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Abstract. In this article, we introduce the notion of split continuity of functions between topological spaces.
Also, we give various characterizations of such functions and establish some basic properties. We observe
that a function is continuous if and only if it is split continuous and has a closed graph. Furthermore, we
study the set of points of split continuity of a quasi-continuous function, and we show that the set of all
points of split continuity of a quasi-continuous function from a Baire space X into Y contains a dense Gδ
subset of X, where Y is Hausdorff and has some additional properties.

1. Introduction

In 2019, Beer et al. [5] introduced the notion of split continuity of functions between metric spaces
to provide answers to some fundamental questions such as what property a function between metric
spaces X and Y must have so that when it is followed by an arbitrary continuous real-valued function, the
composition is either upper semicontinuous or lower semicontinuous at each point of X. They proved that
a function f between two metric spaces X and Y is split continuous at p ∈ X if and only if whenever 1 is a
real-valued continuous function on Y, then 1 ◦ f is either upper semicontinuous or lower semicontinuous
at p. Here are some important facts that they proved about split continuous functions:

(i) Let (X, d) and (Y, ρ) be metric spaces. Then the function f : X→ Y is split continuous on X if and only
if there exists a function 1 : X → Y such that Γ(x) = { f (x), 1(x)} is a globally upper semicontinuous
multifunction on X.

(ii) Let (X, d) be a metric space and f : X → R be a function that is split continuous at p. Then f is either
upper semicontinuous or lower semicontinuous at p.

(iii) Let (X, d) and (Y, ρ) be metric spaces and the function f : X→ Y is split continuous on X. Then the its
oscillation function ω( f ; ·) is split continuous on X.

Further, in [9], Gupta and Aggarwal studied split continuity in comparison to other notions of weak
continuity. Following are some interesting facts they proved:

(i) A metric space (X, d) is complete if and only if every real-valued split continuous function is Cauchy-
subregular on X.

(ii) A metric space (X, d) is discrete if and only if every real-valued subcontinuous function is split
continuous on X.
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(iii) Let (X, d) and (Y, ρ) be metric spaces. Then f : X → Y is split continuous at x if and only if for every
open coverV of Y, there exist V1,V2 ∈ V and δ > 0 such that f (B(x, δ)) ⊆ V1 ∪ V2.

Since metric spaces are a special type of topological spaces, in this article, we go further in this direction
and formulate a definition of split continuity of functions between topological spaces. We give two
characterizations of split continuous functions and study various properties of such functions. Many of
these properties are direct generalizations of properties studied in metric space contexts, although some of
the proofs are not direct because of the absence of the notion of distance in general topological spaces, and
the information about functions between topological spaces is not entirely encoded by sequences, which
makes the study interesting.

In Section 4, we go one step further than the previous studies on split continuity to investigate the set
of points of split continuity of quasi-continuous functions defined on Baire spaces. According to the article
[11], Volterra first used the notion of quasi-continuity to study separately continuous functions fromR2 toR
(see also [4]). And later in [13], Kempisty formulated this notion for functions fromRn toR. Further in [19],
Neubrunn extended this definition to mappings between topological spaces. In 2001, based on the notion of
topological games, Kenderov et al. [14] studied the set of points of continuity of quasi-continuous functions
between topological spaces. Further in 2009, Holá et al. [21] studied the set of points of continuity of
quasi-continuous functions with values in generalized metric spaces. Later in 2022, Holá et al. [12] studied
the set of points of subcontinuity of quasi-continuous functions between topological spaces. Further studies
in this direction can be found in [11, 16, 17] and references therein. The following are some interesting
results, which we will prove in that section:

(i) If X is a Baire space, Y is a Hausdorff space with the property (B2) and f : X→ Y is a quasi-continuous
mapping, then f is split continuous at points of a dense Gδ subset of X (Theorem 4.8).

(ii) If X is a Baire space, Y is a Hausdorff space such that G2(Y) is Ω-favorable and f : X → Y is a
quasi-continuous mapping, then f is split continuous on a dense subset of X (Theorem 4.13).

(iii) If X be α-favorable, Y is a Hausdorff space such that G2(Y) is Σ-unfavorable and f : X → Y is a
quasi-continuous mapping, then the set of split continuity points of f intersects some residual subset
of every non-empty open subset of X (Theorem 4.15).

2. Preliminaries

In this section, we include all the notations, definitions and results that help readers to understand the
subsequent sections thoroughly. We write R andN to denote the set of all real numbers and the set of all
positive integers, respectively. Throughout the article, by a neighbourhood of a point a in a topological
space X, we mean an open subset of X containing a.

Definition 2.1 ([5]). Let (X, d) and (Y, ρ) be metric spaces. Let f : X → Y be a function and p ∈ X. Then f is said
to be split continuous at p if there exists y ∈ Y such that

(i) for each ε > 0, f
(
Bd(p, ε)

)
∩ Bρ(y, ε) , ∅;

(ii) for each ε > 0, there exists δ > 0 such that f
(
Bd(p, δ)

)
⊆ Bρ( f (p), ε) ∪ Bρ(y, ε).

We say that f is split continuous on X if f is split continuous at each point of X.

Note 2.2. If f is continuous at p ∈ X, then the y in the above definition is equal to f (p). Otherwise, there exists a
unique y ∈ Y that satisfies the above definition, and y , f (p). In the latter case, f is said to be strictly split continuous
at p.

Result 2.3 ([5]). Let (X, d) and (Y, ρ) be metric spaces. Then a function f : X → Y is strictly split continuous at p
if and only if there is y(, f (p)) ∈ Y such that (a) there exists a sequence (xn) that converges to p such that ( f (xn))
converges to y, and (b) each sequence which is convergent to p has a subsequence along which f is convergent to either
y or f (p).
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Definition 2.4 ([8]). Let X and Y be topological spaces. Then a function f : X → Y is said to be subcontinuous at
p ∈ X if for every net ⟨xλ : λ ∈ Λ⟩ in X converging to p, there is a convergent subnet of ⟨ f (xλ) : λ ∈ Λ⟩. We say that
f is subcontinuous on X if f is subcontinuous at each point of X.

Result 2.5 ([8]). Let (X, d) and (Y, ρ) be metric spaces. Then a function f : X → Y is continuous if and only if it is
subcontinuous and has closed graph.

Definition 2.6 ([15]). Let X and Y be topological spaces. Then a function f : X→ Y is said to be locally compact at
x ∈ X if there exists a compact subset K of Y such that x is an interior point of f−1(K).

In [18], Neubrunn gave the definition of quasi-continuity for general topological spaces, and later he
reformulated the definition in [19]. In our study the notion of quasi-continuity plays an important role.
Thus following [19], we recall the definition of quasi-continuity for topological spaces.

Definition 2.7 ([19]). Let X and Y be topological spaces. Let f : X→ Y be a function and p ∈ X. Then f is said to
be quasi-continuous at p if for every pair of neighbourhoods U of p and V of f (p), there exists a non-empty open set
G ⊆ U such that f (G) ⊆ V. We say that f is quasi-continuous on X if f is quasi-continuous at each point of X.

In [14], Kenderov et al. gave the definition of quasi-continuity for general topological spaces as follows:

Definition 2.8 ([14]). Let X and Y be topological spaces. Let f : X→ Y be a function and p ∈ X. Then f is said to
be quasi-continuous at p if for every neighbourhood V of f (p), there exists a non-empty open set U such that p ∈ U
and f (U) ⊆ V. We say that f is quasi-continuous on X if f is quasi-continuous at each point of X.

Now we prove that both definitions are equivalent. Let X and Y be topological spaces, and f : X → Y
be a function. Let f be a quasi-continuous function in the sense of Definition 2.8. We prove that f is
quasi-continuous in the sense of Definition 2.7. Let p ∈ X. Let U be a neighbourhood of p and V be
a neighbourhood of f (p). Then there exists an open set W ⊆ X such that p ∈ W and f (W) ⊆ V. Then
G =W ∩U is the non-empty open subset of U for which f (G) ⊆ V.

Conversely, suppose that f is a quasi-continuous function in the sense of Definition 2.7. We prove that
f is quasi-continuous in the sense of Definition 2.8. Let p ∈ X and V be a neighbourhood of f (p). Set

L = {G ⊆ X : G is open and f (G) ⊆ V}.

Let W =
⋃

G∈L G. Then W is the largest open subset of X such that f (W) ⊆ V. We claim that p ∈W. Suppose
to the contrary that p < W. Then X −W is an open subset of X containing p. Then there exists an open
subset H ⊆ X −W such that f (H) ⊆ V. Thus H ∈ L, which is a contradiction. Hence p ∈W and f (W) ⊆ V.

Obviously, any continuous mapping is quasi-continuous, but a quasi-continuous mapping may not be
continuous.

The notion of a sequence of covers endowed with various properties plays an important role in our
study. We give a list of such properties.

Let X be a topological space and G be a collection of subsets of X. For each x ∈ X, we define

st(x,G) =
⋃
{G ∈ G : x ∈ G}.

Definition 2.9 ([2, 7]). Let X be a topological space and (Gn)n∈N be a sequence of open covers of X.

(i) If for each x ∈ X, the set {st(x,Gn) : n ∈ N} is a base at x, then (Gn)n∈N is called a development on X and the
space X is called developable. A regular developable space is called a Moore space.

(ii) If for every sequence (Gn)n∈N such that Gn ∈ Gn for every n ∈ N and for every x ∈
⋂

n Gn, the sequence{⋂n
i=1 Gi : n ∈N

}
is a base at x, we say that (Gn)n∈N is a weak development on X and that the space X is weakly

developable.
(iii) If for every x ∈ X, {x} =

⋂
st(x,Gn), then we say that (Gn) is a Gδ-development and that the space X is

Gδ-developable.
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Remark 2.10. In the literature, a Gδ-development is also called a Gδ-diagonal sequence and a Gδ-developable space
is correspondingly called a space with a Gδ-diagonal (see [2, Page 24]).

The notion of p-spaces was originally introduced by Arhangel’skiı̆ [3] as follows:

Definition 2.11 ([3]). A completely regular space X is said to be a p-space if there exists a sequence (Gn)n∈N of
collections of open subsets of the Stone-Čech compactification β(X) of X such that each Gn covers X, and for every
x ∈ X, we have

⋂
n st(x,Gn) ⊆ X.

In [6, Theorem 1.3], Burke gave the following internal characterization of p-spaces: A completely regular
space X is a p-space if and only if it satisfies the property (B). Recall from [1], the definition of the property
(B).

Definition 2.12 ([1]). A space X is said to have the property (B) if there exists a sequence of open covers (Gn)n∈N of
X such that whenever x ∈ X and Gn ∈ Gn are such that x ∈ Gn for each n, then

(i)
⋂
∞

n=1 Gn is compact;
(ii) every neighbourhood of

⋂
∞

n=1 Gn contains some
⋂k

n=1 Gn.

3. Split continuity of functions between topological spaces

In this section, we introduce the definition of split continuity for topological spaces and show that
several of the properties of split continuous functions that hold in metric spaces also hold in the case of a
split continuous function from a topological space to a Hausdorff space. Although these results parallel the
results obtained in [5, 9], the proofs given here are significantly different.

Definition 3.1. Let X and Y be topological spaces. Let f : X→ Y be a function and p ∈ X. Then f is said to be split
continuous at p if there exists y ∈ Y such that:

(i) for every pair of neighbourhoods Up of p and Vy of y, f (Up) ∩ Vy , ∅;
(ii) for every pair of neighbourhoods V f (p) of f (p) and Vy of y, there exists a neighbourhood Up of p such that

f (Up) ⊆ V f (p) ∪ Vy.

In the above definition, y ∈ Y is not unique as we can observe in the following example:

Example 3.2. Consider the real line Rc f with the co-finite topology. Then the identity function on Rc f is split
continuous everywhere and y can be any real number.

Now suppose the co-domain space Y is Hausdorff. Let there exist y1, y2 ∈ Y satisfying the above
conditions, such that neither of them is equal to f (p). We show that y1 = y2. Suppose to the contrary
that y1 , y2. Since Y is Hausdorff, there exist pair-wise disjoint neighbourhoods Vy1 ,Vy2 , and V f (p) of
y1, y2, and f (p), respectively. Then there exists a neighbourhood Up of p such that f (Up) ⊆ V f (p) ∪ Vy1 .
Consequently, f (Up) ∩ Vy2 = ∅,which is a contradiction.

Therefore, from now on, we will always consider the co-domain space of a function as a Hausdorff
space, unless otherwise stated.

Theorem 3.3. Let f : X→ Y be a function. Then the following conditions are equivalent:

(i) f is strictly split continuous at p ∈ X.
(ii) There exists y ∈ Y and y , f (p) such that (a) there exists a net ⟨xλ : λ ∈ Λ⟩ that converges to p such that
⟨ f (xλ) : λ ∈ Λ⟩ converges to y, and (b) each net which is convergent to p has a subnet along which f converges
to either y or f (p).
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Proof. (i) =⇒ (ii) Since for all neighbourhoods U of p and V of yp, f (U)∩V , ∅, we can pick x(U,V) ∈ U such
that f (x(U,V)) ∈ V. Put

Λ =
{
(U,V) : U is a neighbourhood of p and V is a neighbourhood of yp

}
.

Define the following direction on Λ: (U1,V1) ≥ (U2,V2) if and only if U1 ⊆ U2 and V1 ⊆ V2. Clearly, the
net ⟨x(U,V) : (U,V) ∈ Λ⟩ converges to p and the net ⟨ f (x(U,V)) : (U,V) ∈ Λ⟩ converges to yp. Therefore the
condition (a) of (ii) holds for y = yp.

Let ⟨xλ : λ ∈ Λ⟩ converges to p. We will show that either f (p) or yp is a cluster point of the net
⟨ f (xλ) : λ ∈ Λ⟩. If not, there exist neighbourhoods V f (p) and Vyp of f (p) and yp respectively such that
f (xλ) < V f (p) for all λ ≥ λ1 and f (xλ) < Vyp for all λ ≥ λ2 for some λ1, λ2 ∈ Λ. Pick λ0 ∈ Λ such that λ0 ≥ λ1
and λ0 ≥ λ2. Then for all λ ≥ λ0, we have f (xλ) < V f (p) and f (xλ) < Vyp . Thus for all λ ≥ λ0, we have
f (xλ) < V f (p) ∪ Vyp , which is a contradiction because f is split continuous at p and ⟨xλ : λ ∈ Λ⟩ converges to
p. Hence either f (p) or yp is a cluster point of the net ⟨ f (xλ) : λ ∈ Λ⟩. Thus ⟨xλ : λ ∈ Λ⟩ has a subnet along
which f converges to either y or f (p).

(ii) =⇒ (i) Let V be a neighbourhood of y and U be a neighbourhood of p. Then there exist λ1, λ2 ∈ Λ
such that for all λ ≥ λ1, we have f (xλ) ∈ V and for all λ ≥ λ2, we have xλ ∈ U. Pick λ0 ∈ Λ such that λ0 ≥ λ1
and λ0 ≥ λ2. Then clearly f (xλ) ∈ f (U) ∩ V for all λ ≥ λ0. Therefore, the first condition of the definition of
split continuity is satisfied.

Now suppose the second condition of the definition does not hold with respect to this y. Then there
exist neighbourhoods V f (p) and Vy of f (p) and y respectively, such that for each neighbourhood U of p,
f (U) ⊈ V f (p) ∪ Vy. Choose xU ∈ U such that f (xU) < V f (p) ∪ Vy. Let Λ′ = {U : U is a neighbourhood of p}.
Define the following direction on Λ′: U1 ≥ U2 if and only if U1 ⊆ U2. Clearly, the net ⟨xλ′ : λ′ ∈ Λ′⟩
converges to p, but neither y nor f (p) is a cluster point of ⟨ f (xλ′ ) : λ′ ∈ Λ′⟩, a contradiction to the condition
(b) of (ii).

Now we provide a condition by which we can verify the split continuity of f without ever finding the
y in the definition of split continuity. A metric space version of the same can be found in [9].

Theorem 3.4. Let f : X→ Y be a function and p ∈ X. Then the following conditions are equivalent:

(i) f is split continuous at p ∈ X.
(ii) For every open coverV of Y, there exist V1,V2 ∈ V and a neighbourhood U of p such that f (U) ⊆ V1 ∪ V2.

Proof. (i) =⇒ (ii) LetV be an open cover of Y and f be split continuous at p. Then there exist V1,V2 ∈ V

such that f (p) ∈ V1 and yp ∈ V2. Then by the definition of split continuity there exists a neighbourhood U
of p such that f (U) ⊆ V1 ∪ V2.

(ii) =⇒ (i) The given condition implies that every net converging to p has a subnet along which f is
convergent (see [20, Theorem 2.1]). Let Sp be the set of all y ∈ Y such that there exists a net in X converging
to p along which f converges to y. Clearly, f (p) ∈ Sp. It is sufficient to show that Sp contains no more
than two points. Suppose to the contrary that Sp contains three distinct points y1 = f (p), y2, and y3. Since
Y is a Hausdorff space, there exist neighbourhoods Vy j of y j whose closures do not contain yi if i , j,
where i, j = 1, 2, 3. In addition, we can pick a neighbourhood Vz of each z ∈ Y \ {y1, y2, y3} such that Vz
does not contain any of y1, y2, and y3. Then V= {Vz : z ∈ Y \ {y1, y2, y3}} ∪ {Vy j : j = 1, 2, 3} is an open
cover of Y. Then by the given condition there exist V1,V2 ∈ V and a neighbourhood U of p such that
f (U) ⊆ V1∪V2. Suppose y1 = f (p) ∈ V1. Then by the construction of the open cover V1 = Vy1 . Since y2 ∈ Sp,
there exists a net ⟨xλ′ : λ′ ∈ Λ′⟩ converging to p such that ⟨ f (xλ′ ) : λ′ ∈ Λ′⟩ converges to y2. Therefore,
y2 ∈ (V1 ∪ V2) = V1 ∪ V2. Since V1 = Vy1 does not contain y2, we have y2 ∈ V2. Thus V2 = Vy2 . Similarly,
y3 ∈ V1 ∪ V2, which is a contradiction. Consequently, Sp contains at most two elements.

Corollary 3.5. Let Y be a locally compact Hausdorff space. If f : X → Y is split continuous at p, then it is locally
compact at p.
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Proof. Since Y is locally compact, for each y ∈ Y there exists a neighbourhood Vy of y and a compact subset
Cy of Y such that Vy ⊆ Cy. NowV= {Vy : y ∈ Y} is an open cover of Y. Since f is split continuous at p, there
exist Vy1 ,Vy2 ∈ V and a neighbourhood U of p such that f (U) ⊆ Vy1 ∪ Vy2 ⊆ Cy1 ∪ Cy2 . Since Cy1 ∪ Cy2 is
compact, f is locally compact at p.

Recall from Theorem 3.3 that if f is a strictly split continuous function from X to a Hausdorff space Y,
then for each x ∈ X, there exists a unique yx , f (x) satisfying the definition of split continuity. Following the
definition given in [5], we define the star function f ∗(x) of a split continuous function f (x). If f : X→ Y is a
split continuous function on X, define f ∗ : X → Y by f ∗(x) = f (x), if f is continuous at x ∈ X, and f (x) = yx
if f is strictly split continuous at x ∈ X.

Example 3.6. Consider the non-metrizable spaceRl, the set of all real numbers with the lower limit topology. Define
a function f : Rl → Rl as follows:

f (x) =


0, if x < 0
1, if x = 0
−1, if x > 0.

The function f is continuous everywhere except at x = 0, where it is strictly split continuous. Then the star function
of f is

f ∗(x) =
{

0, if x < 0
−1, if x ≥ 0.

Observe that f ∗ is continuous everywhere.

Proposition 3.7. Let f : X → Y be strictly split continuous at p ∈ X. If there exists y ∈ Y such that y , f (p) and
for every pair of neighbourhoods Up of p and Vy of y, f (Up) ∩ Vy , ∅, then f ∗(p) = y.

Proof. Suppose to the contrary that f ∗(p) , y. Since Y is Hausdorff, there exist pair-wise disjoint neighbour-
hoods Vy,V f ∗(p), and V f (p) of y, f ∗(p), and f (p), respectively. Again, since f is strictly split continuous at p,
there exists a neighbourhood U of p such that f (U) ⊆ V f ∗(p) ∪V f (p). Consequently, f (U)∩Vy = ∅, which is a
contradiction. Hence f ∗(p) = y.

Theorem 3.8. Let X be a topological space and Y be a regular Hausdorff space. If f : X → Y is a split continuous
function on X such that f is continuous at p, i.e., f ∗(p) = f (p), then f ∗ : X→ Y is continuous at p.

Proof. Let V be a neighbourhood of f ∗(p) = f (p). Since Y is regular, there exists an open set W such that
f ∗(p) ∈ W ⊆ W ⊆ V. Again, since f is continuous at p, there exists a neighbourhood U of p such that
f (U) ⊆ W. As f is split continuous, for each x ∈ U, there exists a net ⟨xγ : γ ∈ Γ⟩ converging to x in U such
that ⟨ f (xγ) : γ ∈ Γ⟩ converges to f ∗(x). So f ∗(x) ∈W. Thus f ∗(U) ⊆W ⊆ V. Hence f ∗ is continuous at p.

Theorem 3.9. Let X be a topological space and Y be a regular Hausdorff space. If f : X → Y is split continuous on
X, then f ∗ : X→ Y is split continuous on X.

Proof. Let p ∈ X. If f ∗ is continuous at p, then there is nothing to prove. Let f ∗ be not continuous at p. Let
V f (p) and V f ∗(p) be neighbourhoods of f (p) and f ∗(p), respectively. Since Y is regular, there exist open sets
W f (p) and W f ∗(p) such that

f (p) ∈W f (p) ⊆W f (p) ⊆ V f (p),

and
f ∗(p) ∈W f ∗(p) ⊆W f ∗(p) ⊆ V f ∗(p).

Now, since f is split continuous at p, there exists a neighbourhood U of p such that f (U) ⊆ W f (p) ∪W f ∗(p).
Again, since f is split continuous, for each x ∈ U, there exists a net ⟨xγ : γ ∈ Γ⟩ converging to x in U such
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that ⟨ f (xγ) : γ ∈ Γ⟩ converges to f ∗(x). So either f ∗(x) ∈ W f (p) or f ∗(x) ∈ W f ∗(p). Hence f ∗(U) ⊆ V f (p) ∪ V f ∗(p).
Therefore, f ∗ satisfies the condition (ii) of the definition of split continuity at p with respect to y = f (p). Now
we prove that f ∗ satisfies the condition (i) of the definition of split continuity at p with respect to y = f (p).
Since f ∗ is not continuous at p, there exists a neighbourhood V f ∗(p) of f ∗(p) such that for each neighbourhood
U of p, we have f ∗(U) ⊈ V f ∗(P). Let V f (p) be a neighbourhood of f (p). Then there exists a neighbourhood
U′ of p such that f ∗(U′) ⊆ V f (p) ∪ V f ∗(p). Let U be a neighbourhood of p. Then f ∗(U ∩ U′) ⊆ V f (p) ∪ V f ∗(p).
Since f ∗(U ∩U′) ⊈ V f ∗(p), we have f ∗(U ∩U′) ∩ V f (p) , ∅. Hence f ∗(U) ∩ V f (p) , ∅, which is what we had to
prove.

If Y is a non-regular Hausdorff space, then the above theorems (Theorem 3.8 and Theorem 3.9) may not
be true. To show this, we consider the following example:

Example 3.10. Let X = R with usual topology. Put Y = R, where the topology of Y consists of the usual topology
and, moreover, of all the sets G \K, where G is open in the usual topology and K =

{
1
n : n ∈N

}
. Define f : X→ Y by

f (x) =
{

x, if x < K
0, if x ∈ K.

Clearly, f is continuous everywhere except at 1
n for each n ∈N. However, f is split continuous at 1

n for each n ∈N.
In fact, f ∗(x) = x for each x ∈ X. Thus f ∗ is neither continuous nor split continuous at 0.

Proposition 3.11. Let X be a topological space and Y be a Hausdorff space. Let f : X→ Y be split continuous on X.
Then the following conditions are equivalent:

(i) f ∗ is strictly split continuous at p ∈ X with respect to y = f (p).
(ii) f ∗ is not continuous at p, and each net which is convergent to p has a subnet along which f ∗ converges to either

f ∗(p) or f (p).

Proof. The proof of (i) =⇒ (ii) is obvious. We only have to prove (ii) =⇒ (i). Since f ∗ is not continuous at
p, there exists a neighbourhood V f ∗(p) of f ∗(p) such that for each neighbourhood U of p, there exists xU ∈ U
such that f ∗(xU) < V f ∗(p). LetN(p) be the collection of all neighbourhoods of p. Define a direction ≥ onN(p)
by reverse inclusion. Then ⟨xU : U ∈ N(p)⟩ is a net in X converging to p. Now by assumption, ⟨ f ∗(xU) :
U ∈ N(p)⟩ has a subnet which is convergent to f ∗(p) or f (p). However, no subnet of ⟨ f ∗(xU) : U ∈ N(p)⟩ can
converge to f ∗(p). Thus ⟨ f ∗(xU) : U ∈ N(p)⟩ has a subnet which is convergent to f (p). Therefore, there exists
a net ⟨xλ : λ ∈ Λ⟩ converging to p such that ⟨ f ∗(xλ) : λ ∈ Λ⟩ converges to f (p). Hence by Theorem 3.3, f ∗ is
strictly split continuous at p with respect to y = f (p).

The following proposition can be proved along the same lines as [5, Proposition 3.6.].

Proposition 3.12. If f : X→ Y is split continuous on X, then gr( f ) ∪ gr( f ∗) = gr f .

The following proposition is a direct consequence of [8, Theorem 3.4] and the fact that any split contin-
uous function is subcontinuous.

Proposition 3.13. A function f : X→ Y is continuous if and only if it is split continuous and has a closed graph.

In [5], a relationship between split continuity and multifunctions whose values consist of no more
than two points has been established in the context of metric spaces. Similarly, one can investigate the
relation between split continuity and multifunctions whose values consist of no more than two points in
a more general context, namely in topological spaces. In this article, we forego our investigation in the
aforementioned direction and instead we examine the set of points of split-continuity of quasi-continuous
functions. We conclude this section with the following open problems:

Open Problem 3.14. Let X be a topological space and Y be a regular Hausdorff space. Let f : X → Y be split
continuous on X. Define f1 = f ∗, f2 = ( f ∗)∗, and in this way, recursively define fn for any positive integer n. Is there
a positive integer k such that fk is continuous on X? If not, does the sequence of functions ( fn)n converge to some
continuous function in the topology of pointwise convergence?
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4. Points of split continuity of quasi-continuous functions

We have divided the whole section into two subsections, Subsection A and Subsection B. In Subsection
A, we consider the quasi-continuous functions with values in a topological space with the property (B2)
and in Subsection B, we consider the quasi-continuous functions with values in a topological space whose
topology guarantees the existence of a winning strategy for one of the players in a special two-player
fragmenting game.

4.1. Subsection A
Definition 4.1. A topological space X is said to satisfy the property (Bi), where i is a positive integer, if X has a
sequence of open covers (Gn)n∈N such that whenever x ∈ X and Gn ∈ Gn are such that x ∈ Gn for each n, then

(i)
⋂
∞

n=1 Gn contains at most i number of elements;
(ii) every neighbourhood of

⋂
∞

n=1 Gn contains some
⋂k

n=1 Gn.

Remark 4.2. Clearly, if a topological space X satisfies the property (Bi), then it also satisfies the property (B j) for all
j > i, and the property (B). If X is a regular and weakly developable space, then X has the property (Bi) for all i.

In addition, we have the following fact discussed in [1, 2]: A completely regular space is weakly developable
if and only if it is Gδ-developable and has the property (B). In fact, one can easily prove that a completely
regular space is weakly developable if and only if it is Gδ-developable and has the property (Bi).

The following example shows that there is a weakly developable non-Hausdorff space having the
property (B2) but not the property (B1).

Example 4.3. We recall the weakly developable non-Hausdorff topological space X =N∪{∞1,∞2}, where∞1,∞2 <
N, and ∞1 , ∞2, and X is topologized as follows: {m} is an open discrete subset in X for every m ∈ N, and the
point ∞i has the neighbourhood base {Vi

n : n ∈ N}, where Vi
n = {∞i} ∪ {k ∈ N : k ≥ n}, for every n ∈ N, and

i = 1, 2 (see [1, Example 3.3]). The space has the property (B2) because of the sequence of open covers (Gn) of X, where
Gn = {{m} : m ∈ N,m < n} ∪ {Vi

n : i = 1, 2} for every n ∈ N. We will now prove that X does not have the property
(B1). Let (G′n) be a sequence of open covers of X. Then for every n, there exists G′ ∈ G′n such that ∞1 ∈ G′. Set
G′ = G′n. Then∞1 ∈ G′n for all n. Then for each n, there exists kn ∈N such that V1

kn
⊆ G′n. Clearly,∞2 ∈ V1

kn
⊆ G′n.

Hence
⋂

n G′n contains more than one element. Consequently, X does not have the property (B1).

The following example shows that there is a weakly developable Hausdorff space without the property
(B1).

Example 4.4. Consider the topological space X = R ×
({

1
n : n ∈N

}
∪ {0}

)
from [1, Example 3.4]. The space is

topologized as follows: R × { 1
n } is an open set in X for every n ∈ N, and every x = (x, 0) ∈ R × {0} has the

neighbourhood base {N(x, ε) : ε > 0}, where N(x, ε) = ({x} × [0, ε[)∪ (]x− 2− ε, x− 2+ ε[\{x+ 2}×]0, ε[)∩X. It is
proved in [1, Example 3.4] that this space is weakly-developable and Hausdorff. It is easy to see that this space does
not have the property (B1).

Proposition 4.5. Let A be a non-empty subset of a Hausdorff space Y. If Y has the property (Bi), then A has the
property (Bi) in Y with the induced topology.

Proof. Let (Gn) be a sequence of open covers of Y which guarantees the property (Bi). Set G′n = {G∩A : G ∈
Gn} for every n ∈N. Then (G′n) will guarantee the property (Bi) for A in Y with the induced topology.

Proposition 4.6. Let G and H be two disjoint closed subsets of a Hausdorff space Y. If G and H have the property
(Bi) in Y with the induced topology, then also G ∪H has the property (Bi) in Y with the induced topology.

Proof. Let (Gn) be a sequence of open covers of G and (Hn) be a sequence of open covers of H with respect
to which G and H have the property (Bi), respectively. Since G and H are disjoint closed subsets of Y,
In = Gn ∪Hn is an open cover of G∪H, for every n. It is easy to establish that with respect to the sequence
of open covers (In), G ∪H has the property (Bi).
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The following proposition is a generalization of [1, Theorem 4.1].

Proposition 4.7. Let X be a topological space having the property (Bi). Then there exists a sequence of open covers
(Gn) such that for every x ∈ X and for every sequence (Gn) of open sets where, for each n, x ∈ Gn ∈ Gn and if (xn) is a
sequence, where xn ∈

⋂
k≤n Gn, then the set of all cluster points of (xn) is a non-empty set with no more than i number

of elements.

Theorem 4.8. Let X be a Baire space and Y be a Hausdorff space with the property (B2). If f : X → Y is a
quasi-continuous mapping, then the set of points of split continuity of f is a dense Gδ subset in X.

Proof. Let (Gn) be a sequence of open covers of Y which guarantees the property (B2). For each n ∈ N,
define Dn to be the set of all x ∈ X for which there exist neighbourhoods U of x, and Gn ∈ Gn of f (x) such
that f (U) ⊆ Gn. By construction, Dn is open in X. We prove that Dn is dense in X for each n ∈ N. Let U
be an open set in X and n ∈ N. Pick x ∈ U. Choose Gn ∈ Gn so that f (x) ∈ Gn. Since f is quasi-continuous
at x, there exists a non-empty open subset U′ of U such that f (U′) ⊆ Gn. Clearly, U′ ⊆ U ∩ Dn. Hence Dn
is dense in X. Let D =

⋂
n Dn. Since X is Baire, D is a dense Gδ subset of X. Now we show that f is split

continuous at each point of D. Let x ∈ D andV be an open cover of Y. Since x ∈ Dn for each n ∈N, there are
neighbourhoods Un of x and Gn of f (x) such that f (Un) ⊆ Gn. Clearly, f (x) ∈ Gn for each n. Since Y has the
property (B2),

⋂
n Gn can have at most two points. Then there exist V1,V2 ∈ V such that

⋂
n Gn ⊆ V1 ∪ V2.

Furthermore,
⋂

n≤k Gn ⊆ V1 ∪ V2 for some k ∈ N. Set U =
⋂

n≤k Un. Then x ∈ U and f (U) ⊆ V1 ∪ V2. Hence
f is split continuous at x. Consequently, f is split continuous on D.

Corollary 4.9. Let X be a Baire space and Y be a Hausdorff space with the property (B2). If f : X → Y is a
quasi-continuous mapping, then the set of points of split continuity of f is of the second category.

Proof. It follows from the proof of Theorem 4.8 that the set of points of split continuity of f is an intersection
of countably many open dense sets in X. Since the intersection of countably many open dense sets in a Baire
space is a set of the second category, the set of points of split continuity of f is of the second category.

Example 4.10. Consider the space Y = [0, 1) with lower limit topology and X = (0, 1) with standard subspace
topology of R. Consider the inclusion mapping f (x) = x. Clearly, f is quasi-continuous on X, but it is not split-
continuous at any point of X. Since X is a Baire space, Y = [0, 1) does not have the property (B2) by the Theorem
4.8.

Theorem 4.11. Let X be a Baire space and Y be a regular Hausdorff space with the property (B2) locally. If f : X→ Y
is a quasi-continuous mapping, then the set of points of split continuity of f is of the second category.

Proof. Let L = {x ∈ X : f is not split continuous at x}. Since X is a Baire space, it sufficient to show that L is
of first category in X. Put G = {V : V is open in X and V ∩ L is of first Baire category in V}.We prove that G
is a π-base in X. Let U be a non-empty open subset of X and let x ∈ U. Let V be a neighbourhood of f (x).
Since Y is regular space having the property (B2) locally, we can pick a neighbourhood W of f (x) such that
W has the property (B2) in Y with the induced topology and f (x) ∈ W ⊆ V. Since f is quasi-continuous
at x, there exists a nonempty open subset U1 of U such that f (U1) ⊆ W. Consider the restricted mapping
f |U1 : U1 → W. Clearly, f |U1 satisfies all the assumptions of Theorem 4.8. Thus there exists a dense Gδ
subset S of U1 such that f is split continuous on S. Then U1 ∈ G and U1 ⊆ U. By [11, Lemma 3.1 ], the set L
is of first category in X.

4.2. Subsection B
Let X be a topological space. The Banach–Mazur game BM(X) can be defined in the following way: Two

players α and β alternately choose non-empty open subsets of X to form a sequence W0 ⊇ W1 ⊇ W2 ⊇ · · · ,
and the player α wins if and only if

⋂
n Wn , ∅. It has been proved that X is a Baire space if and only if

player β has no winning strategy in the game BM(X) (see [22]). Later, Kenderov et al. [14] introduced the
idea of the fragmenting game G(X) in the space X as follows: The game involves two players Σ and Ω.
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The players alternately select non-empty subsets of X. The playerΩ starts the game by selecting the whole
space X. Then Σ responds by picking a subset A1 of X and Ω answers by picking a relatively open subset
B1 of A1. In this way, at the nth stage of the game, Σ picks any relatively open subset An of Bn−1 in response
to the last move Bn−1 of Ω, and Ω responds by picking a relatively open subset Bn of An. In this manner,
the players generate a sequence of non-empty sets A1 ⊇ B1 ⊇ A2 ⊇ · · · ⊇ An ⊇ Bn ⊇ · · · , which is said to
be a play, and is denoted by p = ((An,Bn))n≥1. The player Ω is said to have won the game if the set

⋂
n An

contains at most one point. Otherwise, the player Σ is said to have won the game.
A finite sequence ((Ak,Bk))i

k=1 of pairs of nonempty open sets consisting of the first several moves of the
play ((An,Bn))n≥1 will be called a partial play. A strategy σ of the player Σ is a rule that species each move of
the player Σ in every possible situation. More precisely, a strategy σ = (σn)n for the player Σ is a sequence
of set-valued mappings such that A1 = σ1(X) and for each n ≥ 2, we have

∅ , σn(B1,B2, . . . ,Bn−1) ⊆ Bn−1

and σn(B1,B2, . . . ,Bn−1) is a relatively open subset of Bn−1. By a σ-play, we mean a sequence of non-empty
subsets (Bn)n of X such that the domain of σn contains the element (B1,B2, . . . ,Bn−1), for all n ≥ 2. A strategy
σ is called a winning strategy for the player Σ if Σ wins each σ-play. A winning strategy ω for the player
Ω can be defined similarly. The game G(X) or the space X is called Ω-favorable (Σ-favorable), if there is a
wining strategy for the playerΩ (Σ). The game G(X) or the space X is calledΣ-unfavorable (Ω-unfavorable),
if there does not exist winning strategy for the playerΣ (Ω). Note that G(X) isΣ-unfavorable does not imply
that G(X) is Ω-favorable.

In the same paper [14], by altering the rule of winning in the game G(X), the games G′

(X) and DG(X)
were introduced. A space X is said to be game determined if DG(X) is Ω-favorable. Similarly, by altering
only the winning criteria keeping everything else same in the game G(X), we define a new game G2(X) as
follows: The playerΩ is said to have won the game if the set A =

⋂
n An is either empty or contains at most

two points such that for every neighbourhood U of A there exists An contained in U. Otherwise, the player
Σ is said to have won the game. We will say that the game G2(X) or the space X isΩ-favorable (Σ-favorable),
if there is a wining strategy for the player Ω (Σ). Clearly, if the game G′

(X) is Ω-favorable, then G2(X) is
Ω-favorable. Therefore, for every metric space X, G2(X) is Ω-favorable. Also, if G2(X) is Ω-favorable, then
the game DG(X) is Ω-favorable as well.

In [12], Holá et al. proved the following result:

Result 4.12 ([12]). Let X be a Baire space, Y be a game determined Hausdorff space and f : X → Y be a quasi-
continuous mapping. Then the set of points of subcontinuity of f is a dense subset in X.

We will now prove a result analogous to the above result.

Theorem 4.13. Let X be a Baire space, and Y be a Hausdorff space such that G2(Y) isΩ-favorable. If f : X→ Y is a
quasi-continuous mapping, then f is split continuous on a dense subset of X.

Proof. Let U be an arbitrary open subset of X. It is sufficient to show that f is split continuous at some points
of U. Let ω be a winning strategy forΩ in the game G2(Y).We will construct a strategy b for the player β in
the Banach-Mazur game BM(X). Set b(∅) = U. Let V1 be a non-empty open subset of U. Consider the set
A1 = f (V1). Let B1 = ω(A1). Since B1 is relatively open in A1 and f is quasi-continuous, there exists an open
subset U1 ⊆ V1 such that f (U1) ⊆ B1. Set b(V1) = U1.

Proceeding inductively we can construct the strategy b for player β in such a way that any b-play
(U,V1,U1,V2, . . .Vn,Un, . . . ) is accompanied by someω-play (A1,B1,A2,B2, . . . ,An,Bn, . . .) such that for every
n ≥ 1, f (Vn) = An and f (Un) ⊆ Bn. Since X is a Baire space, the strategy b for β in BM(X) is not a winning
one. Thus there exists a play (V1,V2, . . . ,Vn, . . .) of α against this strategy. Thus

⋂
n Un =

⋂
n Vn , ∅. Let

x ∈
⋂

n Vn ⊆ U. We prove that f is split continuous at x. Clearly, f (x) ∈
⋂

n An. Since ω is a winning strategy
for Ω in the game G2(Y), the set A =

⋂
n An contains at most two points, and for every open subset G of Y

containing A, there is some k ≥ 1 such that Ak ⊆ G.
Now letW be an open cover of Y. Since A has at most two elements, there exist W1,W2 ∈ W such that

A ⊆ W1 ∪W2. Then there exists some k ≥ 1 such that Ak ⊆ W1 ∪W2. Thus f (Vk) ⊆ W1 ∪W2. Since Vk is a
neighbourhood of x, f is split continuous at x.
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Corollary 4.14. For the space Y = (0, 1) with the lower limit topology, G2(Y) is not Ω-favorable.

Proof. Consider X = (0, 1) with the standard topology. Then X is a Baire space. Consider the identity
function I from X to Y. Clearly, I is a quasi-continuous mapping on X. Now we show that I is not split
continuous at any point x ∈ (0, 1). Clearly, I is not continuous at x. Let y ∈ (0, 1) be such that y , x. Set
r = |y − x|. Then I

(
x − r

4 , x +
r
4

)
∩

[
y, r

4

)
=
(
x − r

4 , x +
r
4

)
∩

[
y, r

4

)
= ∅. Thus I can not be split continuous at x.

Hence by Theorem 4.13, we conclude that G2(Y) is not Ω-favorable.

A space X is called α-favorable if there exists a winning strategy for the player α in the game BM(X). The
following theorem is analogous to (i) =⇒ (iv) of Theorem 2 in [14], and we employ a similar technique in
the proof.

Theorem 4.15. Let X be α-favorable, and Y be a Hausdorff space such that G2(Y) is Σ-unfavorable. If f : X→ Y is
a quasi-continuous mapping, then the set of split continuity points of f is of the second category in every non-empty
open subset of X. Moreover, the set is dense in X.

Proof. Let H be a first category subset of X and t be a winning strategy for player α such that
⋂

n Wn , ∅
and H∩ (

⋂
n Wn) = ∅whenever (Vn,Wn)n is a t-play. Let V0 be a non-empty open subset of X. We will show

that f is split continuous at some point of V0 \ H. We first construct a strategy σ for the player Σ in the
game G2(Y). Let V0 be the first move of the player β in the game BM(X) and let W1 = t(V0). Consider the
set A1 = f (W1). Assume that A1 is the first move of the player Σ under the strategy σ. Let B1 = σ(A1) be the
response of the playerΩ. Since B1 is a relatively open subset of A1 and f is quasi-continuous, there exists a
non-empty open subset V1 of W1 such that f (V1) ⊆ B1. Suppose that V1 is the next move of the player β in
the game BM(X). Set W2 = t(V0,W1,V1).

Proceeding inductively, we can construct the strategy σ for player Σ in such a way that any σ-play
(A1,B1,A2,B2, . . . ,An,Bn, . . . ) is accompanied by some t-play (V0,W1,V1,W2,V2, . . . ,Wn,Vn, . . . ) such that
for all every n ≥ 1, f (Wn) = An and f (Vn) ⊆ Bn.

Since X is α-favorable,
⋂

n Wn , ∅. Consequently
⋂

n An =
⋂

n f (Wn) ⊇ f (
⋂

n Wn) , ∅. Since G2(Y) is
Σ-unfavorable, there is some σ-play (An,Bn)n which is won by Ω. Hence the non-empty set A =

⋂
n An has

at most two points such that for every neighbourhood U of A there exists An contained in U. Let x ∈
⋂

n Wn
andV be an open cover of Y. Then there exist V1,V2 ∈ V such that A ⊆ V1 ∪ V2. Therefore, Ak ⊆ V1 ∪ V2
for some positive integer k. Thus f (Wk) ⊆ V1 ∪V2. Since Wk is a neighbourhood of x, we conclude that f is
split continuous at x ∈

⋂
n Wn ⊆ V0 \H.
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[7] J. Calbrix, B. Alleche, Multifunctions and Čech-complete spaces, Topology Atlas (Proceeding of the 8th Prague Topological Sympo-

sium), (1997), 30–36.
[8] R. V. Fuller, Relations among continuous and various noncontinuous functions, Pacific J. Math. 25 (1968), 495—509.
[9] L. Gupta, M. Aggarwal, Split continuity: A different perspective, Top. Appl. 317 (2022), 108189.
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