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Abstract.
Let X,Y be two sets of sequences with real or complex entries, and (X,Y) the set of matrices (with real or

complex entries) to map X into Y. Let λ and µ be speeds of the convergence, i.e.; monotonically increasing
positive sequences. In this paper, we give necessary and sufficient conditions for a matrix A ∈ (X,Y), if X is
the subset of the set of convergent sequences defined by λ, and Y is the subset of the certain Maddox space
defined by µ.

1. Introduction

Let X,Y be two sequence spaces and A = (ank) be a matrix with real or complex entries. Throughout
this paper we assume that indices and summation indices run from 0 to ∞ unless otherwise specified. If
for each x = (xk) ∈ X the series

Anx =
∑

k

ankxk

converge and the sequence Ax = (Anx) belongs to Y, we say that the matrix A transforms X into Y. By (X,Y)
we denote the set of all matrices which transform X into Y. Let ω be the set of all real or complex valued
sequences. Further we need the following well-known subspaces of ω: c - the space of all convergent
sequences, c0 - the space of all sequences converging to zero, l∞ - the space of all bounded sequences, and

l1 := {x = (xn) :
∑

n

|xn| < ∞}.

Let throughout this paper λ = (λk) be a positive monotonically increasing sequence, i.e.; the speed of
convergence. Following Kangro [11], [12] a convergent sequence x = (xk) with

lim
k

xk := s and vk = λk (xk − s) (1.1)
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is called bounded with the speed λ (shortly, λ-bounded) if vk = O (1) (or (vk) ∈ l∞), and convergent with the
speed λ (shortly, λ-convergent) if there the finite limit

lim
k

vk := b

exists (or (vk) ∈ c). Following the authors of the current paper (see [1]), a convergent sequence x = (xk)
with the finite limit s is called absolutely convergent with speed λ (or shortly, absolutely λ-convergent), if
(vk) ∈ l1. We denote the set of all λ-bounded sequences by lλ∞, the set of all λ-convergent sequences by cλ,
and the set of all absolutely λ-convergent sequences by lλ1 . Moreover, let

cλ0 := {x = (xk) : x ∈ cλ and lim
k
λk(xk − s) = 0}.

It is not difficult to see that
lλ1 ⊂ cλ0 ⊂ cλ ⊂ lλ∞ ⊂ c.

In addition to it, for unbounded sequence λ these inclusions are strict. For λk = O (1), we get cλ = lλ∞ = c.
Let e := (1, 1, ...), ek := (0, ..., 0, 1, 0, ...), where 1 is in the k-th position, and λ−1 := (1/λk). We note that

e, ek, λ−1
∈ cλ; e, ek

∈ lλ1 ∩ cλ0 .

Let p := (pk) be a sequence of strictly positive numbers, and let

c0(p) := {x = (xk) : lim
k
|xk|

pk = 0},

l∞(p) := {x = (xk) : |xk|
pk = O(1)},

c(p) := {x = (xk) : lim
k
|xk − l|pk = 0 for some l ∈ C},

l(p) := {x = (xk) :
∑

k

|xk|
pk < ∞}.

The sets c0(p), l∞(p), c(p) and l(p) are known as Maddox spaces (see, for example, [15], [16] and [19]). The
Maddox spaces are also the paranormed spaces if p is bounded. Good overview on the paranormed spaces,
including the Maddox spaces, has been given, for example, in [9] and [17]. If pk ≡ 1, then

c0(p) = c0, c(p) = c, l∞(p) = l∞, l(p) = l1.

Definition 1.1. We say that a convergent sequence x = (xk) with the finite limit s is paranormally bounded with
speed λ (shortly, paranormally λ-bounded), if (vk) ∈ l∞(p).

Definition 1.2. We say that a convergent sequence x = (xk) with the finite limit s is paranormally convergent with
speed λ (shortly, paranormally λ-convergent), if (vk) ∈ c(p).

Definition 1.3. We say that a convergent sequence x = (xk) with the finite limit s is paranormally zero-convergent
with speed λ (shortly, paranormally λ–zero–convergent), if (vk) ∈ c0(p).

Definition 1.4. We say that a convergent sequence x = (xk) with the finite limit s is paranormally absolutely
convergent with speed λ (shortly, paranormally absolutely λ-convergent), if (vk) ∈ l(p).

We note that Definitions 1.1 - 1.3 first are presented in [18]. The set of all paranormally λ-bounded
sequences we denote by (l∞(p))λ, the set of all paranormally λ-convergent sequences by (c(p))λ, the set
of all paranormally λ-zero-convergent sequences by (c0(p))λ, and the set of all paranormally absolutely
λ-convergent sequences by (l(p))λ. It is easy to see that for pk ≡ 1 we have

(l∞(p))λ = lλ∞, (c(p))λ = cλ, (c0(p))λ = cλ0 , (l(p))λ = lλ1 .
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Let µ := (µk) be another speed of convergence, i.e., a monotonically increasing positive sequence. Matrix
classes (X,Y), where X is one of the sets lλ∞, cλ, cλ0 or lλ1 and Y is one of the sets lµ∞, cµ, cµ0 or lµ1 have been
characterized by Kangro in [11] and [12], and by the authors of the present work in [1] and [2]. A short
overview on the convergence with speed has been presented in [3] and [13].

We note that the results connected with boundedness, convergence and absolute convergence with
speed can be used in several applications. For example, in the theoretical physics such results can be used
for accelerating the slowly convergent processes, a good overview of such investigations can be found, for
example, from the sources [8] and [10]. These results also have several applications in the approximation
theory. Besides, in [4] and [5] such results are used for the estimation of the order of approximation of
Fourier expansions in Banach spaces.

Necessary and sufficient conditions for a matrix A ∈ (X,Y), if X is one of the sets lλ∞, cλ or cλ0 , and Y is one
of the sets (l∞(p))µ, (c(p))µ or (c0(p))µ have been presented in [18]. The present paper is the continuation of the
paper [18]. We give the characterization of matrix classes (lλ1 , (c0(p))µ), (lλ1 , (c(p))µ), (lλ1 , (l∞(p))µ), (lλ1 , (l(p))µ),
(cλ0 , (l(p))µ), (cλ, (l(p))µ) and (lλ∞, (l(p))µ).

2. Auxiliary results

For the proof of the main results we need some auxiliary results.

Lemma 2.1 ([7], p. 44, see also [20], Proposition 12). A matrix A = (ank) ∈ (c0, c) if and only if

lim
n

ank := ak f or all k, (2.1)∑
k

|ank| = O (1) . (2.2)

Moreover,

lim
n

Anx =
∑

k

akxk (2.3)

for every x = (xk) ∈ c0.

Lemma 2.2 ([7], p. 51, see also [20], Proposition 10). The following statements are equivalent:

(a) A = (ank) ∈ (l∞, c) .

(b) The conditions (2.1), (2.2) are satisfied and

lim
n

∑
k

|ank − ak| = 0.

(c) The condition (2.1) holds and the series
∑
k
|ank| converges uniformly in n.

Moreover, if one of statements (a)-(c) is satisfied, then the equation (2.3) holds for every x = (xk) ∈ l∞.

Lemma 2.3 ([7], p. 46, see also [20], Proposition 11). A matrix A = (ank) ∈ (c, c) if and only if conditions (2.1),
(2.2) are satisfied and there exists a finite limit

lim
n

∑
k

ank = τ.

Moreover, if limk xk = s for x = (xk) ∈ c, then

lim
n

Anx = sτ +
∑

k

(xk − s)ak.
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Lemma 2.4 ([6], Theorem 3.1 and [20], Propositions 17). A matrix A = (ank) ∈ (l1, c) if and only if condition (2.1)
is satisfied and ank = O (1). Moreover, equation (2.3) holds for every x = (xk) ∈ l1.

Lemma 2.5 ([17], Theorem 4.3 or [14], Theorem 5). Let p := (pk) be a bounded sequence of strictly positive
numbers and B = (bnk) a matrix with real or complex entries.

(a) B ∈
(
l1, l∞(p)

)
if and only if

|bnk|
pn = O(1). (2.4)

(b) B ∈
(
l1, c0(p)

)
if and only if

lim
n
|bnk|

pn = 0 f or every k, (2.5)

lim
M→∞

sup
n

sup
k

(
|bnk|

M

)pn

= 0. (2.6)

(c) A ∈
(
l1, c(p)

)
if and only if

bnk = O (1) (2.7)

and there exists complex numbers b1, b1, ... such that

lim
n
|bnk − bk|

pn = 0 f or every k, (2.8)

lim
M→∞

sup
n

sup
k

(
|bnk − bk|

M

)pn

= 0. (2.9)

Lemma 2.6 ([9], Theorem 5.1, 0. or [17], Remark 4.12 (b)). Let p := (pk) be a sequence satisfying the condition
pk ≥ 1 for every k and B = (bnk) a matrix with real or complex entries. Then B ∈

(
l1, l(p)

)
if and only if∑

n

|bnk|
pn = O(1). (2.10)

Lemma 2.7 ([17], Theorem 4.1 (b)). Let p := (pk) be a sequence satisfying the condition pk ≥ 1 for every k, and
B = (bnk) a matrix with real or complex entries. Then B ∈

(
l∞, l(p)

)
=

(
c0, l(p)

)
if and only if

∑
n

∣∣∣∣∣∣∣∑k∈K

bnk

∣∣∣∣∣∣∣
pn

= O(1), K is a f inite subset o f N. (2.11)

3. Matrix transforms from lλ
1

into (l∞(p))µ, (c(p))µ, (c0(p))µ and (l(p))µ

Now we are able to prove the main results of the paper. To formulate these results, further in the
present and next section we use the matrix B = (bnk) defined by

bnk :=
µn(ank − ak)
λk

,

provided that condition (2.1) holds. Further, throughout the paper we assume that p is a bounded sequence.
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Theorem 3.1. A matrix A = (ank) ∈
(
lλ1 , (l∞(p))µ

)
if and only if condition (2.4) holds and

Aek
∈ l∞(p))µ, (3.1)

Ae = (Ane) ∈ (l∞(p))µ, τn := Ane =
∑

k

ank, (3.2)

ank

λk
= O(1). (3.3)

Proof. Necessity. Assume that A ∈
(
lλ1 , (l∞(p))µ

)
. As e ∈ lλ1 and ek

∈ lλ1 , then conditions (3.1) and (3.2) hold.
Besides, (3.1) implies the validity of (2.1). Since, from (1.1) we have

xk =
vk

λk
+ s; s := lim

k
xk, (vk) ∈ l1

for every x := (xk) ∈ lλ1 , it follows that

Anx =
∑

k

ank

λk
vk + sτn. (3.4)

As (τn) ∈ (l∞(p))µ by (3.2), then the finite limit

τ := lim
n
τn (3.5)

exists. Hence, from (3.4) we obtain that the matrix

Aλ :=
(ank

λk

)
transforms this sequence (vk) ∈ l1 into c. In addition, for every sequence (vk) ∈ l1, the sequence (vk/λk) ∈ c0.
But, for (vk/λk), there exists a convergent sequence x := (xk) with s := limk xk, such that vk/λk = xk − s. So
we have proved that, for every sequence (vk) ∈ l1 there exists a sequence (xk) ∈ lλ1 such that vk = λk (xk − s).
Hence Aλ ∈ (l1, c). This implies, by Lemma 2.4, that condition (3.3) is satisfied and the finite limit

ϕ := lim
n

Anx =
∑

k

ak

λk
vk + sτ

exists for every x ∈ lλ1 . Writing

µn(Anx − ϕ) = µn

∑
k

ank − ak

λk
vk + sµn(τn − τ), (3.6)

we conclude, by (3.2) that the matrix B ∈ (l1, l∞(p)). Hence condition (2.4) is satisfied by Lemma 2.5 (a).

Sufficiency. Let condition (2.4) and conditions (3.1) - (3.3) be fulfilled. Then relation (3.4) also holds for
every x ∈ lλ1 and (τn) ∈ (l∞(p))µ by (3.2). In addition, Aλ ∈ (l1, c) and the finite limit ϕ exists for every x ∈ lλ1
by Lemma 2.4, since (3.1) and (3.3) hold. Hence relation (3.6) holds for every x ∈ lλ1 . As (2.4) is valid, then
B ∈ (l1, l∞(p)) by Lemma 2.5 (a). Therefore, due to (3.2), A ∈

(
lλ1 , (l∞(p))µ

)
.

Theorem 3.2. A matrix A = (ank) ∈
(
lλ1 , (c0(p))µ

)
if and only if conditions (2.5), (2.6), (3.3) hold and

Aek
∈ (c0(p))µ, (3.7)

Ae = (Ane) ∈ (c0(p))µ, τn := Ane =
∑

k

ank, (3.8)
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Proof is similar to the proof of Theorem 3.1. The only difference is that now instead of conditions (3.1) and
(3.2) are (3.7) and (3.8), and B ∈ (l1, c0(p)). Therefore instead of Lemma 2.5 (a) we use Lemma 2.5 (b).

Theorem 3.3. A matrix A = (ank) ∈
(
lλ1 , c(p))µ

)
if and only if conditions (2.7), (3.3) are satisfied,

Aek
∈ c(p))µ, (3.9)

Ae = (Ane) ∈ c(p))µ, τn := Ane =
∑

k

ank, (3.10)

and there exists complex numbers b1, b1, ... such that conditions (2.8) and (2.9) hold.
Proof is similar to the proof of Theorem 3.1. The only difference is that now instead of conditions (3.1) and
(3.2) are (3.9) and (3.10), and B ∈ (l1, c(p)). So instead of Lemma 2.5 (a) we use Lemma 2.5 (c).

Theorem 3.4. Let p = (pk) be a sequence satisfying the condition pk ≥ 1. A matrix A = (ank) ∈
(
lλ1 , (l(p))µ

)
if and

only if conditions (2.10), (3.3) are satisfied, and

Aek
∈ (l(p))µ, (3.11)

Ae = (Ane) ∈ (l(p))µ, τn := Ane =
∑

k

ank. (3.12)

Proof is similar to the proof of Theorem 3.1. The only difference is that now instead of conditions (3.1) and
(3.2) are (3.11) and (3.12), and B ∈ (l1, (l(p)). So instead of Lemma 2.5 (a) we use Lemma 2.6.

4. Matrix transforms from cλ
0
, cλ and lλ

∞
into (l(p))µ

In this section we characterize the matrix classes (cλ0 , (l(p))µ), (cλ, (l(p))µ) and (lλ∞, (l(p))µ).

Theorem 4.1. Let p = (pk) be a sequence satisfying the condition pk ≥ 1. A matrix A = (ank) ∈
(
lλ∞, (l(p))µ

)
if and

only if conditions (2.11), (3.11), (3.12) are satisfied, and∑
k

|ank|

λk
= O(1), (4.1)

lim
n

∑
k

|ank − ak|

λk
= 0. (4.2)

Proof is similar to the proof of Theorem 3.1. The only difference is that now instead of Aλ ∈ (l1, c) we have
Aλ ∈ (l∞, c), and instead of B ∈ (l1, (l∞(p)) we obtain B ∈ (l∞, (l(p)). Therefore instead of Lemma 2.4 we use
Lemma 2.2 (a) and (b), and instead of Lemma 2.5 (a) we use Lemma 2.7.

Remark 4.1. Using Lemma 2.3 (a) and (c) we obtain that conditions (4.1) and (4.2) can be replaced by the
condition

the series
∑

k

|ank|

λk
converges uniformly in n

in Theorem 4.1.

In the following we characterize the matrix class
(
cλ, (l(p))µ

)
.



P.N. Natarajan, A. Aasma / Filomat 38:23 (2024), 8039–8046 8045

Theorem 4.2. Let p = (pk) be a sequence satisfying the condition pk ≥ 1. A matrix A = (ank) ∈
(
cλ, (l(p))µ

)
if and

only if conditions (2.11), (3.11), (3.12), (4.1) are satisfied, and

Aλ−1
∈ (l(p))µ. (4.3)

Proof. Necessity. Assume that A ∈
(
cλ, (l(p))µ

)
. As ek

∈ cλ, e ∈ cλ and λ−1
∈ cλ, then conditions (3.11), (3.12)

and (4.3) hold. Besides, (3.11) implies the validity of (2.1). As equality (3.4) holds for every x := (xk) ∈ cλ,
and the finite limit (3.5) exists due to Ae ∈ (l(p))µ, then Aλ transforms this convergent sequence (vk) into c.
Similar to the proof of the necessity of Theorem 3.1, it is possible to show that, for every sequence (vk) ∈ c,
there exists a sequence (xk) ∈ cλ such that vk = λk (xk − s). Hence Aλ ∈ (c, c). This implies by Lemma 2.3 that
the finite limits ak and

aλ := lim
n

∑
k

ank

λk

exist, and that condition (4.1) is satisfied. With the help of (3.4), for every x ∈ cλ, we can write by Lemma
2.3 that

ϕ := lim
n

Anx = aλb +
∑

k

ak

λk
(vk − b) + τs, (4.4)

where s := limk xk and b := limk vk. Now, using (3.4) and (4.4), we obtain

µn(Anx − ϕ) = µn

∑
k

ank − ak

λk
(vk − b) + µn (τn − τ) s + µn

∑
k

ank

λk
− aλ

 b. (4.5)

As Ae ∈ (l(p))µ and Aλ−1
∈ (l(p))µ by (3.12) and (4.3), then B ∈ (c0, l(p)). Therefore we can conclude by

Lemma 2.7 that condition (2.11) holds.
Sufficiency. Suppose that conditions (2.11), (3.11), (3.12), (4.1) and (4.3) are satisfied. We note that relation
(3.4) holds for every x ∈ cλ and the finite limits ak, τ and aλ exist correspondingly by (3.11), (3.12) and
(4.3). As (4.1) is also satisfied, then Aλ ∈ (c, c) by Lemma 2.3, and therefore relations (4.4) and (4.5) hold
for every x ∈ cλ. As condition (2.11) holds, then B ∈ (c0, l1(p)) by Lemma 2.7. In addition, Ae ∈ (l(p))µ and
Aλ−1

∈ (l(p))µ correspondingly by (3.12) and (4.3). Thus, A ∈
(
cλ, (l(p))µ

)
.

Theorem 4.3. Let p = (pk) be a sequence satisfying the condition pk ≥ 1. A matrix A = (ank) ∈
(
cλ0 , (l(p))µ

)
if and

only if conditions (2.11), (3.11), (3.12) and (4.1) are satisfied.
Proof is similar to the proof of Theorem 4.2. We only note that that in this case λ−1 does not belong into
cλ0 .
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