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Abstract. Integral geometry problems involve finding a desired function from its integrals on a surface.
These problems are closely intertwined with the generalized Radon transform, and obtaining an inversion
formula for it is pivotal in solving integral geometry problems. The applications of integral geometry span
various fields, including tomography, radar, and radiology. Particularly noteworthy is the recovery of a
function from integrals over a parabola, which holds significance in reflection seismology. In our study, we
concentrate on the transform that maps a real-valued smooth function with compact support to integrals
over the paraboloid. This transform, along with its dual, can be expressed as convolutions of kernels and
given functions, and we have derived inversion formulas based on their isometric properties.

1. introduction

The integral geometry problem involves reconstructing a function from its integrals over a surface or
manifold. The Radon transform serves as the mathematical foundation for solving these problems and is
closely associated with the generalized Radon transform. Deriving the inversion formula for the Radon
transform, whether general or specific to certain integration regions, is crucial for solving integral geometry
problems, considering the geometric properties of the region.

For instance, variations of the Radon transform exist depending on the integration region, such as the
spherical Radon transform [11, 15, 20] and the conical Radon transform [2, 9, 21]. Applications of solving
integral geometry problems using the Radon transform extend to fields like tomography, radar, seismology,
and radiology. Cormack first proposed applying the method of reconstructing a function from the regular
Radon transform to radiology [3].

In reflection seismology, the Radon transform, also known as slant stack, is utilized to estimate geophys-
ical properties from reflected seismic waves [12, 16]. Notably, the parabolic slant stack has been explored for
its advantages in several studies [6–8]. For this reason, addressing the integral geometry problem described
below is meaningful.
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Problem. Let f be a smooth real valued function onRn+1 with compact support. Determine the function
f from the integrals

R f (u, v) =
∫
Pu,v

f (x, y)dx =
∫
Rn

f
(
x, v + p|x − u|2

)
dx

for u ∈ Rn, v ∈ R and a fixed p > 0, where

Pu,v = {(x, y) ∈ Rn
×R : y − v = p|x − u|2}.

For each vertex (u, v) ∈ Rn
× R, the transform R maps f to the integral of f on the paraboloid y − v =

Pu,v|x − u|2 which has the fixed focal length p, with respect to the variable x, not the surface element.
This is often referred to as the seismic parabolic Radon transform [23]. Numerous studies have explored
recovering a function from integrals on a parabola or paraboloid. For instance, Cormack investigated
the method to recover a function from integrals on a curve with a central axis rotating around the origin
[4, 5]. Denecker, Van Overloop, and Sommen proved the support theorem from integrals over the family
of isofocal parabolas, deriving the inversion formula [7]. Jollivet, Nguyen, and Truong found the inversion
formula from integrals on the parabola with a fixed symmetry axis [13]. There are studies on the method
to reconstruct a function from the connection of seismic parabolic Radon transform and the regular Radon
transform [18, 22]. Recent studies have focused on finding the inversion formula using the Fourier slice
theorem and the stability with Sobolev norm, as well as deriving it using the first kind of Volterra integral
equation [23].

Our study provides the method to find the inversion formula forR using the isometry property. Indeed,
several studies have explored methods using the isometry property for the spherical Radon transform[1, 14,
19]. We also provide the inversion formula for the dual of R in the same manner. Subsequent subsections
introduce relevant definitions, including those for the dual of R, while Section 2 presents the isometry
properties and inversion formulas for R and its dual.

1.1. Preliminaries

For 1 ∈ C∞(Rn+1) with compact support, the dual R# of R is defined by

R
#1(x, y) =

∫
Rn

∫
R

1(u, v)δ
(
y − v − p|x − u|2

)
dvdu =

∫
Rn

1
(
u, y − p|x − u|2

)
du;

then we have ∫
Rn

∫
R

R f (u, v)1(u, v)dudv =
∫
Rn

∫
R

f
(
x, y

) 
∫
Rn

∫
R

1(u, y − p|x − u|2)dvdu

 dydx.

For x ∈ Rn and y ∈ R, if we set

P
#
x,y = {(u, v) ∈ Rn

×R : v − y = −p|u − x|2,u ∈ Rn
},

then one can find

R
#1(x, y) =

∫
P#

x,y

1(u, v)du.

The transform Rmaps f to the integral of f on the convex downward paraboloid, but its dual R# maps 1 to
the integral of 1 on the convex upward paraboloid. The transform R is the exactly same with the operator
R1 dealt in [23]. Also, the dual R# coincides with the operator R2 in [23], except the condition of a given
function.
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On the other hand, let us denote the (partial) Riesz potential of f ∈ C∞(Rn+1) with compact support,
acting on the last variable, by Iα f , given by

F (Iα f )(ξ, ζ) = |ζ|−αF f (ξ, ζ), α < 1,

where the Fourier transform is defined by

F f (ξ, ζ) =
∫
Rn

∫
R

f (x, y)e−iyζe−ix·ξdydx.

2. Main results

The following theorem gives that each ofR f andR# f coincides exactly with the convolution of the given
function and a kernel.

Theorem 2.1. For f ∈ C∞(Rn+1) with compact support, we obtain

R f = K ∗ f and R# f = K#
∗ f ,

where K(x, y) = δ(p|x|2 + y) and K#(x, y) = K(x,−y).

From this with the symmetry of convolution, for f ∈ C∞(Rn+1) with compact support, we also obtain
RR

# f = R#
R f when one of the two sides is well-defined.

Proof. For u ∈ Rn and v ∈ R, simple integral computation gives

R f (u, v) =

∫
Rn

f (x, v + p|x − u|2)dx =
∫
Rn

∫
R

f (x, y)δ(y − v − p|x − u|2)dydx = K ∗ f (u, v).

Similarly, for x ∈ Rn and y ∈ R, we can easily get

R
# f (x, y) =

∫
Rn

f (u, y − p|x − u|2)dx = K#
∗ f (x, y).

Theorem 1 provides the isometry properties of R and R# f with respect to the regular L2 norm

|| f ||L2 =


∫
Rn

∫
R

| f (x, y)|2dydx


1
2

.

Theorem 2.2. For f ∈ C∞(Rn+1) with compact support, we have

∣∣∣∣∣∣ f ∣∣∣∣∣∣L2 =
( p
π

) n
2 ∣∣∣∣∣∣I− n

2
(
R f

)∣∣∣∣∣∣
L2 =

( p
π

) n
2
∣∣∣∣∣∣∣∣I− n

2

(
R

# f
)∣∣∣∣∣∣∣∣

L2
.

Proof. We can compute

FK (ξ, ζ) =
∫
Rn

∫
R

δ
(
p|x|2 + y

)
e−iyζe−ix·ξdydx =

∫
Rn

eipζ|x|2 e−ix·ξdx =
(
πi
pζ

) n
2

e−
i|ξ|2

4pζ
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since analytic continuation provides (see [17, page 19])

F [e−ax2
](ξ) =

√
π
a

e−
ξ2
4a for Re(a) ≥ 0 and ξ ∈ R.

It follows

F
(
R f

)
(ξ, ζ) = F

(
K ∗ f

)
(ξ, ζ) = FK (ξ, ζ)F f (ξ, ζ) =

(
πi
pζ

) n
2

e−
i|ξ|2

4pζ F f (ξ, ζ) .

and similarly,

F

(
R

# f
)

(ξ, ζ) = F
(
K#
∗ f

)
(ξ, ζ) =

(
π

ipζ

) n
2

e
i|ξ|2

4pζ F f (ξ, ζ) .

Using the Plancherel’s theorem, we get∣∣∣∣∣∣ f ∣∣∣∣∣∣2L2 =
1

(2π)n+1

∣∣∣∣∣∣F f
∣∣∣∣∣∣2

L2 =
1

(2π)n+1

( p
π

)n ∣∣∣∣∣∣|ζ| n2F (
R f

)∣∣∣∣∣∣2
L2 =

1

(2π)n+1

( p
π

)n ∣∣∣∣∣∣∣∣F [
I−

n
2
(
R f

)]∣∣∣∣∣∣∣∣2
L2

=
( p
π

)n ∣∣∣∣∣∣I− n
2
(
R f

)∣∣∣∣∣∣2
L2

and ∣∣∣∣∣∣ f ∣∣∣∣∣∣2L2 =
1

(2π)n+1

( p
π

)n ∣∣∣∣∣∣∣∣|ζ| n2F (
R

# f
)∣∣∣∣∣∣∣∣2

L2
=

( p
π

)n ∣∣∣∣∣∣∣∣I− n
2

(
R

# f
)∣∣∣∣∣∣∣∣2

L2
.

Before finding the inversion formula of R, we observe the following fact. This helps find the inversion
formula of R# from that of R.

Proposition 2.3. For α < 1 and for f ∈ C∞(Rn+1) with compact support, we have

IαR f = RIα f and IαR# f = R#Iα f .

Proof. For any ξ ∈ Rn and ζ ∈ R, we obtain

F
(
IαR f

)
(ξ, ζ) = |ζ|−αF

(
R f

)
(ξ, ζ) = |ζ|−αFK(ξ, ζ)F f (ξ, ζ) = FK(ξ, ζ)F

(
Iα f

)
(ξ, ζ)

= F
(
RIα f

)
(ξ, ζ).

In the same way, for any ξ ∈ Rn and ζ ∈ R, we can get

F

(
IαR# f

)
(ξ, ζ) = |ζ|−αFK#(ξ, ζ)F f (ξ, ζ) = F

(
R

#Iα f
)

(ξ, ζ).

Now we provide the inversion formulas for R and R#:

Corollary 2.4. For f ∈ C∞(Rn+1) with compact support, we have

f =
( p
π

)n
R

# [
I−n (
R f

)]
=

( p
π

)n
R

[
I−n

(
R

# f
)]
.

Proof. it suffices to prove the first equality. In fact, if the first equality holds, then R#
RI−n f is well-defined

and the second equality holds with Proposition 3 and commutativity ofR andR# mentioned below Theorem
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1. From Theorem 2, we have for 1 ∈ C∞
(
Rn+1

)
with compact support∫

Rn

∫
R

f (x, y)1(x, y)dydx =
( p
π

)n ∫
Rn

∫
R

I−
n
2
(
R f

)
(u, v)I−

n
2
(
R1

)
(u, v)dvdu

=
1

(2π)n+1

( p
π

)n ∫
Rn

∫
R

F
[
I−n (
R f

)]
(ξ, ζ)F

(
K ∗ 1

)
(ξ, ζ)dζdξ

=
( p
π

)n ∫
Rn

∫
R

I−n (
R f

)
(u, r)

(
K ∗ 1

)
(u, v)dvdu

=
( p
π

)n ∫
Rn

∫
R

∫
Rn

∫
R

I−n (
R f

)
(u, v)K(u − x, v − y)1(x, y)dvdudydx.

and hence

f (x, y) =
( p
π

)n ∫
Rn

∫
R

I−n (
R f

)
(u, v)K# (

x − u, y − v
)

dvdu

=
( p
π

)n
R

# [
I−n (
R f

)] (
x, y

)
.

Now we find the inversion formula when n is either odd or even. Since I−n = (−1)
n
2 ∂n

v for even n, we
have

f =
( p
π

)n
(−1)

n
2R

# [
∂n

v
(
R f

)]
=

( p
π

)n
(−1)

n
2R

[
∂n

v

(
R

# f
)]
.

On the other hand, noting I−n = (−1)
n−1

2 H∂n
v for odd n, where H is the Hilbert transform, and therefore

f =
( p
π

)n
(−1)

n−1
2 R

# [
H∂n

v
(
R f

)]
=

( p
π

)n
(−1)

n−1
2 R

[
H∂n

v

(
R

# f
)]
.

In particular, inversion formulas for n = 1 and n = 2 are, respectively,

f (x, y) =
p
π

∫
R

∫
R

∂v
(
R f

)
(u, v)

y − v − p(x − u)2 dvdu and

f (x1, x2, y) = −
( p
π

)2 ∫
R

∫
R

∂2
v
(
R f

) (
u1,u2, y − p

[
(x1 − u1)2 + (x2 − u2)2

])
du1du2.

3. Conclusion

Our results provide three facts: the first is that the transformR and its dualR# are convolutions of kernels
and the given smooth functions onRn+1 with compact support inRn+1; the second is that there are isometry
properties of I−

n
2R and I−

n
2R

#; the last is that we get the inversion formula of R. By the commutativity of
the Riezs potential, the transform R, and its dual R#, we also obtain the inversion formula of R#.
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