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Abstract. This article delves into the construction of an optimal interpolation formula designed for
approximating functions within the Hilbert space L(2)

2 (0, 1). This space encompasses functions that are
square integrable with a second generalized derivative in the interval [0, 1]. The interpolation formula
takes the form of a linear combination of function values and their first-order derivative at equidistant
nodes within the interval [0, 1]. The coefficients are determined by minimizing the norm of the error
functional in the dual space L(2)∗

2 (0, 1). This error functional is defined as the disparity between the function
and its approximation.

Key outcomes of the study include explicit expressions for the coefficients and the norm of the error
functional. The optimization problem is methodically formulated and solved, resulting in a system of linear
equations for the coefficients. Analytical solutions are achieved, yielding a clear expression for the optimal
coefficients.

Furthermore, integrating the obtained optimal interpolation formula over the interval [0, 1], yields the
Euler-Maclaurin quadrature formula. The application of these results is demonstrated in estimating the
error of the interpolation formula for functions in L(2)

2 (0, 1).

1. Introduction

A numerical interpolation technique aims to approximate a function based on available data at distinct
points. This data may encompass both function values and diverse derivatives. In the present context,
emphasis is solely on local interpolation, achieved through the utilization of low-order polynomials. The
term ”local” signifies that data is exclusively derived from the vicinity of the point where the function value
is being estimated.

The history of spline functions is rooted in the work of drafting technicians, who often had to draw
a smoothly turning curve between points on a drawing (see, for example, [14]). This process is called
wrapping, and it can be done with several special devices, such as a French curve made of plastic, which
presents the drafter with several curves of various curvatures to choose from.

2020 Mathematics Subject Classification. Primary 41A05, 41A15; Secondary 65D30, 65D32.
Keywords. Sobolev space; an extremal function; the error functional; optimal interpolation formulas; Euler-Maclaurin quadrature

formula.
Received: 05 February 2024; Accepted: 24 March 2024
Communicated by Miodrag Spalević
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Long wooden slats were also used, passed through the control points with the help of weights laid on
the draftsman’s table and attached to the slats. Weights were called ducks, and wooden planks were called
splines as early as 1891. The elasticity of the wooden slats allowed them to bend only slightly as they
passed through the given points. Essentially, the wood solved the differential equation and minimized the
strain energy. The latter is known to be a simple function of curvature. The mathematical theory of these
curves owes much to early explorers, especially Isaac Schoenberg in the 1940s and 1950s. Other vital names
associated with the early development of the subject (i.e. before 1964) are Garrett Birkhoff, C. de Boor, J. H.
Ahlberg, E. N. Nilson, H. Garabedian, R. S. Johnson, F. Landis, A. Whitney, J. L. Walsh, and J.K. Holladay.
The first book to systematically expose the theory of splines was [2]. This book presented the theory of
polynomial splines of odd degrees, and further, the theory of generalized splines was discussed.

It should be noted that when studying polynomial splines of odd degree, algebraic and variational
approaches are possible: 1) the algebraic approach studies in detail the systems of linear equations defining
splines and 2) the variational approach uses the internal properties of splines and the leading integral
relations between functions from the classes K(n)(a, b) and K(2n)(a, b) and approximating splines (see Chapter
6 of [2]), where K(m)(a, b) is a class of functions f (x) defined on the segment [a, b], having an absolutely
continuous (n − 1)-st derivative and an n-th derivative belonging to the space L2(a, b). The first approach
was mainly used to study cubic and bicubic splines. The approach based on intrinsic properties is used to
study generalized splines.

The present work is devoted to constructing an optimal interpolation formula with derivative based on
variational methods. First, we give the definition of a generalized spline from the book [2].

Let L be a linear differential operator given by the formula

L ≡ an(x)
dn

dxn + an−1(x)
dn−1

dxn−1 + . . . + a0(x),

where the functions a j(x) ( j = 0, 1, . . . ,n) belong to Cn[a, b] and an(x) , 0 on the segment [a, b]. Denote by L∗

the operator adjoint to L:

L∗ ≡ (−1)n dn

dxn {an(x)·} + (−1)n−1 dn−1

dxn−1 {an−1(x)·} + . . . + a0(x).

Definition 1.1. If the∆ : a = x0 < x1 < . . . < xN = b mesh is given on the segment [a, b], then the generalized defect
spline k (0 ≤ k ≤ n) with respect to ∆ is a function S∆(x) from the class K(2n−k)(a, b) satisfying differential equation

L∗LS∆ = 0 (1)

on each open interval (xi−1, xi) (i = 1, 2, . . . ,N). To say that the spline S∆(x) has order 2n when it is necessary to
specify the order of the operator L∗L that defines S∆(x).

If k = 0 and the coefficients of the operator L are sufficiently smooth, then the spline S∆(x) has continuous
derivatives of all orders and satisfies the equation (1) everywhere on [a, b]; in this case, the continuity of the
(2n− 1)th derivative implies continuity of 2n-th and all higher derivatives. Thus, for this important class of
differential operators, the condition that the defect vanishes is equivalent to the continuity of all derivatives
of the spline. For ordinary splines (defect 1), breaks in the (2n− 1)-th derivative are allowed only at the grid
nodes.

Next, we discuss some recent results on splines.
It should be noted the work [40] provided an overview of the results on the convergence of the interpo-

lation process for polynomial splines and derivatives for 50 years until 2013.
Digital bitmaps often need to be rendered at higher and lower resolutions. Digital image resampling

is an integral part of image processing. The most efficient and sufficiently accurate image resampling
methods can create strong fluctuations near sharp color transitions. To improve this, [9] considered tension
splines. The presented spline stretching procedure provides an elegant solution to image resampling by
constructing a smooth approximation with a clear non-oscillatory discontinuity resolution. To demonstrate
the effectiveness of the proposed algorithm, numerical results are given on real digital images.
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In [15], a hyperbolic stretched spline was defined as a solution to a differential multipoint boundary value
problem. A discrete hyperbolic stretched spline was obtained using difference analogues of differential
operators; Its calculation does not require exponential functions, even if its continuous extension is still a
spline of hyperbolic type. In that paper, the main computational aspects were considered, and the main
features of this approach were shown.

Most papers discuss fourth-order tension splines applied to a convex (or monotonic) interpolation
problem or a two-point boundary value problem for ordinary differential equations. Higher-order tension
splines are described in several articles, but no appendices are given. A possible reason for this is the lack
of an appropriate algorithm for their evaluation. In [8], the authors presented an explicit algorithm for
evaluating splines with tension of arbitrary order. They paid special attention to the stable and accurate
calculation of hyperbolic functions used in the algorithm.

In [29] presented a family of trigonometric stretch curves similar to cubic Bezier curves. Some properties
of the proposed curves are discussed. The authors proposed an efficient interpolation method based on
stretched trigonometric splines with various properties such as unit splitting, geometric invariance, convex
hull property, etc. This new interpolation method is used to construct curves and surfaces. In addition, it is
possible to locally correct the shape of constructed curves and surfaces by changing the tension parameter,
which is included mainly because of its importance for object rendering. To illustrate the performance and
practical value of this model, as well as its accuracy and efficiency, the authors presented several simulation
examples.

In cubic interpolation splines theory, an algorithm requires only O(n) arithmetic operations. In addition,
smoothing cubic splines can be calculated using the Reinsch algorithm, which reduces their calculation to
interpolating cubic splines and performs arithmetic operations in O(n). [28] shows that many features of
tuning a polynomial cubic spline carry over to a broader class of L splines, where L is a 4th-order linear
differential operator with constant coefficients. The criteria are given so that the associated matrix R is
strictly diagonally dominant, implying a fast interpolation algorithm exists. At the end of the article, the
authors gave an example of two L splines interpolating data.

In the introductory part of these papers [6, 10, 16, 19, 20, 34], the problem of interpolation by classi-
cal methods, i.e., algebraic and trigonometric polynomials, was mentioned. The lack of interpolation by
algebraic polynomials is noted. Then, the problem of interpolation by polynomial splines, free from this
shortcoming, was given. At the same time, natural splines that give a minimum norm in Sobolev space and
fundamental splines in various Hilbert spaces were discussed. Finally, the problem of constructing optimal
interpolation formulas in Banach spaces was presented by Sobolev. These articles then discussed the con-
struction of optimal interpolation formulas that are exact for both algebraic polynomials and trigonometric
functions. The authors found an extremal function that allows us to obtain an upper bound for the error of
the interpolation formula in a given Hilbert space. A system of linear equations for the (optimal) coefficients
was obtained, which gives the smallest value of the error. The solution of this system gives the coefficients
of the optimal interpolation formula.

In [4, 5, 21], using the Sobolev method, the first part of the optimal interpolation problems were solved,
i.e., an explicit expression for the squared norm of the error functional was found, and a system of linear
algebraic equations for the coefficients of the optimal interpolation formula was obtained. In the work [5],
the problem of constructing optimal interpolation formulas in a Hilbert space was studied. Here, using
the Sobolev method, an algorithm was given for solving a system of linear algebraic equations for the
coefficients of optimal interpolation formulas.

In the paper [30] using S.L. Sobolev’s method interpolation splines minimizing the semi-norm in a
Hilbert space were constructed. Explicit formulas for coefficients of interpolation splines were obtained.
The obtained interpolation spline was exact for polynomials of degree m − 2 and e−x. Also some numerical
results were presented.

In the work [13], using S.L. Sobolev’s method, interpolation Dm-splines that minimizes the expression∫ 1

0 (φ(m)(x))2dx in the L(m)
2 (0, 1) space are constructed. Explicit formulas for the coefficients of the interpolation

splines are obtained. The obtained interpolation spline is exact for polynomials of degree m − 1. Some
numerical experiments were presented. Moreover the connection between the obtained interpolation
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splines and the optimal quadrature formulas were shown.
Several works are devoted to the construction of optimal quadrature formulas based on the Sobolev

method and their application. For instance, the calculation of Fourier coefficients (see, [11, 12]), numerical
integration of highly oscillatory integrals (see, [22–24, 26, 32, 41]), in the papers [1, 33] the optimal quadrature
formulas with derivatives for approximate solution of a singular integral equation of the first kind with
Cauchy kernel, the optimal quadrature formulas for approximate integration fractional integrals [17, 18, 38]
were constructed, etc.

Additionally, achieving a high order of approximation requires the incorporation of optimal interpola-
tion formulas that include derivatives. Various researchers have undertaken the challenge of developing
such optimal interpolation formulas, as discussed by Shadimetov, Hayotov, and Nuraliev(2019) [31].

Further, the remaining sections of this article are organized as follows. In the Section 2, definitions of
some mathematical concepts that will be used in this article are given. In the Section 3, the problem of
constructing an interpolation formula with derivative is posed. In the Section 4, the norm of the error
functional of the optimal interpolation formula is found. In the fifth section, the minimum value of the
norm of the error functional is obtained by finding the conditional extremum of a multivariable Lagrange
function. In the sixth section, an algorithm of finding the coefficients of the interpolation formula is
presented. Finally, in the Section 7, exactness of optimal interpolation formula is discussed and some
numerical results are considered.

2. Mathematical preliminaries

To construct a discrete operator, we utilize the principles of generalized functions and definitions in [39].
Discrete argument functions
Below we use mainly the concept of discrete argument functions and operations on them. The theory

of discrete argument functions was presented in [35, 36]. We provide a few definitions of functions with
discrete arguments to ensure comprehensiveness.

Definition 2.1. The function φ[β] is a function of discrete argument if it is given on some set of integer values of
β.

Definition 2.2. The inner product of two discrete argument functions φ[β] and ψ[β] is given by

[
φ[β], ψ[β]

]
=

∞∑
β=−∞

φ[β] · ψ[β],

if the series on the right-hand side converges absolutely.

Convolution
The convolution of φ and ψ is represented as φ(x) ∗ ψ(x), which denotes the operator using the symbol

∗. To compute the convolution of arbitrary continuous functions φ and ψ, follow the steps outlined below

φ(x) ∗ ψ(x) =

+∞∫
−∞

φ(x − y) · ψ(y)dy =

+∞∫
−∞

ψ(x − y) · φ(y)dy.

Definition 2.3. The convolution of two discrete functions φ[β] and ψ[β] is the inner product

φ[β] ∗ ψ[β] =
+∞∑
γ=−∞

φ[γ]ψ[β − γ] =
+∞∑
γ=−∞

φ[β − γ]ψ[γ].
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The Dirac delta-function
The Dirac delta-function, also known as the unit impulse, is a generalized function defined over the real

line. It is zero everywhere except at zero and the integral of the function over the entire real line is equal to
one. The Dirac delta-function possesses the following properties

δ(hx) = h−1δ(x),

δ(x − a) f (x) = δ(x − a) f (a),

δ(α)(x) ∗ f (x) = f (α)(x),

ϕ0(x) =
+∞∑
β=−∞

δ(x − β),
+∞∑
β=−∞

e2πixβ =

+∞∑
β=−∞

δ(x − β).

3. Statement of the problem

3.1. Optimal interpolation formula in the space L(1)
2 (0, 1)

Assuming that, given the table of the values φ(xβ), β = 0, 1, . . . ,N of functions φ at points xβ ∈ [0, 1]
(xβ = hβ, h = 1/N). It is required approximate functions φ by another more simple function Pφ, i.e.

φ(x) � Pφ(x) =
N∑
β=0

Cβ(x)φ(xβ), (2)

in the Sobolev space L(1)
2 (0, 1). The elements of this space are absolute continuous and square-integrable

with first-order generalized derivative. Here Cβ(x) and xβ(∈ [0, 1]) are the coefficients and the nodes of the
interpolation formula (2), respectively.

Theorem 3.1. ([3]) Coefficients of the optimal interpolation formula of the form (2) in the space L(1)
2 (0, 1) have the

form

Cβ(x) =
1

2h
(|x − h(β − 1)| + |x − h(β + 1)| − 2|x − hβ|), β = 0, 1, . . . ,N. (3)

These optimal coefficients (3) can be rewritten in the following form

C0(x) =
{

h−x
h , 0 ≤ x ≤ h,

0, h < x ≤ 1, (4)

Cβ(x) =


x+h−hβ

h , h(β − 1) < x ≤ hβ,
h−x+hβ

h , hβ < x ≤ h(β + 1),
0, otherwise,

β = 1, 2, . . . ,N − 1, (5)

CN(x) =
{

0, 0 ≤ x ≤ h(N − 1),
h−1+x

h , h(N − 1) < x ≤ 1. (6)
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3.2. The problem of constructing an interpolation formula with derivative

In this work, we consider the problem of interpolating a function φ(x) given by values of the function
and its first derivative

φ(xβ), φ′(xβ),

at points xβ, β = 0, 1, . . . ,N (0 = x0 < x1 < . . . < xN = 1) in the space L(2)
2 (0, 1). Here, L(2)

2 (0, 1) is the Hilbert
space of functions that, the fist-order generalized derivative is absolute continuous in the interval [0, 1] and
a second generalized derivative belongs L2(0, 1) space. The space is equipped with the norm

∥φ∥L(2)
2
=

√∫ 1

0
(φ′′(x))2dx.

So, we consider the problem of interpolation of functions φ(x) by a more straightforward function Pφ(x)
as follows

φ(x) � Pφ(x) =
N∑
β=0

Cβ(x)φ(xβ) +
N∑
β=0

Cβ,1(x)φ′(xβ). (7)

Here Cβ(x) are the coefficients of the optimal interpolation formula (2).
The error associated with the approximate equality (7) takes the form of a difference expressed as

Rφ(x) = φ(x) − Pφ(x). (8)

It should be noted that in this work, when we consider the approximation of the form (7), we impose the
condition that the class of functions that transforms this approximate equality into an exact equality in
L(2)

2 (0, 1) space should be the class of all linear functions. If we take φ1(x) = 1 and φ2(x) = x as the basis
functions for the space of all linear functions, the imposition of

Rφ1 (x) = φ1(x) − Pφ1 (x) = 0, (R, x) = 0, (9)
Rφ2 (x) = φ2(x) − Pφ2 (x) = 0, (R, 1) = 0, (10)

conditions on the error functional Rφ(x) is enough for the approximation formula (7) to be exact for all
linear functions.

Then in the space L(2)
2 (0, 1) at every fixed point x = z of the interval [0, 1] the error (8) defines a linear

continuous functional

R(x, z) = δ(x − z) −
N∑
β=0

Cβ(z) · δ(x − xβ) +
N∑
β=0

Cβ,1(z) · δ′(x − xβ), (11)

and

(R, φ) =

∫
∞

−∞

R(x, z) · φ(x)dx

=

∫
∞

−∞

δ(x − z) −
N∑
β=0

Cβ(z) · δ(x − xβ) +
N∑
β=0

Cβ,1(z) · δ′(x − xβ)

 · φ(x)dx

= φ(z) −
N∑
β=0

Cβ(z) · φ(xβ) −
N∑
β=0

Cβ,1(z) · φ′(xβ).



A.R. Hayotov et al. / Filomat 38:23 (2024), 8305–8322 8311

In order to construct an optimal interpolation formula in the form of (7), it is imperative to compute
the norm |R|L(2)

2
of the error functional (11). This necessity arises from the fact that, according to the

Cauchy-Schwarz inequality, the estimation of the error (7) is expressed by the norm as follows:

∥(R, φ)∥ ≤ ∥R∥L(2)∗
2
· ∥φ∥L(2)

2
.

It is easy to see that the norm ∥R∥L(2)∗
2

depends on the coefficients Cβ,1(z). Then it should be found the smallest
value of the norm ∥R∥L(2)∗

2
by the coefficient Cβ,1. That is, it should be calculated the quantity

inf
Cβ,1
∥R∥L(2)∗

2
. (12)

The coefficients C̊β,1 reaching the value (12) we call the optimal coefficients.
Thus, consequently

• we calculate the norm ∥R∥L(2)∗
2

,

• we find C̊β,1 which gives (12).

4. The error functional of the interpolation formula

To calculate ∥R∥L(2)∗
2

, we use the extremal function UR(x) [35–37] satisfying the following equality

(R,UR) = ∥R∥L(2)∗
2
· ∥UR∥L(2)

2
,

here,
UR(x) = R(x) ∗ G2(x) + p1x + p0,

where p0, p1 are unknown real coefficients and

G2(x) =
|x|3

12
.

Now we calculate the convolution

R(x) ∗ G2(x) =

∫
∞

−∞

R(y) · G2(x − y)dy

= G2(x − z) −
N∑
β=0

Cβ(z)G2(x − xβ) −
N∑
β=0

Cβ,1(z)G′2(x − xβ).

We calculate the convolution in the above equation separately∫
∞

−∞

δ(y − z) −
N∑
β=0

Cβδ(y − xβ) +
N∑
β=0

Cβ,1δ′(y − xβ)

 · |x − y|3

12
dx

=

∫
∞

−∞

δ(y − z) −
N∑
β=0

Cβδ(y − xβ) +
N∑
β=0

Cβ,1δ′(y − xβ)

 · sgn(x − y)(x − y)3

12
dx

=

∫
∞

−∞

δ(y − z) −
N∑
β=0

Cβδ(y − xβ) +
N∑
β=0

Cβ,1δ′(y − xβ)

 · sgn(y − x)(y − x)3

12
dx

= G2(x − z) −
N∑
β=0

Cβ
|x − xβ|3

12
−

N∑
β=0

Cβ,1
sgn(xβ − x)(xβ − x)2

4
.
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So,

R(x) ∗ G2(x) =
|x − z|3

12
−

N∑
β=0

Cβ
|x − xβ|3

12
+

N∑
β=0

Cβ,1
sgn(x − xβ)(x − xβ)2

4
. (13)

Then the extremal function has the following form

UR(x) =
|x − z|3

12
−

N∑
β=0

Cβ
|x − xβ|3

12
+

N∑
β=0

Cβ,1
sgn(x − xβ)(x − xβ)2

4
+ p1x + p0.

Taking into account (9), (10) and above last expression, we have

(R,UR) =

∫
∞

−∞

R(x) ·UR(x)dx =
∫
∞

−∞

R(x) ·
(
R(x) ∗ G2(x) + p1x + p0

)
dx

=

∫
∞

−∞

R(x) · (R(x) ∗ G2(x)) dx + p1(R, x) + p0(R, 1)

=

∫
∞

−∞

R(x) · (R(x) ∗ G2(x)) dx. (14)

Using expression (13), from expression (14) we obtain

(R,UR) =
∫
∞

−∞

δ(x − z) −
N∑
γ=0

Cγ · δ(x − xγ) +
N∑
γ=0

Cγ,1 · δ′(x − xγ)


×

 |x − z|3

12
−

N∑
β=0

Cβ
|x − xβ|3

12
+

N∑
β=0

Cβ,1
sgn(x − xβ)(x − xβ)2

4

 dx

=
|z − z|3

12
−

N∑
β=0

Cβ
|z − xβ|3

12
+

N∑
β=0

Cβ,1
sgn(z − xβ)(z − xβ)2

4

−

N∑
γ=0

Cγ
|xγ − z|3

12
+

N∑
β=0

N∑
γ=0

CβCγ
|xγ − xβ|3

12
−

N∑
γ=0

N∑
β=0

CγCβ,1
sgn(xγ − xβ)(xγ − xβ)2

4

−

N∑
γ=0

Cγ,1
sgn(xγ − z)(xγ − z)2

4
+

N∑
γ=0

N∑
β=0

Cγ,1Cβ
sgn(xγ − xβ)(xγ − xβ)2

4

−

N∑
β=0

N∑
γ=0

Cβ,1Cγ,1
sgn(xγ − xβ)(xγ − xβ)

2
.

So, we have

(R,UR) = −
N∑
β=0

N∑
γ=0

Cβ,1Cγ,1
|xβ − xγ|

2
+ 2

N∑
β=0

Cβ,1
N∑
γ=0

Cγ
sgn(xβ − xγ)(xβ − xγ)2

4

−2
N∑
β=0

Cβ,1
sgn(xβ − z)(xβ − z)2

4
+

N∑
β=0

N∑
γ=0

CβCγ
|xβ − xγ|3

12
− 2

N∑
β=0

Cβ
|xβ − z|3

12

= −

 N∑
β=0

N∑
γ=0

Cβ,1Cγ,1
|xβ − xγ|

2
−

N∑
β=0

N∑
γ=0

CβCγ
|xβ − xγ|3

12
+ 2

N∑
β=0

Cβ
|xβ − z|3

12

−2
N∑
β=0

Cβ,1

 N∑
γ=0

Cγ
sgn(xβ − xγ)(xβ − xγ)2

4
−

sgn(xβ − z)(xβ − z)2

4


 .
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We also have the following equalities

(R, 1) =

∫
∞

−∞

R(x)1dx =
∫
∞

−∞

δ(x − z) −
N∑
β=0

Cβδ(x − xβ) +
N∑
β=0

Cβ,1δ′(x − xβ)

 1dx

= 1 −
N∑
β=0

Cβ −
N∑
β=0

Cβ,1(1)′ = 1 −
N∑
β=0

Cβ = 0.

Then
N∑
β=0

Cβ = 1,

(R, x) =

∫
∞

−∞

R(x)xdx =
∫
∞

−∞

δ(x − z) −
N∑
β=0

Cβδ(x − xβ) +
N∑
β=0

Cβ,1δ′(x − xβ)

 xdx

= z −
N∑
β=0

Cβ · xβ −
N∑
β=0

Cβ,1 = 0.

From the last equation we have the following expression

N∑
β=0

Cβ,1 = z −
N∑
β=0

Cβ · xβ.

Therefore, we get the following expression for the norm of the error functional of the interpolation
formula (7)

∥R∥2
L(2)∗

2

= −

N∑
β=0

N∑
γ=0

Cβ,1Cγ,1
|xβ − xγ|

2
+

N∑
β=0

Cβ,1

 N∑
γ=0

Cγ
sgn(xβ − xγ)(xβ − xγ)2

2

−
sgn(xβ − z)(xβ − z)2

2

)
+

N∑
β=0

Cβ

 N∑
γ=0

Cγ
|xβ − xγ|3

12
−
|xβ − z|3

6

 . (15)

5. The minimum value of the norm of the error functional

In the following two conditions, it is necessary to find the smallest value of the expression (15) according
to the coefficients Cβ,1

N∑
β=0

Cβ = 1,

N∑
β=0

Cβ,1 = z −
N∑
β=0

Cβ · xβ. (16)

We find the minimum of expression (15) under condition (16). For this, we come to the problem of finding
the conditional extremum of a multivariable Lagrange function. We construct the Lagrange function in the
following form

Λ = ∥R∥2
L(2)∗

2

+ 2λ(R, x) = ∥R∥2
L(2)∗

2

+ 2λ

z −
N∑
β=0

Cβxβ −
N∑
β=0

Cβ,1

 .
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In that case, equating to 0 the partial derivatives of the functionΛ by Cβ,1 and λ, we get the following system
of the linear equations

N∑
γ=0

Cγ,1
|xβ − xγ|

2
+ λ = f (xβ), β = 0, 1, . . . ,N,

N∑
γ=0

Cγ,1 = z −
N∑
γ=0

Cγxγ,

here,

f (xβ) =
N∑
γ=0

Cγ
sgn(xβ − xγ)(xβ − xγ)2

4
−

sgn(xβ − z)(xβ − z)2

4
.

Also, considering
∑N
γ=0 Cγhγ = z, we get

∑N
γ=0 Cγ,1 = 0.

So, the last system takes the form

N∑
γ=0

Cγ,1
|hβ − hγ|

2
+ λ = f (hβ, z), β = 0, 1, . . . ,N, (17)

N∑
γ=0

Cγ,1 = 0, (18)

where

f (hβ, z) =
N∑
γ=0

Cγ
sgn(hβ − hγ)(hβ − hγ)2

4
−

sgn(hβ − z)(hβ − z)2

4
. (19)

6. An algorithm of finding the coefficients of the interpolation formula

In order to find an analytical solution to the system (17)-(18), we need the discrete analogue [35]

D1(hβ) =


0, |β| ≥ 2,
1
h2 , |β| = 1,
−

2
h2 , β = 0

(20)

of the differential operator d2

dx2 . The discrete operator (20) has the following properties [35]

D1(hβ) ∗ 1 = 0,
D1(hβ) ∗ (hβ) = 0,

hD1(hβ) ∗
|hβ|
2
= δd(hβ), (21)

where

δd(hβ) =
{

1, β = 0,
0, β , 0.

We consider the left-hand side of the expression (17) as a new function

U1(hβ) =
N∑
γ=0

Cγ,1 ·
|hβ − hγ|

2
+ λ. (22)
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Here, Cγ,1 is considered as a discrete function of the integer-valued argument. For γ = −1,−2, . . . and
γ = N + 1,N + 2, . . . we define Cγ,1 as 0.

As a result, based on the definition of the convolution operation of functions with discrete arguments,
from expression (22) we arrive at the following

U1(hβ) = Cβ,1 ∗
|hβ|
2
+ λ.

In that case, based on properties (21), we get the following

Cβ,1 = hD1(hβ) ∗U1(hβ). (23)

In order to find the coefficients Cβ,1 from relation (23), we must first determine the function U1(hβ) at all
integer values of β.

Based on (15), the equality

U1(hβ) = f (hβ, z) (24)

is valid for β = 0, 1, . . . ,N. Now we find representation of U1(hβ) at β < 0 and β > N.
Let β = −1,−2, . . .. Then from (22) we get the following

U1(hβ) =

N∑
γ=0

Cγ,1 ·
−(hβ − hγ)

2
+ λ = −

hβ
2

N∑
γ=0

Cγ,1 +
N∑
γ=0

Cγ,1 ·
hγ
2
+ λ

= λ +
1
2

N∑
γ=0

Cγ,1 · (hγ) = λ−. (25)

Similarly, for β = N + 1,N + 2, . . ., we have

U1(hβ) = λ −
1
2

N∑
γ=0

Cγ,1 · (hγ) = λ+. (26)

From (24)-(26), we get the following

U1(hβ) =


λ−, β = −1,−2, . . . ,
f (hβ, z), β = 0, 1, . . . ,N,
λ+, β = N + 1,N + 2, . . . .

It is easy to show that
λ− = f (0, z), λ+ = f (1, z).

So,

U1(hβ) =


f (0, z), β = −1,−2, . . . ,
f (hβ, z), β = 0, 1, . . . ,N,
f (1, z), β = N + 1,N + 2, . . . .

(27)

Using equation (27), we find coefficients Cβ,1 based on equation (23). Then

Cβ,1 = hD1(hβ) ∗U1(hβ) = h
∞∑

γ=−∞

D1(hβ − hγ) ·U1(hγ),

Cβ,1 = h

 N∑
γ=0

D1(hβ − hγ) f (hγ, z) +
∞∑
γ=1

D1(hβ + hγ) f (0, z) +
∞∑
γ=1

D1(h(N + γ) − hβ) f (1, z)

 .
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From the above expression, for β = 0 we have the following

C0,1 = h

 N∑
γ=0

D1(hγ) · f (hγ, z) +
∞∑
γ=1

D1(hγ) · f (0, z) +
∞∑
γ=1

D1(h(N + γ)) · f (1, z)


= h

[
D1(0) · f (0, z) +D1(h) · f (h, z) +D1(h) · f (0, z)

]
= h

[
−

2
h2 · f (0, z) +

1
h2 · f (h, z) +

1
h2 · f (0, z)

]
=

1
h

[ f (h, z) − f (0, z)].

Thus,

C0,1 =
1
h

( f (h, z) − f (0, z)). (28)

Now, from (28) in cases where β = 1, 2, . . . ,N − 1, we have the following

Cβ,1 = h
N∑
γ=0

D1(hβ − hγ) · f (hγ, z)

= h
[
D1(h) · f (h(β − 1), z) +D1(0) · f (hβ, z) +D1(h) · f (h(β + 1), z)

]
=

1
h
[

f (h(β − 1), z) − 2 f (hβ, z) + f (h(β + 1), z)
]
.

Then,

Cβ,1 =
1
h
[

f (h(β − 1), z) − 2 f (hβ, z) + f (h(β + 1), z)
]
, β = 1, 2, . . . ,N − 1. (29)

Finally, from (28) for β = N we get the following

CN,1 = h

 N∑
γ=0

D1(hN − hγ) · f (hγ, z) +
∞∑
γ=1

D1(h(N + γ)) · f1(0) +
∞∑
γ=1

D1(hγ) · f (1, z)


= h

[
D1(0) · f (1, z) +D1(h) · f ((N − 1)h, z) +D1(h) · f (1, z)

]
.

Thus we get the following

CN,1 =
1
h

[ f (1 − h, z) − f (1, z)]. (30)

Taking into account equality (19), simplifying the expressions (28), (29), and (30) obtained for the
coefficients, we get the following result.

Theorem 6.1. Coefficients of the optimal interpolation formula of the form (7) in the space L(2)
2 (0, 1) have the form

C0,1(z) =
{

z(h−z)
2h , 0 ≤ z ≤ h,

0, h < z ≤ 1,

Cβ,1(z) =


(z−hβ)2+h(z−hβ)

2h , h(β − 1) < z ≤ hβ,
−(z−hβ)2+h(z−hβ)

2h , hβ < z ≤ h(β + 1),
0, otherwise,

β = 1, 2, . . . ,N − 1,

CN,1(z) =
{

0, 0 ≤ z ≤ h(N − 1),
(z−1)(z−1+h)

2h , h(N − 1) < z ≤ 1.

In this way, we have the optimal interpolation formula

Pφ(x) =
N∑
β=0

(
Cβ(x)φ(xβ) + Cβ,1(x)φ′(xβ)

)
in the space L(2)

2 (0, 1), which is exact for any linear function.
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7. RESULTS AND DISCUSSION

7.1. The exactness of the interpolation formula for the quadratic function
Is the optimal interpolation formula

Pφ(z) �
N∑
β=0

1∑
k=0

Cβ,k(z) · φ(k)(xβ)

exact to the function φ(x) = x2?
To answer this question we must determine the correctness of the following equality, let’s analyze it

step by step

Pφ(z)(z) =
N∑
β=0

1∑
k=0

Cβ,k(z) · φ(k)(xβ) = z2. (31)

We check that the equality (31) is appropriate for hβ ≤ z ≤ hβ+h for the cases β = 0, 1, ...,N−1, separately.
Initially, we consider 0 ≤ z ≤ h, then

Pz2 (z) =
N∑
β=0

Cβ,0(z) · (hβ)2 +

N∑
β=0

Cβ,1(z) · 2(hβ)

= C0,0(z) · 02 + C1,0(z) · h2 + C0,1(z) · 2 · 0 + C1,1(z) · 2h = C1,0(z) · h2 + C1,1(z)2h.

Taking into account (4),(5),(6) and Theorem 6.1

C1,0(z) =


z
h , 0 ≤ z ≤ h,

2h−z
h , h < z ≤ 2h,

0, 2h < z ≤ 1,

C1,1(z) =


(z−h)2+h(z−h)

2h , 0 ≤ z ≤ h,
−(z−h)2+h(z−h)

2h , h < z ≤ 2h,
0, 2h < z ≤ 1,

and simplifying the following expression

Pz2 (z) = C1,0(z)h2 + C1,1(z)2h =
1
h
· z · h2 +

1
4h
· (2(z − h)2 + 2h(z − h)) · 2h = z2.

So, when 0 ≤ z ≤ h we get Pz2 (z) = z2.
Now we consider the case where h(k − 1) ≤ z ≤ hk, k = 2, . . . ,N − 1. In this case, four terms remain in

the expression Pφ(z)

Pφ(z) =

N∑
β=0

Cβ,0(z) · (hβ)2 +

N∑
β=0

Cβ,1(z) · 2hβ

= Ck−1,0(z) · (h(k − 1))2 + Ck,0(z) · (hk)2 + Ck−1,1(z) · 2(h(k − 1)) + Ck,1(z) · 2hk

=
1
h

(hk − z) · h2(k − 1)2 +
1
h

(z − h(k − 1)) · (hk)2 +
2h(k − 1)

4h
· (−2(z − h(k − 1))2 + 2h(z − h(k − 1)))

+
2hk
4h
· (2(z − hk)2 + 2h(z − hk)) = h(k − 1)2(hk − z) + hk2(z − h(k − 1))

+(k − 1)(−(z − h(k − 1))2 + h(z − h(k − 1))) + k · ((z − hk)2 + h(z − hk)) = z2.

Similarly, when h(N − 1) ≤ z ≤ 1 it is easy to show that Pz2 (z) = z2.

Remark 7.1. The optimal interpolation formula (2) is exact to the function φ(x) = x2.
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7.2. Integration of the optimal interpolation formula (7)

We find the form of the quadrature formula corresponding to the optimal interpolation formula (7). For
this, we integrate the optimal interpolation formula (7) over [0, 1]∫ 1

0
φ(z)dz �

∫ 1

0

 N∑
β=0

Cβ(z)φ(xβ) +
N∑
β=0

Cβ,1(z)φ′(xβ)

 dz

=

N∑
β=0

∫ 1

0
Cβ(z)dz · φ(xβ) +

N∑
β=0

∫ 1

0
Cβ,1(z)dz · φ′(xβ)

=

N∑
β=0

Aβφ(xβ) +
N∑
β=0

Aβ,1φ
′(xβ). (32)

Taking into account (4),(5),(6) and Theorem 6.1, initially, we calculate for β = 0

φ(x0) ·
∫ 1

0
C0(z)dz + φ′(x0) ·

∫ 1

0
C0,1(z)dz

= φ(x0)
(∫ h

0
(1 −

z
h

)dz +
∫ 1

h
0dz

)
+ φ′(x0)

(∫ h

0
(
z
2
−

z2

2h
)dz +

∫ 1

h
0dz

)
= φ(x0) ·

h
2
+ φ′(x0) ·

h2

12
.

So, we have A0 =
h
2 ; A0,1 =

h2

12 .
Now, we consider the cases 1 ≤ β ≤ N − 1

φ(xβ) ·
∫ 1

0
Cβ(z)dz + φ′(xβ) ·

∫ 1

0
Cβ,1(z)dz

= φ(xβ)
[∫ h(β−1)

0
0dz +

∫ 1

h(β+1)
0dz +

∫ hβ

h(β−1)
Cβ(z)dz +

∫ h(β+1)

hβ
Cβ(z)dz

]
+φ′(xβ)

[∫ h(β−1)

0
0dz +

∫ 1

h(β+1)
0dz +

∫ hβ

h(β−1)
Cβ,1(z)dz +

∫ h(β+1)

hβ
Cβ,1(z)dz

]
= φ(xβ)

[(
z2

2h
+ (1 − β)z

) ∣∣∣∣∣hβ
h(β−1)

+

(
(1 + β)z −

z2

2h

) ∣∣∣∣∣h(β+1)

hβ

]
+
φ′(xβ)

2h

[(
(z − hβ)3

3
+

h(z − hβ)2

2

) ∣∣∣∣∣hβ
h(β−1)

+

(
−

(z − hβ)2

3
+

h(z − hβ)2

2

) ∣∣∣∣∣h(β+1)

hβ

]
= φ(xβ) · h + φ(xβ) · 0.

Thus we get the following coefficients Aβ = h, Aβ,1 = 0, β = 1,N − 1.
As well as, we calculate the case β = N

φ(xN)
∫ 1

0
CN(z)dz + φ′(xN)

∫ 1

0
CN,1(z)dz

= φ(xN)
∫ 1

h(N−1)

h − 1 + z
h

dz + φ′(xN)
∫ 1

h(N−1)

(z − 1)2 + h(z − 1)
2h

dz

= φ(xN) ·
h
2
+ φ′(xN) ·

(
−h2

12

)
,
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and we have AN =
h
2 , AN,1 = −

h2

12 .
Thus, the following is true.

Theorem 7.2. Coefficients of quadrature formula (32) with the equal spaced nodes xβ = hβ have the following form

Aβ(z) =


h
2 , β = 0,
h, 1 ≤ β ≤< N − 1,
h
2 , β = N,

Aβ,1(z) =


h2

12 , β = 0,
0, 1 ≤ β ≤< N − 1,
−

h2

12 , β = N,

We note here that the coefficients in Theorem 7.2 are the coefficients of the Euler-Maclaurin quadrature
formula [7, 27]. Also, the Euler-Maclaurin-type optimal quadrature formulas were obtained in work [25].

Remark 7.3. The quadrature formula (32) is exact to the functions 1, x, andx2.

This remark can be easily demonstrated∫ 1

0
z2dz = A0(h · 0)2 + A1(h · 1)2 + . . . + AN(h ·N)2

+A0,1(2h · 0) + A1,1(2h · 1) + . . . + AN,1(2h ·N)

= h · h2 + h · 4h2 + h · 9h2 + . . . +
h
2
·N2
· h2 + 2 ·

(
−

h2

12

)
=

1
3
.

7.3. Numerical results
We use the theoretical results obtained above to approximate several functions numerically. We also

compare the numerical results with some results obtained in similar work.

Example 7.4. We analyze the approximation of the function φ(x) = x3 using the optimal interpolation formula (7)
in the interval [0, 1] with a step size h = 1

N for both N = 10 and N = 100.

(a) N = 10 (b) N = 100

Figure 1: The absolute error |z3
− Pz3 (z)| for N = 10 and N = 100.

Example 7.5. We analyze the approximation of the function φ(x) = sin(x) using the optimal interpolation formula
(7) in the interval [0, 1] with a step size h = 1

N for both N = 10 and N = 100.
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(a) N = 10 (b) N = 100

Figure 2: The absolute error | sin(z) − Psin(z)(z)| for N = 10 and N = 100.

Example 7.6. We consider the approximation of the function φ(x) = ex using the optimal interpolation formula (7)
in the interval [0, 1] with a step size h = 1

N for both N = 10 and N = 100.

(a) N = 10 (b) N = 100

Figure 3: The absolute error | exp(z) − Pexp(z)(z)| for N = 10 and N = 100.

In conclusion, the order of approximation of the constructed optimal interpolation formula is O(h3). The
obtain results can be applied to approximation boundary-value problems for ordinary differential equations
using the Rayleigh-Ritz Method. Here, one can use coefficients of the optimal interpolation formula as basis
functions.
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