since r = dist(x,W), we obtained r ≤ r′.
By (14) and r ≤ r′, we have dist(x,W) = max{dist(x,W∗), dist(x,W∗)}.
(ii) There is no significance to it since W ⊆W∗ and W ⊆W∗.

Now let W be a subset of X and x ∈ X.We set ΛW(x) := inf{λ ∈ R; x ∈W + λ1}. So, by Proposition[3.1, [12]],
If W be a downward set, then ΛW is a topical function, and if W be a closed downward set, then W = {x ∈
X; ΛW(x) ≤ 0}.

Theorem 3.10. Let W ⊆ X be a Du-set. Then there exist two topical functions f , 1 such that W = {x ∈ X; f (x) ≤
0 ≤ 1(x)}.

Proof. By Proposition 3.2 we have W = W∗ ∩ W∗. Set f (x) = ΛW∗ (x) and 1(x) = −Λ−W∗ (−x). Therefore,
W = {x ∈ X; f (x) ≤ 0 ≤ 1(x)}.

Theorem 3.11. Let W ⊆ X be a Du-set, x ∈ X and w0 ∈ W, r = ∥x − w0∥. Then the following assertions are
equivalent:
(i) w0 ∈ PW(x).
(ii) There exists a topical function f such that

f (w) ≤ 0 ≤ f (y) ∀w ∈W, ∀y ∈ B(x, r) (15)
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Proof. (i)⇒ (ii). Let B := B(x, r) and w0 ∈ PW(x).
Case 1. dist(x,W) = dist(x,W∗) = dist(x,W∗). Then B◦ ∩ (W∗ ∪W∗) = ∅.
As B◦ ∩W∗ = ∅, by Lemma 2.2 and part (3) of Theorem 2.4, for each y ∈ B◦, there exists ly ∈ X such that

φ+(w, ly) < 0 < φ+(y, ly) (∀w ∈W). (16)

Also, (16) is true for each y ∈ (bdB\bdW∗). For y ∈ bdB ∩ bdW∗, by part (1) of Lemma 3.8, we obtained

φ+(w,−y) ≤ 0 ≤ φ+(y,−y) (∀w ∈W),

in this case, we set ly = −y. Consider f := supy∈B φ
+(., ly).

Case 2. dist(x,W) = dist(x,W∗). Then B◦ ∩W∗ = ∅, so by part (3) of Theorem 2.4, for all y ∈ B◦ there exists
ly ∈ X such that

φ+(w, ly) < 0 < φ+(y, ly) (∀w ∈W).

Also (16) is true for y ∈ (bdB\bdW∗), since B◦ ∩W∗ = ∅. If y ∈ bdB ∩ bdW∗ by part (1) of Lemma 3.8 we have

φ+(w,−y) ≤ 0 ≤ φ+(y,−y) (∀w ∈W),

in this case, we set ly = −y. Set f := supy∈B φ
+(., ly).

Case 3. dist(x,W) = dist(x,W∗). Then B◦ ∩W∗ = ∅, so by part (3) of Theorem 2.4 we have

φ−(y, ly) < 0 < φ−(w, ly) (∀w ∈W).

So,

−φ−(w, ly) < 0 < −φ−(y, ly) (∀w ∈W). (17)

Also (17) is true for each y ∈ bdB such that y < W∗ by part (3) of Theorem 2.4, since B◦ ∩W∗ = ∅. If y ∈ bdB,
y ∈W∗ then by part (2) of Lemma 3.8

φ−(y,−y) ≤ 0 ≤ φ−(w,−y) (∀w ∈W)

in this case, set ly = −y. Consider f := supy∈B −φ−(., ly). Therefore for cases 1,2,3, we have (15).
Now we show that f ̸ con1∞. Suppose there exists x0 ∈ X such that f (x0) = ∞. Then, by definition of f
( f (x) = supy∈B φ

+(x, y)) we haveφ+(x0, y) ≥M, for some y ∈ B and all M ≥ 0. In contradiction with boundary
φ+, this statement is not true.
(ii)⇒ (i). As f is topical, by Theorem 2.6, for x − r1 there exists l0 ∈ X such that

φ+(w, l0) ≤ f (w), f (x − r1) = φ+(x − r1, l0) (∀w ∈W). (18)

By (15) and (18), we obtained

φ+(w, l0) ≤ f (w) ≤ 0 ≤ f (x − r1) = φ+(x − r1, l0) (∀w ∈W).

So,
φ+(w, l0) ≤ 0 ≤ φ+(x − r1, l0) = φ+(x, l0) − r,

since φ+ is plus-homogeneous. Then, φ+(x, l0) ≥ r. By (9), we have

r1 ≤ φ+(x, l0)1 ≤ x + l0. (19)

Let w ∈W be arbitrary, tw := φ+(w,−x)1 + x,we obtained tw ≤ w since φ+(w,−x)1 ≤ w − x. So,

φ+(tw, l0) ≤ φ+(w, l0) ≤ 0 (20)
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since φ+ is increasing. By (19) and (20) we have

φ+(tw,−x) ≤ φ+(tw, l0 − r1) = φ+(tw, l0) − r ≤ 0 − r = −r,

since φ+ is topical. Therefore,

−r ≥ φ+(tw,−x) = φ+(φ+(w,−x)1 + x,−x)
= φ+(w,−x) + φ+(x,−x)
= φ+(w,−x)

since φ+ is plus-homogeneous and φ+(x,−x) = 0. So, φ+(w,−x) ≤ −r < 0. Also,

r ≤ |φ+(w,−x)| = |φ+(w,−x) − φ+(x,−x)| < ∥x − w∥.

Then,
∥x − w0∥ = r ≤ ∥x − w∥, (∀w ∈W),

which completes the proof.

Now let x ∈ X and set x̂ := {x + λ1 : λ ∈ R}.

Proposition 3.12. Let x ∈ X such that x̂ ∩W , ∅. Then the following assertions are true:
(1) x ∈W∗

∪W∗.
(2) If x ∈W∗ then x − r1 ∈ PW(x).
(3) If x ∈W∗ then x + r1 ∈ PW(x).

Proof. (1). As x̂∩W , ∅, then there exists λ0 ∈ R such that w0 = x+λ01 ∈W. So, x < w0 or x > w0. Therefore
x ∈W∗ or x ∈W∗ i.e. x ∈W∗

∪W∗.
(2). Let w0 ∈W and r = ∥w0 − x∥, since W is proximal. We have

x ≤ w0 + r1. (21)

As we see in the proof of part (1) there exists λ0 ∈ R such that x + λ01 ∈ W. We show that λ0 < 0. Let
λ0 > 0. Since x ∈ W∗, there exists w1 such that w1 < x. So, w1 < x < x + λ01. Thus x ∈ W. In other
words, this is a contradiction. Since ∥x − (x + λ01)∥ = |λ0| = −λ0 ≥ r, then λ0 < −r. By (21) we obtained
w = x + λ01 ≤ x − r1 ≤ w0. So, x − r1 ∈W. Therefore, x − r1 ∈ PW(x).
(3). It is similar to what was stated in (2).

Corollary 3.13. Let W be a closed Du-subset of X, x̂ ∩W , ∅ and x ∈W∗. Then

d(t,W) = min{λ ≥ 0 : t − λ1 ∈W}.

Proof. Let A = {λ ≥ 0; t − λ1 ∈ W}. If t ∈ W then t − 01 = t ∈ W and so min A = 0 = d(t,W). Suppose that
t <W, then r := d(t,W) > 0. Let λ > 0 be arbitrary such that t − λ1 ∈W. Thus we have

λ = ∥λ1∥ = ∥t − (t − λ1)∥ ≥ d(t,W) = r.

Since, by Proposition 3.12, t− r1 ∈W it follows that r ∈ A.Hence, min A = r,which completes the proof.

4. Applying Optimization Theory to Non-convex Du-sets

Convexity plays a critical role in optimization theory due to the inherent separation properties of convex
sets and the linear approximation properties of convex functions. The historical development of convex
analysis was primarily motivated by its application to convex optimization problems. However, the impor-
tance of non-convex optimization has increased significantly in recent years. This change acknowledges
the fact that not all optimization problems can be easily formulated in the context of convex sets.
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Monotonicity analysis establishes itself as another valuable tool in the mathematical framework used
to analyze systems in various fields, including economics and engineering. This framework demonstrated
by its successful exploration in recent studies. Notably, Hansen et al. [2] further explored its application,
while monotonic optimization was first introduced in Robinov et al. [13] and developed in detail in two
seminal papers by Tuy et al. [[17], [18]].

This section uses the monotonic optimization framework to provide a valuable application for dealing
with optimization problems defined on Du-sets. Notably, the fact that Du-sets may not exhibit convexity
presents a significant challenge for traditional optimization techniques. We will demonstrate the efficacy
of this approach by focusing on a specific example within the class of Du-sets.

A monotonic optimization problem is an optimization problem of the form

max{h(x) | fi(x) ≤ 0, i = 1, ..., j , 1i(x) ≥ 0 i = j + 1, ...,m x ∈ [a, b], } (22)

where the objective function h(x) and the constraint functions fi(x), 1i(x) are increasing functions on the box
[a, b] ∈ Rn.

By setting f (x) = max{ f1(x), ..., f j(x)} and 1(x) = min{1 j+1, ..., 1m(x)} Problem (22) is transformed into:

max{h(x) | f (x) ≤ 0 ≤ 1(x), x ∈ [a, b]},

where f , 1, h are increasing functions.
Leveraging Theorem 3.10,we can now reformulate optimization problem (22) into the following equiv-

alent form:
max{h(x) | x ∈W}

where W is a closed bounded Du-subset of Rn
+.

Tuy was solved a monotonic optimization problem, over a normal set, (recall a set G is normal if x ∈ G then
[0, x] ⊂ G), by using the “separation property” of normal sets which is analogous to the separation property
of convex sets. One of the previously obtained results was that, any convex set can be approximated as
accurately as desired by a nested sequence of polyhedra. Tuy et al addressed this issue by proposing an
algorithm for the outer approximation of polyblocks. , which is analogous to the algorithms for the outer
approximation of polyhedra, but do not quite match them.
The basic idea of polyblock outer approximation algorithms is to construct a sequence of polyblocks ρi such
that:

ρ1 ⊃ ρ2 ⊃ ... ⊃ ρk ⊃W.

Recall a set ρ ⊂ Rn
+ is called a polyblock if it is a union of a finite number of boxes [0, z], where z ∈ T and

|T| < +∞. The set T is called the vertex set of the polyblock.
Let W be a Du-subset ofRn

+. By proposition 3.2, W =W∗ ∩W∗. We have 0 ∈W∗ and W∗ ∩Rn
+ is a normal set.

Leveraging the aforementioned properties, the polyblock algorithm (see [15],[22]) is applicable to all
Du-subsets ofRn

+. In particular, it is well-suited for addressing problems involving non-convex Du-subsets.
We present a slight modification of this algorithm tailored for Du-sets:

Algorithm1: Polyblock Outer Approximation Algorithm
1: Input: An upper semicontinuous increasing function f (.) : W ⊂ Rn

+ → R,where W is a compact Du-set.
2: Output: an ε−optimal solution
3: Initialization: Let the initial polyblock ρ1 be box [0, b] that encloses W. The vertex set τ1 = {b}. Let ε ≥ 0
be a small positive number CBV0 = −∞, k = 0.
4: repeat
5: k = k + 1.
6: From τk, select zk ∈ ar1max{ f (z) | z ∈ τk}.
7: πW(zk) = λzk, λ = max{α > 0 | αzk ∈W}.
8: if πW(zk) = zk, i.e., zk ∈W then
9: x̄k = zk and CBVk = f (zk).
10: else
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11: IfπW(zk) ∈W and f (πW(zk)) ≥ CBVk−1, then let the curent best solution x̄k = πW(zk) and CBVk = f (πW(zk)).
Otherwise, x̄k = x̄k−1 and CBVk = CBVk−1.
12: Let x = πW(zk) and τk+1 = (τk⧹τ∗) ∪ {vi = v + (xi − νi)ei

| v ∈ τ∗, i ∈ {1, ...,n}},where τ∗ = {v ∈ τk | v > x}.
13 : end if
14 : until | f (zk) − CBVk| ≤ ε.
15 :Let x∗ = x̄k and terminate the algorithm.

To illustrate how the Algorithm works, we give the following example:

Example 4.1. Consider the problem

max x1x2

subject x1, x2 ≥ 0,
x2 ≤ 4 and x1 ≤ 2,
x1 + x2 ≤ 4 and 2 < x1,

x1 ≤ 3.

In fact max{x1x2 | (x1, x2) ∈ W}, where W = {(x1, x2) | 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 4} ∪ {2 < x1 ≤ 3, x1 + x2 ≤ 4} is
a Du-set. To solve this problem with ε = 0/001, Our proposed algorithm is Algorithm 1. We show the steps of the
Algorithm in the following table:

k τk+1 zk πW(zk) f (zk) CBVk d = | f (zk) − CBVk|

k = 0 {(5, 5)} (5, 5) (2, 2) 25 4 21
k = 1 {(2, 5), (2, 2), (5, 2) (2, 5) ( 8

5 , 4) 10 32
5 3.6

k = 2 {( 8
5 , 5), (2, 4), (2, 2), (5, 2)} (5, 2) ( 20

7 ,
8
7 ) 10 32

5 3.6
k = 3 {( 8

5 , 5), (2, 4), (2, 2), (5, 8
7 ), ( 20

7 , 2)} (2, 4) (2, 4) 8 8 0

Thus x∗ = (2, 4) is an optimal solution.
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