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1
2-superderivation and transposed Poisson structures on the super

Heisenberg-Virasoro algebra

Yang Yanga, Xiaomin Tanga,∗

aSchool of Mathematical Science, Heilongjiang University, Harbin, 150080, P. R. China

Abstract. We describe transposed Poisson structures on the super Heisenberg-Virasoro algebra. We show
that the super Heisenberg-Virasoro algebra does not admit non-trivial 1

2 -superderivations, and consequently
it does not possess non-trivial transposed Poisson structures.

1. Introduction

Poisson algebras originated from the study of Poisson geometry in the 1970s and have found applications
in an extremely wide range of areas in mathematics and physics, such as Poisson manifolds, algebraic
geometry, operads, quantization theory, quantum groups, and classical and quantum mechanics. The
study of Poisson algebras also gave rise to other related algebraic structures, such as noncommutative
Poisson algebras [18], generic Poisson algebras [14], Poisson bialgebras[16], etc. Recently, a dual notion of
the Poisson algebra (transposed Poisson algebra), has been introduced in the paper [2] of Bai, Bai, Guo and
Wu.

More recently, relations between 1
2 -derivations ( 1

2 -biderivations) of Lie algebras and transposed Poisson
algebras have been established [8, 20]. These ideas were used to describe all transposed Poisson structures
on the Witt algebra which is one of the first examples of non-trivial transposed Poisson algebras [8],
the Virasoro algebra [8], the algebraW(a, b) [8], the thin Lie algebra [8], super Virasoro algebra [8], N = 2
superconformal algebra [8], the twisted Heisenberg-Virasoro algebra [20], the Schrödinger-Virasoro algebra
[20], the extended Schrödinger-Virasoro algebra [20], the 3-dimensional Heisenberg Lie algebra [20], Block
Lie algebras and superalgebras [9], Witt type algebras [12], oscillator Lie algebras [3], Galilean and solvable
Lie algebras [13], generalized Witt algebras and Block Lie algebras [11], Schrödinger algebra in (n + 1)-
dimensional space-time [19] and the Lie algebra of upper triangular matrices [10]. A list of actual open
questions on transposed Poisson algebras was given in [3].

Throughout this paper, we denote by C and Z the sets of complex numbers and integers, respectively.
As an important infinite-dimensional Lie algebra, the twisted Heisenberg-Virasoro algebra HV is the
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universal central extension of the Lie algebra

HV :=
{

f (t)
d
dt
+ 1(t) | f (t), 1(t) ∈ C[t, t−1]

}
of differential operators of order at most one, which was studied in reference [1]. The structure and
representation theories of the twisted Heisenberg-Virasoro algebra and its various extended Lie algebras
have been extensively investigated (see, e.g. [4, 6, 7, 17]). Recently, transposed Poisson structures on the
super Virasoro algebra were researched in [8], which inspires us to study the super case of the twisted
Heisenberg-Virasoro algebra.

Now, let us recall the definition of the super Heisenberg-Virasoro algebra given by [5, 15].

Definition 1.1. The super Heisenberg-Virasoro algebra sHV is an infinite-dimensional Lie superalgebra generated
by even elements {Lm, Im, c}m∈Z and odd elements {Gr}r∈i+Z, where i = 0 (the Ramond case), or i = 1

2 (the Neveu-
Schwarz case). In both cases, c is central in the superalgebra, and super-brackets are given by

[Lm,Ln] = (n −m)Lm+n +
m3
−m

12
δm+n,0c, (1)

[Lm, In] = nIm+n, (2)

[Lm,Gr] = rGm+r, [Gr,Gs] = 2Ir+s, [Im, In] = [Im,Gr] = 0,

for m,n ∈ Z, r, s ∈ i +Z.

By the definition, we have the following decomposition:

sHV = sHV0̄

⊕
sHV1̄,

where sHV0̄ = spanC{Lm, Im, c | m ∈ Z}, sHV1̄ = spanC{Gr | r ∈ i + Z}. Notice that the even part sHV0̄ is
isomorphic to the twisted Heisenberg-Virasoro algebraHV with some trivial center elements. Recall that
a Lie superalgebra L is perfect if [L,L] = L. Note that the super Heisenberg-Virasoro algebra is perfect,
which can be easily checked using the above definition.

In this paper, we will study 1
2 -superderivations of the super Heisenberg-Virasoro algebra. We find that

there are no non-trivial transposed Poisson structures defined on the super Heisenberg-Virasoro algebra.

2. Preliminaries

In this section, we recall some definitions and known results for studying transposed Poisson structures.
Although all algebras and vector spaces are considered over the complex field, many results can be proven
over other fields without modification of the proofs.

Definition 2.1. (see [21]) LetL be a superalgebra and δ an element of the ground field. A homogeneous endomorphism
ψ of the superspace of endomorphisms is called a δ-superderivation if

ψ([x, y]) = δ([ψ(x), y] + (−1)de1(ψ)de1(x)[x, ψ(y)]).

The main example of 1
2 -superderivations is the multiplication by an element from the ground field. Let

us call such 1
2 -superderivations as trivial 1

2 -superderivations.

Lemma 2.2. Let ψ1 and ψ2 be δ1- and δ2-superderivations of a superalgebraL, respectively. Then the supercommu-
tator

[[ψ1, ψ2]]s = ψ1ψ2 − (−1)de1(ψ1)de1(ψ2)ψ2ψ1

is a δ1δ2-superderivation. Similarly, the commutator [[ψ1, ψ2]] of δ1- and δ2-derivations of an algebra is a δ1δ2-
derivation.
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Proof. For arbitrary x, y ∈ L, we have

[[ψ1, ψ2]]s([x, y]) = (ψ1ψ2 − (−1)de1(ψ1)de1(ψ2)ψ2ψ1)([x, y])

= ψ1ψ2([x, y]) − (−1)de1(ψ1)de1(ψ2)ψ2ψ1([x, y])

= δ2ψ1([ψ2(x), y] + (−1)de1(x)de1(ψ2)[x, ψ2(y)])

− (−1)de1(ψ1)de1(ψ2)δ1ψ2([ψ1(x), y] + (−1)de1(x)de1(ψ1)[x, ψ1(y)])

= δ2ψ1([ψ2(x), y]) + δ2(−1)de1(x)de1(ψ2)ψ1([x, ψ2(y)])

− δ1(−1)de1(ψ1)de1(ψ2)ψ2([ψ1(x), y])

− δ1(−1)de1(ψ1)(de1(ψ2)+de1(x))ψ2([x, ψ1(y)])

= δ1δ2([ψ1ψ2(x), y] + (−1)de1(ψ1)de1(ψ2(x))[ψ2(x), ψ1(y)])

+ δ1δ2(−1)de1(x)de1(ψ2)([ψ1(x), ψ2(y)] + (−1)de1(x)de1(ψ1)[x, ψ1ψ2(y)])

− δ1δ2(−1)de1(ψ1)de1(ψ2)([ψ2ψ1(x), y]

+ (−1)de1(ψ1(x))de1(ψ2)[ψ1(x), ψ2(y)])

− δ1δ2(−1)de1(ψ1)(de1(ψ2)+de1(x))([ψ2(x), ψ1(y)]

+ (−1)de1(x)de1(ψ2)[x, ψ2ψ1(y)])

= δ1δ2([ψ1ψ2(x), y] + (−1)de1(ψ1)(de1(ψ2)+de1(x))[ψ2(x), ψ1(y)]

+ (−1)de1(x)de1(ψ2)[ψ1(x), ψ2(y)]

+ (−1)de1(x)(de1(ψ1)+de1(ψ2))[x, ψ1ψ2(y)] − (−1)de1(ψ1)de1(ψ2)[ψ2ψ1(x), y]

− (−1)de1(x)de1(ψ2)[ψ1(x), ψ2(y)]

− (−1)de1(ψ1)(de1(ψ2)+de1(x))[ψ2(x), ψ1(y)]

− (−1)de1(ψ1)de1(ψ2)+de1(x)(de1(ψ1)+de1(ψ2))[x, ψ2ψ1(y)])

= δ1δ2([(ψ1ψ2 − (−1)de1(ψ1)de1(ψ2)ψ2ψ1)(x), y]

+ (−1)de1(x)(de1(ψ1)+de1(ψ2))[x, (ψ1ψ2 − (−1)de1(ψ1)de1(ψ2)ψ2ψ1)(y)])

= δ1δ2([[[ψ1, ψ2]]s(x), y] + (−1)de1(x)de1([[ψ1,ψ2]]s)[x, [[ψ1, ψ2]]s(y)]).

By Definition 2.1, we know [[ψ1, ψ2]]s is a δ1δ2-superderivation. And by similar calculations, we can obtain
that the commutator [[ψ1, ψ2]] of δ1- and δ2-derivations of an algebra is a δ1δ2-derivation.

Transposed Poisson algebras were first introduced by Bai, Bai, Guo and Wu in [2].

Definition 2.3. LetL be a vector space equipped with two nonzero bilinear operations · and [·, ·]. The triple (L, ·, [·, ·])
is called a transposed Poisson algebra if (L, ·) is a commutative associative algebra and (L, [·, ·]) is a Lie algebra that
satisfies the following compatibility condition

2z · [x, y] = [z · x, y] + [x, z · y].

One naturally defines a transposed Poisson superalgebra as a superization of the notion of a transposed
Poisson algebra.

Definition 2.4. LetL = L0̄
⊕
L1̄ be aZ2-graded vector space equipped with two nonzero bilinear super-operations

· and [·, ·]. The triple (L, ·, [·, ·]) is called a transposed Poisson superalgebra if (L, ·) is a supercommutative associative
algebra and (L, [·, ·]) is a Lie superalgebra that satisfies the following compatibility condition

2z · [x, y] = [z · x, y] + (−1)de1(x)de1(z)[x, z · y], x, y, z ∈ L0̄ ∪ L1̄.

Definition 2.5. Let (L, [·, ·]) be a Lie superalgebra. A transposed Poisson superalgebra structure on (L, [·, ·]) is a
supercommutative associative multiplication · on L which makes (L, ·, [·, ·]) a transposed Poisson superalgebra.
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It is easy to see that Definitions 2.1 and 2.3 imply the following key lemma.

Lemma 2.6. (see [8]) Let (L, ·, [·, ·]) be a transposed Poisson algebra and z an arbitrary element from L. Then the
left multiplication lz in the associative commutative algebra (L, ·) gives a 1

2 -derivation of the Lie algebra (L, [·, ·]).

The super case is the following lemma.

Lemma 2.7. Let (L, ·, [·, ·]) be a transposed Poisson superalgebra and z ∈ L0̄ ∪ L1̄. Then the left multiplication
lz in the supercommutative associative algebra (L, ·) gives a 1

2 -superderivation of the Lie superalgebra (L, [·, ·]) and
de1(lz) = de1(z).

Proof. For arbitrary x, y ∈ L0̄ ∪ L1̄, we have

lz([x, y]) = z · [x, y]
= 1

2 ([z · x, y] + (−1)de1(x)de1(z)[x, z · y])
= 1

2 ([z · x, y] + (−1)de1(x)de1(lz)[x, z · y]).

By Definition 2.1, we know lz is a 1
2 -superderivation of the Lie superalgebra (L, [·, ·]).

By Lemmas 2.6 and 2.7, it is easy to prove the following lemma.

Lemma 2.8. (see [8]) Let L be a Lie algebra (or superalgebra) of dimension > 1 without non-trivial 1
2 -derivations.

Then every transposed Poisson structure defined on L is trivial.

3. TP-structures on the super Heisenberg-Virasoro algebra

In this section, we describe transposed Poisson superalgebra structures on the super Heisenberg-
Virasoro algebra sHV. To obtain this result, we first have to prove a few lemmas.

Set (sHV0̄) j = spanC{L j, I j} for 0 , j ∈ Z and (sHV0̄)0 = spanC{L0, I0, c}. Then sHV0̄ =
⊕
j∈Z

(sHV0̄) j is a

Z-graded algebra. It is easy to see that sHV0̄ is finitely generated. Let φ be a 1
2 -derivation on sHV0̄. Then,

by Lemma 2.4 in [19], the Z-grading of sHV0̄ induces the decomposition

φ =
∑
j∈Z

φ j,

where φ j is a 1
2 -derivation on sHV0̄ of degree j, i.e., φ j((sHV0̄)k) ⊆ (sHV0̄) j+k,∀k ∈ Z.

Lemma 3.1. Every 1
2 -derivation on sHV0̄ is trivial.

Proof. Let φ j be a 1
2 -derivation on sHV0̄ of degree j. We can assume that

φ j(Lm) = α j,mL j+m + α
′

j,mI j+m + δ j+m,0a j,mc, (3)

φ j(Im) = β j,mL j+m + β
′

j,mI j+m + δ j+m,0b j,mc, (4)

φ j(c) = γ jL j + γ
′

jI j + δ j,0d jc,

where the coefficients are elements in C. Firstly, we apply φ j to both sides of the relation [Lm, c] = 0 and we
obtain

0 = 2φ j([Lm, c]) = [φ j(Lm), c] + [Lm, φ j(c)]
= [Lm, φ j(c)] = [Lm, γ jL j + γ′jI j + δ j,0d jc]

= ( j −m)γ jL j+m + jγ′jI j+m +
m3
−m

12 γ jδ j+m,0c,
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which gives
( j −m)γ j = 0, jγ′j = 0.

Choosing j , m, we have γ j = 0 for all j ∈ Z. In addition, one has γ′j = 0 for 0 , j ∈ Z. It follows that

φ j(c) = 0, j , 0. (5)

φ0(c) = γ′0I0 + d0c. (6)

To compute the other coefficients, we have two cases to consider.
Case 1. j , 0
Applying φ j to both sides of (1) and by (3) and (5), we can get

2φ j([Lm,Ln]) = 2(n −m)φ j(Lm+n) +
m3
−m
6

δm+n,0φ j(c) = 2(n −m)φ j(Lm+n)

= 2(n −m)α j,m+nL j+m+n + 2(n −m)α′j,m+nI j+m+n

+ 2(n −m)δ j+m+n,0a j,m+nc.

(7)

On the other hand, we have

2φ j([Lm,Ln]) = [φ j(Lm),Ln] + [Lm, φ j(Ln)]
= [α j,mL j+m + α

′

j,mI j+m + δ j+m,0a j,mc,Ln]

+ [Lm, α j,nL j+n + α
′

j,nI j+n + δ j+n,0a j,nc]

= ((n − j −m)α j,m + ( j + n −m)α j,n)L j+m+n

+ (( j + n)α′j,n − ( j +m)α′j,m)I j+m+n

+ δ j+m+n,0

(
( j +m)3

− ( j +m)
12

α j,m +
m3
−m

12
α j,n

)
c.

(8)

Comparing (7) with (8), we have

2(n −m)α j,m+n = (n − j −m)α j,m + ( j + n −m)α j,n, (9)

2(n −m)α′j,m+n = ( j + n)α′j,n − ( j +m)α′j,m, (10)

and

2(n −m)δ j+m+n,0a j,m+n = δ j+m+n,0

(
( j +m)3

− ( j +m)
12

α j,m +
m3
−m

12
α j,n

)
. (11)

Applying φ j to both sides of (2) and by (4), we obtain

2φ j([Lm, In]) = 2nφ j(Im+n)
= 2nβ j,m+nL j+m+n + 2nβ′j,m+nI j+m+n + 2nδ j+m+n,0b j,m+nc. (12)

On the other hand, we have

2φ j([Lm, In]) = [φ j(Lm), In] + [Lm, φ j(In)]
= [α j,mL j+m + α

′

j,mI j+m + δ j+m,0a j,mc, In]

+ [Lm, β j,nL j+n + β
′

j,nI j+n + δ j+n,0b j,nc]

= ( j + n −m)β j,nL j+m+n + (nα j,m + ( j + n)β′j,n)I j+m+n

+
m3
−m

12
δ j+m+n,0β j,nc.

(13)
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Comparing (12) with (13), we have

2nβ j,m+n = ( j + n −m)β j,n, (14)

2nβ′j,m+n = nα j,m + ( j + n)β′j,n, (15)

and

2nδ j+m+n,0b j,m+n =
m3
−m

12
δ j+m+n,0β j,n. (16)

Firstly, we see (9), (10), (14) and (15). By taking n = 0 in (9), then we have ( j −m)α j,m = ( j −m)α j,0. Thus

α j,m = α j,0, m , j. (17)

Furthermore, by letting n = −m = j in (9) we have 4 jα j,0 = jα j,− j + 3 jα j, j. According to (17), we have
α j,− j = α j,0. It follows that α j, j = α j,0. This, together with (17), gives

α j,n = α j,0, ∀n ∈ Z. (18)

Letting n = 0 in (10), we have ( j −m)α′j,m = jα′j,0, which yields

α′j,m =
j

j −m
α′j,0, m , j. (19)

Letting m = −n with n < { j,− j, 0} in (10), we can get

4nα′j,0 = ( j + n)α′j,n − ( j − n)α′j,−n. (20)

By (19), we know
α′j,n =

j
j−nα

′

j,0, α′j,−n =
j

j+nα
′

j,0.

Substituting this into (20), we can get 4nα′j,0 =
4nj2

j2−n2α′j,0, which implies

α′j,0 = 0. (21)

Substituting this into (19), we can get α′j,m = 0, m , j. Letting n = −m = j in (10) and by (21), we obtain
α′j, j = 0. Hence

α′j,n = 0, ∀n ∈ Z. (22)

Setting m = 0 in (14), we have (n − j)β j,n = 0, which implies β j,n = 0, n , j. With this, by taking n = −m = j
in (14) one has β j, j = 0. This proves

β j,n = 0, ∀n ∈ Z. (23)

Setting n = 0 in (15), we obtain β′j,0 = 0. With this, taking m = −n in (15) gives 0 = nα j,−n + ( j + n)β′j,n.
This, together with (18) gives

( j + n)β′j,n = −nα j,0. (24)

Letting m = 0 in (15), we can get (n − j)β′j,n = nα j,0. Combining with (24), we have β′j,n = 0, n , 0. Hence

β′j,n = 0, ∀n ∈ Z. (25)
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With this, taking n = 1 in (24) gives α j,0 = 0. Substituting this into (18), we can get

α j,n = 0, ∀n ∈ Z. (26)

Now, taking n = 0 and m = − j in (11) and by (26), we obtain

a j,− j = 0. (27)

Letting n = 1 and m = −1 − j in (16) and by (23), we have

b j,− j = 0. (28)

By (26), (22), (23), (25), (27), (28) and (5), we can get

φ j = 0, j , 0.

Case 2. j = 0.
Applying φ0 to both sides of (1) and by (3) and (6), we can get

2φ0([Lm,Ln]) = 2(n −m)φ0(Lm+n) +
m3
−m
6

δm+n,0φ0(c)

= 2(n −m)α0,m+nLm+n + 2(n −m)α′0,m+nIm+n +
m3
−m
6

δm+n,0γ
′

0I0

+ δm+n,0(2(n −m)a0,m+n +
m3
−m
6

d0)c.

(29)

On the other hand, when j = 0, (8) takes the form of

2φ0([Lm,Ln]) = (n −m)(α0,m + α0,n)Lm+n + (nα′0,n −mα′0,m)Im+n

+
m3
−m

12
δm+n,0(α0,m + α0,n)c.

(30)

Comparing (29) with (30), we have

2(n −m)α0,m+n = (n −m)(α0,m + α0,n), (31)

2(n −m)α′0,m+n = nα′0,n −mα′0,m, m + n , 0, (32)

4mα′0,0 −
m3
−m
6

γ′0 = m(α′0,−m + α
′

0,m), (33)

and

δm+n,0(2(n −m)a0,m+n +
m3
−m
6

d0) = δm+n,0
m3
−m

12
(α0,m + α0,n). (34)

When j = 0, (14), (15) and (16) take the form of, respectively

2nβ0,m+n = (n −m)β0,n, (35)

2nβ′0,m+n = n(α0,m + β
′

0,n), (36)

and

2nδm+n,0b0,m+n =
m3
−m

12
δm+n,0β0,n. (37)



Y. Yang, X. Tang / Filomat 38:24 (2024), 8511–8523 8518

Setting n = 0 in (31) and (32), it follows that respectively

α0,m = α0,0, ∀m ∈ Z, (38)

and

α′0,m = 0, m , 0. (39)

According to (39) and taking m = 1 in (33), we obtain α′0,0 = 0. This, together with (39), gives

α′0,n = 0, ∀n ∈ Z. (40)

According to (40) and by letting m = 2 in (33), we can get γ′0 = 0. Taking m = 0 in (35) gives β0,n = 0, n , 0.
With this, letting n = −m = 1 in (35), we have β0,0 = 0. Hence β0,n = 0, ∀n ∈ Z. Taking m = 0 in (36), we
have

β′0,n = α0,0, n , 0. (41)

By (38) and (41), letting n = −m = 1 in (36), we can get β′0,0 = α0,0. This, together with (41), gives
β′0,n = α0,0, ∀n ∈ Z. In the following, we denote α0,0 as λ, i.e., α0,n = β′0,n = λ, ∀n ∈ Z. Taking m = −n = 1

in (34), we obtain a0,0 = 0. According to this and (38), by setting m = −n = 2 in (34) one has d0 = λ.
Finally, it follows by setting m = −n = 1 in (37) that b0,0 = 0. As a conclusion, we obtain

φ0 = λIdsHV0̄
.

Combining the two cases above, we get the desired result.

Lemma 3.2. Let ψ0̄ be an even 1
2 -superderivation of sHV, then ψ0̄ is trivial.

Proof. It is easy to see that the restriction ψ0̄ |sHV0̄
is a 1

2 -derivation of sHV0̄. By Lemma 3.1, we know
ψ0̄ |sHV0̄

is trivial. Hence, by subtracting a multiplication transformation we can suppose that ψ0̄ |sHV0̄
= 0.

Next, we assume that
ψ0̄(Gr) =

∑
t∈i+Z

Γr
tGt,

where Γr
t ∈ C. Then we have

2ψ0̄([L0,Gr]) = 2rψ0̄(Gr) = 2r
∑

t∈i+Z
Γr

tGt. (42)

On the other hand, we have

2ψ0̄([L0,Gr]) = [ψ0̄(L0),Gr] + [L0, ψ0̄(Gr)] = [L0, ψ0̄(Gr)]
= [L0,

∑
t∈i+Z

Γr
tGt] =

∑
t∈i+Z

tΓr
tGt. (43)

Comparing (42) with (43), we obtain
2r

∑
t∈i+Z

Γr
tGt =

∑
t∈i+Z

tΓr
tGt,

which gives
Γr

t = 0, (t , 2r).

It follows that

ψ0̄(Gr) = 0, ∀r ∈
1
2
+Z, (44)



Y. Yang, X. Tang / Filomat 38:24 (2024), 8511–8523 8519

and
ψ0̄(Gr) = Γr

2rG2r, ∀r ∈ Z.

Now, we need only to consider the case of i = 0.

0 = 4ψ0̄(Ir+s) = 2ψ0̄([Gr,Gs]) = [ψ0̄(Gr),Gs] + [Gr, ψ0̄(Gs)]
= [Γr

2rG2r,Gs] + [Gr,Γs
2sG2s]

= 2Γr
2rI2r+s + 2Γs

2sIr+2s.

For r , s, we deduce
Γr

2r = 0, ∀r ∈ Z.

This means

ψ0̄(Gr) = 0, ∀r ∈ Z. (45)

Summarizing (44) and (45), we have
ψ0̄ = 0.

Hence, every even 1
2 -superderivation of sHV is trivial.

Lemma 3.3. Let ψ1̄ be an odd 1
2 -superderivation of sHV, then ψ1̄ = 0.

Proof. Let adGr be an inner odd superderivation of sHV. Then, according to Lemma 2.2, we know that
[[ψ1̄, adGr ]]s is an even 1

2 -superderivation of sHV. Furthermore, based on Lemma 3.2, we have that [[ψ1̄, adGr ]]s
is trivial, i.e., [[ψ1̄, adGr ]]s = βrIdsHV, βr ∈ C related to r. Next, we assume that

ψ1̄(c) =
∑

t∈i+Z

αtGt,

where αt are elements in C. Whereupon we have

βrc = [[ψ1̄, adGr ]]s(c) = (ψ1̄adGr + adGrψ1̄)(c) = [Gr, ψ1̄(c)]
= [Gr,

∑
t∈i+Z

αtGt] = 2
∑

t∈i+Z
αtIr+t,

which gives

αt = 0, ∀t ∈ i +Z,

and

βr = 0, ∀r ∈ i +Z.

It follows that

ψ1̄(c) = 0, (46)

and
[[ψ1̄, adGr ]]s = 0, ∀r ∈ i +Z.

Hence, we see that
0 = 2[[ψ1̄, adGr ]]s(Lm) = 2(ψ1̄adGr + adGrψ1̄)(Lm)
= 2ψ1̄([Gr,Lm]) + 2[Gr, ψ1̄(Lm)]
= [ψ1̄(Gr),Lm] − [Gr, ψ1̄(Lm)] + 2[Gr, ψ1̄(Lm)]
= [ψ1̄(Gr),Lm] + [Gr, ψ1̄(Lm)]
= −[Lm, ψ1̄(Gr)] + [ψ1̄(Lm),Gr],
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which yields

[Lm, ψ1̄(Gr)] = [ψ1̄(Lm),Gr]. (47)

Furthermore, one has

2ψ1̄([Lm,Gr]) = [ψ1̄(Lm),Gr] + [Lm, ψ1̄(Gr)]. (48)

Substituting (47) into (48), we can get

ψ1̄([Lm,Gr]) = [ψ1̄(Lm),Gr] = [Lm, ψ1̄(Gr)]. (49)

Afterwards, we can assume that

ψ1̄(Gr) =
∑
k∈Z

θr
kLk +

∑
k∈Z

ϵr
kIk + σ

rc,

where θr
k, ϵ

r
k, σ

r are complex numbers. Whereupon we have

[L0, ψ1̄(Gr)] = [L0,
∑

k∈Z
θr

kLk +
∑

k∈Z
ϵr

kIk + σrc]

=
∑

k∈Z
θr

k[L0,Lk] +
∑

k∈Z
ϵr

k[L0, Ik]

=
∑

k∈Z
kθr

kLk +
∑

k∈Z
kϵr

kIk.

(50)

On the other hand, we have

ψ1̄([L0,Gr]) = rψ1̄(Gr)
= r

∑
k∈Z

θr
kLk + r

∑
k∈Z

ϵr
kIk + rσrc. (51)

Comparing (50) with (51), we have

θr
k = 0, (k , r), (52)

ϵr
k = 0, (k , r), (53)

and

σr = 0, (r , 0). (54)

By (52), (53) and (54), we can obtain

ψ1̄(Gr) = 0, ∀r ∈
1
2
+Z, (55)

and

ψ1̄(Gr) = θr
rLr + ϵ

r
rIr, 0 , r ∈ Z, (56)

ψ1̄(G0) = θ0
0L0 + ϵ

0
0I0 + σ

0c. (57)

Hereafter, we can assume that

ψ1̄(Lm) =
∑

t∈i+Z

ωm
t Gt, (58)

where ωm
t ∈ C. Let us now discuss this scenario case by case.

Case 1. i = 1
2 , i.e., the Neveu-Schwarz case.
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By (49), (55) and (58), we have

0 = rψ1̄(Gm+r) = ψ1̄([Lm,Gr]) = [ψ1̄(Lm),Gr]
= [

∑
t∈ 1

2+Z

ωm
t Gt,Gr] = 2

∑
t∈ 1

2+Z

ωm
t It+r,

which gives

ωm
t = 0, ∀t ∈

1
2
+Z.

This means that

ψ1̄(Lm) = 0. (59)

At last, we have

4ψ1̄(Ir+s) = 2ψ1̄([Gr,Gs]) = [ψ1̄(Gr),Gs] − [Gr, ψ1̄(Gs)] = 0. (60)

Since r, s are arbitrary, we have

ψ1̄(Im) = 0. (61)

Hence, by (46), (55), (59) and (61), we obtain
ψ1̄ = 0.

Case 2. i = 0, i.e., the Ramond case.
By (49) and (57), we have

0 = ψ1̄([Lm,G0]) = [Lm, ψ1̄(G0)]
= [Lm, θ0

0L0 + ϵ0
0I0 + σ0c]

= −mθ0
0Lm +

θ0
0(m3
−m)

12 δm,0c.

Taking m , 0, we can deduce that

θ0
0 = 0.

This means that

ψ1̄(G0) = ϵ0
0I0 + σ

0c.

Setting r , 0 and according to (56), we have

[L−r, ψ1̄(Gr)] = [L−r, θ
r
rLr + ϵ

r
rIr] = 2rθr

rL0 +
θr

r(r − r3)
12

c + rϵr
rI0. (62)

On the other hand, we have

[L−r, ψ1̄(Gr)] = ψ1̄([L−r,Gr]) = rψ1̄(G0) = rϵ0
0I0 + rσ0c. (63)

Comparing (62) with (63), we can obtain
θr

r = 0, (r , 0),

ϵr
r = ϵ

0
0, (r , 0),

and
σ0 = 0.

So we have

ψ1̄(Gr) = ϵ0
0Ir, ∀r ∈ Z. (64)
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By (49) and (58), we have

rϵ0
0Im+r = rψ1̄(Gm+r) = ψ1̄([Lm,Gr]) = [ψ1̄(Lm),Gr]

= [
∑
t∈Z
ωm

t Gt,Gr] = 2
∑
t∈Z
ωm

t It+r,

which implies

ωm
t = 0, (t , m), (65)

and

2ωm
m = rϵ0

0. (66)

Taking r = 0 in (66), we can deduce

ωm
m = 0. (67)

Then setting r , 0 in (66), we can deduce

ϵ0
0 = 0. (68)

According to (65) and (67), we can deduce

ψ1̄(Lm) = 0. (69)

Based on (64) and (68), we have

ψ1̄(Gr) = 0. (70)

Finally, by performing a calculation similar to that in (60), we have

ψ1̄(Im) = 0. (71)

Hence, according to (46), (69), (70) and (71), we have

ψ1̄ = 0.

The proof is now completed.

Theorem 3.4. There are no non-trivial 1
2 -superderivations of the super Heisenberg-Virasoro algebra sHV.

Proof. Letψ be a 1
2 -superderivation of sHV. Then the even partψ0̄ and the odd partψ1̄ ofψ are, respectively,

an even 1
2 -superderivation and an odd 1

2 -superderivation of sHV. According to Lemmas 3.2 and 3.3, we
know that ψ0̄ is trivial and ψ1̄ = 0, respectively. Since sHV = sHV0 ⊕ sHV1 is a Z2-graded algebra and
finitely generated, following a similar argument as in the proof of Lemma 2.4 in [19], we can deduce that

ψ = ψ0̄ + ψ1̄ = ψ0̄,

which means ψ is trivial. The proof is completed.

Theorem 3.5. There exist no non-trivial transposed Poisson superalgebra structures defined on the super Heisenberg-
Virasoro algebra sHV.

Proof. This statement follows from Theorem 3.4 and Lemma 2.8.
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