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The area of Hügelschäffer curves via Taylor series
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Abstract. In this paper, we give new Taylor approximative formulae for the area of the egg-shaped
parts of Hügelschäffer curves. Based on a parametrization of the Hügelschäffer curve, a formula for the
area of the egg-shaped part of such a curve is derived via elliptic integrals of the first and second kind.
Furthermore, new approximative formulae for calculating this area derived from standard and double
Taylor approximations are given. A representation of the value 1

π was also obtained using an appropriate
series.

1. Hügelschäffer curve Fq, e11

The Hügelschäffer curve [11] is an algebraic cubic curve given by the following equation

F : 2wxy2 + b2x2 + (a2 + w2)y2
− a2b2 = 0, (1)

where a, b,w > 0. In the papers [30], [31] and [33], a decomposition of this cubic curve is described:

F = Fe11 ∪ Fhyp. (2)

The egg-shaped part Fe11 of the curve is defined over [−a, a], and the hyperbolic part Fhyp of the curve
(which consists of two branches) is defined over (−∞, γ), where γ = − a2+w2

2w , see Fig. 1. It is easy to check
that γ < −a⇔ (a − w)2 > 0.

Let us consider just the non-degenerative cases of the Hügelschäffer cubic curve (1) as in [30] and [33].
Let w be the distance between the two circle centers when constructing the curve (w = |O1O2|, see Fig. 2).
Then, we consider the two cases (I) w < a and (II) w > a. The abscissa u at which the Hügelschäffer curve
reaches its extremes over the segment [−a, a] is defined in [33] with the following formula:

u =

 −w : w < a,

−a2/w : w > a.
(3)
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Figure 1: A Hügelschäffer curve F = Fe11 ∪ Fhyp; Source: ©First Author

Introducing the parameter q as:

q =
 1 : w < a,

a/w : w > a

 = √a
√

w
min{

√
a,
√

w }
max{

√
a,
√

w }
. (4)

Then, it is true that q ∈ (0, 1].
The relationship between u and q (i.e. (3) and (4)) is given as

u = −q2w. (5)

Only case (I) of the cubic curve Fe11 was considered by F. Hügelschäffer in the work [11], while case (II) was
introduced by M. Petrović in the thesis [30]. In this section we show that it is possible to unify these two
cases:

F q : 2q2wxy2 + q2b2x2 + (a2 + q4w2)y2
− a2b2q2 = 0, (6)

using the parameter q given by the formula (4). For the curve (6), the following:

Fq ≡ F (7)

holds if and only if

2q2w
2w

=
q2b2

b2 =
a2 + q4w2

a2 + w2 =
a2b2q2

a2b2 ⇐⇒

(
q2
− 1

) (
q2w2

− a2
)
= 0, (8)

i.e. the parameter q holds as defined in (4). Furthermore,

Fq = Fq, e11 ∪ Fq, hyp, (9)

where Fq, e11 is the egg-shaped part of Fq over [−a, a] and Fq, hyp is the hyperbolic-shaped part of Fq over
(−∞, γq), for γq = γ.
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From the geometric point of view, Hügelschäffer’s construction of the egg-shaped part of the curve is
defined using two non-concentric circles as considered in [11], [12], [30], [31], [37] and [38]. An analogous
construction for Fq, e11 is defined using the circlesK1 andK2 (see Fig. 2) given by the parametric equations

K1 :
 x1(t) = a cos t,

y1(t) = a sin t
and K2 :

 x2(t) = −q2w + q b cos t,

y2(t) = q b sin t
(10)

for t ∈ [0, 2π], such that the points Pt =
(
x(t), y(t)

)
∈ Fq, e11 have the following coordinates

Fq, e11 :

 x(t) = −q2w sin2 t + cos t
√

a2 − q4w2 sin2 t,

y(t) = q b sin t,
(11)

for t ∈ [0, 2π].

Figure 2: Hügelschäffer’s construction of an egg curve Fq, e11; Source: ©First Author

The parametrization (11), for 0 ≤ t ≤ π, determines the upper part F +q, e11 of curve Fq, e11 from point
P0 = (a, 0) to point Pπ = (−a, 0); while, for π ≤ t ≤ 2π, the lower part F −q, e11 of curve Fq, e11 is determined
from point Pπ = (−a, 0) to point P2π = P0 = (a, 0). Let us note that (5) holds for the abscissa of point
Pπ/2 = (−q2w, q b).

The upper part F +q, e11 can be further decomposed into an union of two disjunct portions

F
+

q, e11 = ℓ1 ∪ ℓ2, (12)

such that for 0≤ t<π/2 we get ℓ2 and for π/2≤ t≤πwe get ℓ1 (see Fig. 2).
Let us note that in the paper [33], surfaces A1 and A2 were considered for the egg-shaped part Fe11 of

the Hügelschäffer curve from (2) (i.e. Fq, e11 from (9) because (7) holds when q = 1) wherein the arc ℓ1 is
part of the boundary of surfaceA1 and arc ℓ2 is part of the boundary of surfaceA2.

2. The area of curve Fq, e11

In this paper, we give a new formula for calculating the area of the surface bound by the curve Fq, e11
using the elliptic integral of the first kind, [13]:

K(k) =

π/2∫
0

dθ
√

1 − k2 sin2 θ
, 0 ≤ k2 < 1,
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and the elliptic integral of the second kind, [13]:

E(k) =

π/2∫
0

√
1 − k2 sin2 θ dθ, 0 ≤ k2

≤ 1.

Let it be noted that for K and E, it holds that

K(k) = F
(
π
2
, k

)
and E(k) = E

(
π
2
, k

)
where F(θ, k) and E(θ, k) are elliptic integrals defined in [13] with the formulae 8.112/1 and 8.112/2. Let us
also note that inequalities for these elliptic integrals were given recently in [16].

If the values of the parameter t from π to 0 are considered, then the points (x(t), y(t)) are located on F +q, e11,
from Pπ = (−a, 0) to P0 = (a, 0). In view of this, let Aq, e11 denote the area of the surface bounded by the
curve Fq, e11 (see (11)), as given by the integral

Aq, e11 = 2

0∫
π

y(t) x′(t) dt = −2

π∫
0

y(t) x′(t) dt . (13)

Let

Aq, e11 = Aq, 2 +Aq, 1, (14)

where

Aq, 2 = −2

π/2∫
0

y(t) x′(t) dt (15)

and

Aq, 1 = −2

π∫
π/2

y(t) x′(t) dt . (16)

1. Firstly,Aq, 2 is calculated. Substituting x(t) and y(t) from (11) in (15), we get

Aq, 2 = 2

π/2∫
0

q b sin t
(

2 q2w sin t cos t + sin t
√

a2 − q4w2 sin2 t +
q4w2 sin t cos2 t√

a2 − q4w2 sin2 t

)
dt .

Let

I1 =

π/2∫
0

sin2 t cos t dt, (17)

I2 =

π/2∫
0

sin2 t

√
1 −

q4w2

a2 sin2 t dt, (18)



M. Petrović, B. Malešević / Filomat 38:23 (2024), 8053–8068 8057

I3 =

π/2∫
0

sin2 t cos2 t√
1 −

q4w2

a2 sin2 t

dt. (19)

Then

Aq, 2 = 4 q3w b I1 + 2 q a b I2 + 2
q5b w2

a
I3 . (20)

It holds that

I1 =
1
3

(21)

For I2, formula 2.583/4 from [13] is used and it follows that

I2 =

(
−

sin t cos t
3

√

1 − k2 sin2 t +
1 − k2

3k2 F(t, k) +
2k2
− 1

3k2 E(t, k)
)π/2
|
0

=
1 − k2

3k2 F(π2 , k) +
2k2
− 1

3k2 E(π2 , k) −
1 − k2

3k2 F(0, k) −
2k2
− 1

3k2 E(0, k)

=
1 − k2

3k2 K(k) +
2k2
− 1

3k2 E(k),

(22)

where k2 =
q4w2

a2 and it is true that 0 < k2 < 1.

For I3 formula 2.584/13 from [13] is used and it follows that

I3 =

(
−

sin t cos t
3k2

√

1 − k2 sin2 t +
2k2
− 2

3k4 F(t, k) +
2 − k2

3k4 E(t, k)
)π/2
|
0

=
2k2
− 2

3k4 F(π2 , k) +
2 − k2

3k4 E(π2 , k) −
2k2
− 2

3k4 F(0, k) −
2 − k2

3k4 E(0, k)

=
2k2
− 2

3k4 K(k) +
2 − k2

3k4 E(k),

(23)

where k2 =
q4w2

a2 and it is true that 0 < k2 < 1. Based on the previous, it holds that

Aq, 2 = 4 q3w b I1 + 2 q a b I2 + 2
q5b w2

a
I3

=
4
3

q3w b + 2 q a b
(

1 − k2

3k2 K(k) +
2k2
− 1

3k2 E(k)
)
+

+ 2
q5b w2

a

(
2k2
− 2

3k4 K(k) +
2 − k2

3k4 E(k)
)

=
2
3

a b q
((

1 −
1
k2

)
K(k) +

(
1 +

1
k2

)
E(k) + 2k

)
.

(24)

2. To calculateAq, 1, substituting x(t) and y(t) from (11) in (16), we get

Aq, 1 = 2

π∫
π/2

q b sin t
(

2 q2w sin t cos t + sin t
√

a2 − q4w2 sin2 t +
q4w2 sin t cos2 t√

a2 − q4w2 sin2 t

)
dt .
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Let

J1 =

π∫
π/2

sin2 t cos t dt, (25)

J2 =

π∫
π/2

sin2 t

√
1 −

q4w2

a2 sin2 t dt, (26)

J3 =

π∫
π/2

sin2 t cos2 t√
1 −

q4w2

a2 sin2 t

dt. (27)

Then

Aq, 1 = 4 q3w b J1 + 2 q a b J2 + 2
q5b w2

a
J3 . (28)

It holds that

J1 = −
1
3
, J2 =

π/2∫
0

cos2 t

√
1 −

q4w2

a2 cos2 t dt, J3 =

π/2∫
0

cos2 t sin2 t√
1 −

q4w2

a2 cos2 t

dt. (29)

Analogously to the previous

J2=
1−k2

3k2 K(k) +
2k2
−1

3k2 E(k)= I2, J3=
2k2
−2

3k4 K(k) +
2−k2

3k4 E(k)= I3, (30)

where k2 =
q4w2

a2 and it is true that 0 < k2 < 1. Thus, we obtain that

Aq, 1 = 4 q3w b J1 + 2 q a b J2 + 2
q5b w2

a
J3

=
2
3

a b q
((

1 −
1
k2

)
K(k) +

(
1 +

1
k2

)
E(k) − 2k

)
.

(31)

In all, the following theorem has been proven.

Theorem 2.1. For the areaAq, e11 of curve Fq, e11 it holds that:

Aq, e11 = Aq, 2 +Aq, 1 =
4
3

a b q
((

1 −
1
k2

)
K(k) +

(
1 +

1
k2

)
E(k)

)
(32)

and

Aq, 2 −Aq, 1 =
8
3

a b q k =
8
3

w b q3 =


8 w b/3 : w < a,
8

3 w2 b a3 : w > a;
(33)

where a, b, w are Hügelschäffer curve parameters and k =
q2w

a
.

Remark 2.2. Let us note that, for cases (I) and (II), the equality (33) is derived in [33] (p. 185).

Alongside the initial applications of Hügelschäffer curves in aero-engineering (see [7], [11]), recently,
there has been research on the applications of these curves in: architecture and civil engineering (see [30],
[32]); poultry industry, ornithology and bioengineering (see [15], [23], [24], [25], [26], [27], [28]); traffic
engineering (see [34]) and hydro-engineering (see [14], [33], [44]). To aid in the application of Hügelschäffer
curves and the practical usage of the area formulae for these curves, we have developed the applet [21].
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3. Taylor approximations of elliptic integrals

Let f : (α, β) −→ R be a real function. We state some definitions and characteristics according to [19].

Definition 3.1. Let T f , α+
n (x) be a Taylor polynomial for function f (x), of degree n ∈N0, in the right neighborhood of

point α. If, for the real function f : (α, β) −→ R, there exist finite limits f (i)(α+) = limx→α+ f (i)(x), for i ∈ {0, 1, ...,n}
then

T f , α+
n (x) =

n∑
i=0

f (i)(α+)
i!

(x − α)i (34)

is the first Taylor approximation of function f in the right neighborhood of point α, for n ∈N0, where

R f , α+
n (x) = f (x) − T f , α+

n−1 (x) (35)

is the remainder of the first Taylor approximation in the right neighborhood of point α.

Definition 3.2. Let T f , β−
n (x) be a Taylor polynomial for function f (x), of degree n ∈ N0, in the left neighborhood of

point β. If, for the real function f : (α, β) −→ R, there exist finite limits f (i)(β−) = limx→β− f (i)(x), for i ∈ {0, 1, ...,n}
then

T f , β−
n (x) =

n∑
i=0

f (i)(β−)
i!

(x − β)i (36)

is the first Taylor approximation of function f in the left neighborhood of point β, for n ∈N0, where

R f , β−
n (x) = f (x) − T f , β−

n−1 (x) (37)

is the remainder of the first Taylor approximation in the left neighborhood of point β.

Definition 3.3. For the polynomial of the form

T
f ;α+, β−

n (x) =

 T f , α+
n−1 (x) +

(x − α)n

(β − α)n R f , α+
n (β−) : n ≥ 1

f (β−) : n = 0
(38)

we say that it is the second Taylor approximation of function f in the right neighborhood of point α, for n ∈N0, while
the polynomial

T
f ; β−, α+

n (x) =

 T f , β−
n−1 (x) +

(x − β)n

(α − β)n R f , β−
n (α+) : n ≥ 1

f (α+) : n = 0
(39)

is the second Taylor approximation of function f in the left neighborhood of point β, for n ∈N0.

Theorem 3.4 (Theorem WD). Suppose that function f is real over (α, β), i.e. f : (α, β) −→ R and let n be a whole
natural number such that f (i)(α+) and f (i)(β−) exist, for i ∈ {0, 1, ...,n}.

Also suppose that (−1)(n) f (n)(x) is increasing over (α, β). Then, for each x ∈ (α, β) the following inequality holds:

T
f ; β−, α+

n (x) < f (x) < T f ; β−
n (x) (40)

and supposing that f (n)(x) is increasing over (α, β), then for each x ∈ (α, β) it holds that:

T
f ;α+, β−

n (x) > f (x) > T f ;α+
n (x) (41)

When the function (−1)(n) f (n)(x) is decreasing over (α, β), or when f (n)(x) is decreasing over (α, β) then for each
x ∈ (α, β) the reverse inequalities hold.
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The preceding theorem was proven by S. Wu and L. Debnath u [43]. In [19] and [20] some applications of
this statement were considered within the Theory of analytical inequalities, see also papers [4] and [9].

3.1 Taylor approximations of K and E elliptic integrals

Let us apply the previous consideration to elliptic integrals K(x) over (−1, 1) and E(x) over [−1, 1]. We
will use the well-known series expansions:

K(x) =
π
2

∞∑
i=0

(
(2i − 1)!!

(2i)!!

)2

x2i, (42)

for x∈ (−1, 1), see formula 8.113/1 in [13] and

E(x) =
π
2
−
π
2

∞∑
i=1

(
(2i − 1)!!

(2i)!!

)2 1
2i − 1

x2i, (43)

for x ∈ [−1, 1], see formula 8.114/1 in [13]. Let us note that the series expansion (43) has a radius of 1 and
that x = 1 can be included in the convergence domain, and that the series expansion (42) has a radius of 1
and that x = 1 can not be included in the convergence domain.

For the elliptic integral K(x), based on the series expansion (42), the first and second Taylor approximations
are obtained. The first Taylor approximation is:

TK, 0
n (x) =

π
2

[n/2]∑
i=0

(
(2i − 1)!!

(2i)!!

)2

x2i, (44)

where x∈ (−1, 1). For a fixed β∈ (0, 1), the second Taylor approximation in the right neighborhood of point
α = 0 is:

T
K; 0,β
n (x) =

 TK, 0
n−1(x) +

xn

βn

(
K(β) − TK, 0

n−1(β)
)

: n ≥ 1

K(β) : n = 0
, (45)

where x∈ [−β, β].

For the elliptic integral E(x), based on the series expansion (43), the first and second Taylor approximations
are obtained. The first Taylor approximation is:

TE, 0
n (x) =

π
2
−
π
2

[n/2]∑
i=1

(
(2i − 1)!!

(2i)!!

)2 1
2i − 1

x2i, (46)

where x∈ [−1, 1]. For a fixed β∈ (0, 1], the second Taylor approximation in the right neighborhood of point
α = 0 is:

T
E; 0, β
n (x) =

 TE, 0
n−1(x) +

xn

βn

(
E(β) − TE, 0

n−1(β)
)

: n ≥ 1

E(β) : n = 0
, (47)

where x∈ [−β, β].

According to [19], the following inequalities hold for the elliptic integral K(x) :

π
2
=TK, 0

0 (x)=TK, 0
1 (x) ≤ TK, 0

2 (x)=TK, 0
3 (x) ≤ . . . ≤ TK, 0

2i (x)=TK, 0
2i+1(x) ≤ . . .

≤ K(x) ≤

. . . ≤ T
K; 0, β
j (x) ≤ . . . ≤ TK; 0, β

3 (x) ≤ TK; 0, β
2 (x) ≤ TK; 0, β

1 (x) ≤ TK; 0, β
0 (x)=K(β)

(48)
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for a fixed β ∈ (0, 1) and an arbitrary x ∈ [−β, β]. Furthermore, according to [19] the following inequalities
hold for the elliptic integral E(x) :

π
2
=TE, 0

0 (x)=TE, 0
1 (x) ≥ TE, 0

2 (x)=TE, 0
3 (x) ≥ . . . ≥ TE, 0

2i (x)=TE, 0
2i+1(x) ≥ . . .

≥ E(x) ≥

. . . ≥ T
E; 0, β
j (x) ≥ . . . ≥ TE; 0, β

3 (x) ≥ TE; 0, β
2 (x) ≥ TE; 0, β

1 (x) ≥ TE; 0, β
0 (x)=E(β)

(49)

for a fixed β∈ (0, 1] and an arbitrary x∈ [−β, β].

In table 1, we list the explicit forms of the polynomials TK , 0
j (x) andTK; 0, β

j (x), for β ∈ (0, 1) and j = 0, 1, . . . , 10;

while, in table 2, we list the explicit forms of the polynomials TE, 0
j (x) and TE; 0, 1

j (x), for j = 0, 1, . . . , 10.

j TK , 0
j (x) T

K; 0 ,β
j (x) and CK = K(β) for β∈ (0, 1)

0 π
2

CK

1 π
2

TK; 0
0 (x)+

(
CK

β
−
π
2β

)
x

2 π
2
+
π
8

x2 TK; 0
1 (x)+

(
CK

β2 −
π

2β2

)
x2

3 π
2
+
π
8

x2 TK; 0
2 (x)+

(
CK

β3 −
π

2β3 −
π
8β

)
x3

4 π
2
+
π
8

x2+
9π
128

x4 TK; 0
3 (x)+

(
CK

β4
−
π

2β4
−
π

8β2

)
x4

5 π
2
+
π
8

x2+
9π
128

x4 TK; 0
4 (x)+

(
CK

β5 −
π

2β5 −
π

8β3 −
9π

128β

)
x5

6 π
2
+
π
8

x2+
9π
128

x4+
25π
512

x6 TK; 0
5 (x)+

(
CK

β6 −
π

2β6 −
π

8β4
−

9π
128β2

)
x6

7 π
2
+
π
8

x2+
9π
128

x4+
25π
512

x6 TK; 0
6 (x)+

(
CK

β7 −
π

2β7 −
π

8β5 −
9π

128β3 −
25π
512β

)
x7

8 π
2
+
π
8

x2+
9π
128

x4+
25π
512

x6+
1225π
32768

x8 TK; 0
7 (x)+

(
CK

β8 −
π

2β8 −
π

8β6 −
9π

128β4
−

25π
512β2

)
x8

9 π
2
+
π
8

x2+
9π
128

x4+
25π
512

x6+
1225π
32768

x8 TK; 0
8 (x)+

(
CK

β9 −
π

2β9 −
π

8β7 −
9π

128β5 −
25π

512β3 −
1225π
32768β

)
x9

10 π
2
+
π
8

x2+
9π
128

x4+
25π
512

x6+
1225π
32768

x8+
3969π
131072

x10 TK; 0
9 (x)+

(
CK

β10
−
π

2β10
−
π

8β8 −
9π

128β6 −
25π

512β4
−

1225π
32768β2

)
x10

Table 1.
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j TE, 0
j (x) T

E; 0, 1
j (x) and β = 1

0 π
2

1

1 π
2

TE, 0
0 (x) +

(
1 − π

2

)
x

2 π
2
−
π
8

x2 TE, 0
1 (x) +

(
1 − π

2

)
x2

3 π
2
−
π
8

x2 TE, 0
2 (x) +

(
1 − 3π

8

)
x3

4 π
2
−
π
8

x2
−

3π
128

x4 TE, 0
3 (x) +

(
1 − 3π

8

)
x4

5 π
2
−
π
8

x2
−

3π
128

x4 TE, 0
4 (x) +

(
1 − 45π

128

)
x5

6 π
2
−
π
8

x2
−

3π
128

x4
−

5π
512

x6 TE, 0
5 (x) +

(
1 − 45π

128

)
x6

7 π
2
−
π
8

x2
−

3π
128

x4
−

5π
512

x6 TE, 0
6 (x) +

(
1 − 175π

512

)
x7

8 π
2
−
π
8

x2
−

3π
128

x4
−

5π
512

x6
−

175π
32768

x8 TE, 0
7 (x) +

(
1 − 175π

512

)
x8

9 π
2
−
π
8

x2
−

3π
128

x4
−

5π
512

x6
−

175π
32768

x8 TE, 0
8 (x) +

(
1 − 11025π

32768

)
x9

10 π
2
−
π
8

x2
−

3π
128

x4
−

5π
512

x6
−

175π
32768

x8
−

441π
131072

x10 TE, 0
9 (x) +

(
1 − 11025π

32768

)
x10

Table 2.

3.2 Taylor approximations of D-elliptic integrals

For the process of determining a formula for the area Aq, e11 of curve Fq, e11, Taylor approximations of
D-elliptic integrals are of special interest. D-elliptic integrals are determined as follows

D (x) =


K(x) − E(x)

x2 : x ∈ (−1, 1)\{0}

0 : x = 0
, (50)

see formula 8.112/5 in [13]. For D-elliptic integrals, the series expansion

D (x) = π
∞∑

i=0

i + 1
2i + 1

(
(2i + 1)!!
(2i + 2)!!

)2

x2i, (51)

holds for x ∈ (−1, 1), see formula 8.115 in [13]. Let us note that the series expansion (51) has a radius of 1
and that x = 1 can not be included in the convergence domain.

For the elliptic integral D(x), based on the series expansion (51), the first and second Taylor approximations
are obtained. The first Taylor approximation is:

TD, 0
n (x) = π

[n/2]∑
i=0

i + 1
2i + 1

(
(2i + 1)!!
(2i + 2)!!

)2

x2i, (52)
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where x∈ (−1, 1). For a fixed β∈ (0, 1), the second Taylor expansion in the right neighborhood of point α = 0
is:

T
D; 0,β
n (x) =

 TD, 0
n−1(x) +

xn

βn

(
D(β) − TD, 0

n−1(β)
)

: n ≥ 1

D(β) : n = 0
, (53)

where x∈ [−β, β].

According to [19], the following inequalities hold for the elliptic integral D(x) :

π
4
=TD, 0

0 (x)=TD, 0
1 (x) ≤ TD, 0

2 (x)=TD, 0
3 (x) ≤ . . . ≤ TD, 0

2i (x)=TD, 0
2i+1(x) ≤ . . .

≤ D(x) ≤

. . . ≤ T
D; 0, β
j (x) ≤ . . . ≤ TD; 0, β

3 (x) ≤ TD; 0, β
2 (x) ≤ TD; 0, β

1 (x) ≤ TD; 0, β
0 (x)=D(β)

(54)

for a fixed β ∈ (0, 1) and an arbitrary x ∈ [−β, β]. In the following table, we list the explicit forms of the

polynomials TD, 0
j (x) and TD; 0, β

j (x), for β∈ (0, 1) and j = 0, 1, . . . , 10:

j TD, 0
j (x) T

D; 0, β
j (x) and CD = D(β) for β∈ (0, 1)

0 π
4

CD

1 π
4

TD; 0
0 (x)+

(
CD

β
−
π
4β

)
x

2 π
4
+

3π
32

x2 TD; 0
1 (x)+

(
CD

β2 −
π

4β2

)
x2

3 π
4
+

3π
32

x2 TD; 0
2 (x)+

(
CD

β3 −
π

4β3 −
3π
32β

)
x3

4 π
4
+

3π
32

x2+
15π
256

x4 TD; 0
3 (x)+

(
CD

β4
−
π

4β4
−

3π
32β2

)
x4

5 π
4
+

3π
32

x2+
15π
256

x4 TD; 0
4 (x)+

(
CD

β5 −
π

4β5 −
3π

32β3 −
15π
256β

)
x5

6 π
4
+

3π
32

x2+
15π
256

x4+
175π
4096

x6 TD; 0
5 (x)+

(
CD

β6 −
π

4β6 −
3π

32β4
−

15π
256β2

)
x6

7 π
4
+

3π
32

x2+
15π
256

x4+
175π
4096

x6 TD; 0
6 (x)+

(
CD

β7 −
π

4β7 −
3π

32β5 −
15π

256β3 −
175π
4096β

)
x7

8 π
4
+

3π
32

x2+
15π
256

x4+
175π
4096

x6+
2205π
65536

x8 TD; 0
7 (x)+

(
CD

β8 −
π

4β8 −
3π

32β6 −
15π

256β4
−

175π
4096β2

)
x8

9 π
4
+

3π
32

x2+
15π
256

x4+
175π
4096

x6+
2205π
65536

x8 TD; 0
8 (x)+

(
CD

β9 −
π

4β9 −
3π

32β7 −
15π

256β5 −
175π

4096β3 −
2205π
65536β

)
x9

10 π
4
+

3π
32

x2+
15π
256

x4+
175π
4096

x6+
2205π
65536

x8+
14553π
524288

x10 TD; 0
9 (x)+

(
CD

β10
−
π

4β10
−

3π
32β8 −

15π
256β6 −

175π
4096β4

−
2205π

65536β2

)
x10

Table 3.

Let us note that there is recent research into elliptic integrals of the first and second kind (and their
convexity, monotonicity, approximations, inequalities, applications, ...), see the papers: [1], [2], [5], [10],
[16], [18], [22], [29], [35], [40], [41], [45]- [50]. An approach to the approximate computation of complete
elliptic integrals for practical use in water engineering is given in the paper [39].
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4. Taylor approximations for the area of Hügelschäffer curve Fq, e11

LetA(k) be the size of the areaAq, e11 of curve Fq, e11 as a function of k ∈ (0, 1). For k = 0, a degenerative
case is obtained wherein the egg-shaped part of the curve is reduced to an ellipse. Then, we define that
A(0) = abqπ. Additionally, for k = 1, another degenerative case is obtained wherein the egg-shaped part
of the curve is bounded by a part of a parabola and a line. Then, we define that A(1) = 8

3 abq. Based on
the degenerative cases and the formula for the non-degenerative case (32), with the use of the D-elliptic
integral, it follows that

A(k) =


abqπ : k = 0,

4
3

a b q
(
K(k) + E(k) −D (k)

)
: k ∈ (0, 1),

8
3

abq : k = 1.

(55)

For k ∈ (0, 1), using the formulae (43), (42) i (51) we obtain a series expansion:

A(k) = a b qπ − a b qπ
∞∑

i=1

1
(2i − 1)(i + 1)

(
(2i − 1)!!

(2i)!!

)2

k2i. (56)

Let us note that the series expansion (56) has a radius of 1 and that the value k = 1 can be included in the
convergence domain in accordance with Raabe’s test. Furthermore, for k = 0 and for k = 1 the formulae
(55) and (56) give the same results.

Remark 4.1. Based on the two previous expressions, (55) and (56), for k = 1:

A(1) =
8
3

abq (57)

and

A(1) = a b qπ − a b qπ
∞∑

i=1

1
(2i − 1)(i + 1)

(
(2i − 1)!!

(2i)!!

)2

(58)

the following representation holds:

1
π
=

3
8

1 −
∞∑

i=1

1
(2i − 1)(i + 1)

(
(2i − 1)!!

(2i)!!

)2
 . (59)

The approximation of the numbers π and 1
π was the topic of research in the papers [3], [6], [8], [17], [36] and

[42].

For A(k), based on the series expansion (56), the first and second Taylor approximations are obtained,
which we denote with the formulae (60) and (61) in the remainder of this paper.
The first Taylor approximation is:

TA, 0n (k) = a b qπ − a b qπ
[n/2]∑
i=1

1
(2i − 1)(i + 1)

(
(2i − 1)!!

(2i)!!

)2

k2i, k∈ (0, 1). (60)

For a fixed β∈ (0, 1], the second Taylor approximation in the right neighborhood of point α = 0 is:

T
A; 0,β
n (k) =

 TA, 0n−1 (k) +
xn

βn

(
A(β) − TA, 0n−1 (β)

)
: n ≥ 1

A(β) : n = 0
, k∈ (0, β]. (61)
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According to [19], the following inequalities hold:

a b qπ=TA, 00 (k)=TA, 01 (k) ≥ TA, 02 (k)=TA, 03 (k) ≥ . . . ≥ TA, 02i (k)=TA, 02i+1(k) ≥ . . .

≥A(k) ≥

. . . ≥ T
A; 0, β
j (k) ≥ . . . ≥ TA; 0, β

3 (k) ≥ TA; 0, β
2 (k) ≥ TA; 0, β

1 (k) ≥ TA; 0, β
0 (k)=A(β)

(62)

for a fixed β∈ (0, 1) and an arbitrary k∈ (0, β].

We specify a list of Taylor approximations forA(k) where k =
q2w

a
, i.e. k∈ (0, 1], in table 4:

j TA, 0j (k) T
A; 0, β
j (k) and β = 1

0 a b qπ 8
3

a b q

1 a b qπ TA, 00 (k) + a b q
(8

3
− π

)
k

2 a b qπ
(
1 − 1

8
k2

)
TA, 01 (k) + a b q

(8
3
− π

)
k2

3 a b qπ
(
1 − 1

8
k2

)
TA, 02 (k) + a b q

(8
3
−

7
8
π
)

k3

4 a b qπ
(
1 − 1

8
k2
−

1
64

k4
)

TA, 03 (k) + a b q
(8

3
−

7
8
π
)

k4

5 a b qπ
(
1 − 1

8
k2
−

1
64

k4
)

TA, 04 (k) + a b q
(8

3
−

55
64
π
)

k5

6 a b qπ
(
1 − 1

8
k2
−

1
64

k4
−

5
1024

k6
)

TA, 05 (k) + a b q
(8

3
−

55
64
π
)

k6

7 a b qπ
(
1 − 1

8
k2
−

1
64

k4
−

5
1024

k6
)

TA, 06 (k) + a b q
(8

3
−

875
1024
π
)

k7

8 a b qπ
(
1 − 1

8
k2
−

1
64

k4
−

5
1024

k6
−

35
16384

k8
)

TA, 07 (k) + a b q
(8

3
−

875
1024
π
)

k8

9 a b qπ
(
1 − 1

8
k2
−

1
64

k4
−

5
1024

k6
−

35
16384

k8
)

TA, 08 (k) + a b q
( 8

3
−

13965
16384

π
)

k9

10 a b qπ
(
1 − 1

8
k2
−

1
64

k4
−

5
1024

k6
−

35
16384

k8
−

147
131072

k10
)

TA, 09 (k) + a b q
( 8

3
−

13965
16384

π
)

k10

Table 4.

5. Approximative formulae for the area of curve Fq, e11

Theorem 5.1. (Theorem for the area of Hügelschäffer egg curves). The following two estimations hold:
8
3

a b q ≤ A(k) ≤ π a b q (63)

and
8
3

a b q + ∆q ≤ A(k) ≤ π a b q − ∇q (64)

where

∆q = a b qπ (1 − k) =


bπ (a − w) : w < a

a2

w2 bπ (w − a) : w > a
, ∇q =

π
8

a b q k2 =


π
8 a

b w2 : w < a
π

8 w3 a4 b : w > a
(65)

for k ∈ [0, 1].
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Proof. The series expansionA(k) given by (56) is a monotonously decreasing function when k ∈ [0, 1] (based
on the term by term differentiation of the series). Thus, the estimate (63) is obtained based on (55) and (56).

Based on (62) and table 4, the following is a proof of the estimate (64):

8
3

a b q ≤ a b qπ + a b q
(8

3
− π

)
k ≤ A(k) ≤ π a b q

(
1 − 1

8
k2

)
≤ π a b q (66)

i.e.

8
3

a b q ≤ 8
3

a b q + a b qπ (1 − k) ≤ A(k) ≤ π a b q − π
8

a b q k2
≤ π a b q. (67)

The estimate (63) is graphically illustrated in Fig. 3.

Figure 3: A comparison of the areas of a parabola, Hügelschäffer egg curve Fq, e11, and an ellipse; Source: ©First Author

Remark 5.2. Based on the series of inequalities (62), it is possible to obtain even better estimates for A(k) with the
appropriate polynomials given in table 4.

6. Conclusion

Applying Taylor series and double Taylor series (Section 3), we have obtained novel approximations
for K, E and D elliptic integrals (see table 1 – 3), as well as approximative formulae for calculating the area
A(k) of the egg-shaped part of Hügelschäffer curves (see table 4 in Section 4). Furthermore, based on the
expression (57) which represents the area of a part of a parabola (see Fig. 3), and the expression (58) which
represents the series expansionA(k) when k = 1, a new representation (59) of the number 1/π has arisen.

With the development of new software tools and applets (see [21]), the use of the newly-introduced
formulae (32) or (55) for the calculation of the area of the egg-shaped part of Hügelschäffer curvesAq, e11 or
A(k) could be significant in various areas of engineering, poultry industry and ornithology.

Conflict of interest. The authors declare that there are no conflicts of interest for this research.
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Design, Journal of Road and Traffic Engineering, 69(2) (2023), 41–50. DOI:10.31075/PIS.69.02.06

[35] F. Qi, Z. Huang, Inequalities of the Complete Elliptic Integrals, Tamkang Journal of Mathematics, 29(3) (1998), 165–169. DOI:
10.5556/j.tkjm.29.1998.4242

[36] Raksha, H.M. Srivastava, N.V. Sayinath Udupa, B.R. Srivatsa Kumar, New proofs of some Dedekind η−function identities of
level 6, Filomat 37:12 (2023), 3755–3767. DOI:10.2298/FIL2312755R



M. Petrović, B. Malešević / Filomat 38:23 (2024), 8053–8068 8068

[37] H. Schmidbauer, Kleine Mitteilungen, II. Eine exakte Eierkurvenkonstruktion mit technischen Anwendungen, Elemente der
Mathematik, 3 (1948), 67–68. https://www.e-periodica.ch/cntmng?pid=edm-001:1948:3::176

[38] H. Schmidbauer, Berichtigung, Elemente der Mathematik, 4 (1949), 96–96. https://www.e-periodica.ch/cntmng?pid=
edm-001:1949:4::267

[39] A.R. Vatankhah, Approximate Solutions to Complete Elliptic Integrals for Practical Use in Water Engineering, Journal of Hydro-
logic Engineering, 16(11) (2011), 942–945. DOI: 10.1061/(ASCE)HE.1943-5584.000037

[40] F. Wang, B.-N. Guo, F. Qi, Monotonicity and inequalities related to complete elliptic integrals of the second kind, AIMS Mathe-
matics, 5(3) (2020), 2732–2742. DOI:10.3934/math.2020176

[41] M.-K. Wang, H.-H. Chu, Y.-M. Li, Y.-M. Chu, Answers to Three Conjectures on Convexity of Three Functions Involving Complete
Elliptic Integrals of the First Kind, Appl. Anal. Discrete Math. 14(1) (2020), 255–271. DOI:10.2298/AADM190924020W

[42] C. Wei, D. Gong, Extensions of Ramanujan’s two formulasfor 1/π, Journal of Number Theory, 133 (2013), 2206–2216.
DOI:10.1016/j.jnt.2013.01.006

[43] S. Wu, L. Debnath, A generalization of L’Hospital-type rules for monotonicity and its application, Appl. Math. Lett., 22(2) (2009),
284–290. DOI:10.1016/j.aml.2008.06.001

[44] H. Wu, Y. Huang, L. Chen, Y. Zhu, H. Li, Shape optimization of egg-shaped sewer pipes based on the nondominated sorting
genetic algorithm (NSGA-II), Environmental Research, 204, 111999 (2022), 1–10. DOI:10.1016/j.envres.2021.111999

[45] Z.-H. Yang, J.-F. Tian, Y.-R. Zhu, A Rational Approximation for the Complete Elliptic Integral of the First Kind, Mathematics, 8(4)
635 (2020), 1–9. DOI:10.3390/math8040635

[46] Z.-H. Yang, J.-F. Tian, Y.-R. Zhu, A sharp lower bound for the complete elliptic integrals of the first kind, RACSAM, 115:8 (2021),
1–17. DOI: 10.1007/s13398-020-00949-6

[47] Z.-H. Yang, J.-F. Tian, Convexity and Monotonicity for Elliptic Integrals of the First Kind and Applications, Appl. Anal. Discrete
Math., 13(1) (2019), 240–260. DOI:10.2298/AADM171015001Y

[48] L. Yin, F. Qi, Some Inequalities For Complete Elliptic Integrals, Applied Mathematics E-Notes, 14 (2014), 193–199.
[49] L. Zhu, Concise high precision approximation for the complete elliptic integral of the first kind, AIMS Mathematics, 6(10) (2021),

10881–10889. DOI: 10.3934/math.2021632
[50] L. Zhu, A Natural Approximation to the Complete Elliptic Integral of the First Kind, Mathematics, 10, 1472 (2022), 1–8. DOI:

10.3390/math10091472


