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Abstract. In this paper, a family of three-term conjugate gradient methods is proposed to solve a large-
scale unconstrained optimization problem. With the help of suitable features of the new family (like
sufficient descent directions) a strong global convergence theorem for uniformly convex functions under
weak Wolfe-Powell line search technique is established. Furthermore, a new well-defined modification of
weak Wolfe-Powell line search technique is presented and a strong global convergence theorem for general
smooth functions is obtained. In two competitions contained two line search techniques, five well behaved
conjugate gradient methods and 200 standard problems the efficiency of these new methods in numerical
experience is indicated.

1. Introduction

In a large-scale unconstrained optimization problem

min
x∈Rn

f (x), (1)

where f (x) : Rn
−→ R is smooth and bounded from below, finding the second-order information of f is

a costly process. Therefore, using first-order (gradient-type) methods to solve problem (1) numerically is
more efficient than using Newton or quasi-Newton methods. The steepest descent method is a simple
gradient-type algorithm which use only the first-order information (the gradient) of f . But this method
has a slow convergence rate and may generate zigzagging directions [32]. So, the conjugate gradient (CG)
method is a natural choice for solving the large-scale optimization problem (1).

In a CG algorithm, in iteration xk+1, first a descent direction dk+1 in the form of

d0 = −10, dk+1 = −1k+1 + βk+1dk + γk+1pk, for k = 0, 1, 2, 3, . . . , (2)

is calculated. Note that in (2), 1k+1 is the gradient of f at xk+1, βk+1 and γk+1 are CG parameters and pk is an
arbitrary vector related to previous iterations. Then by an exact line search

min
α∈R>0

f (xk+1 + αdk+1), (3)
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or an inexact line search technique like the weak-Wolf-Powell (WWP) technique{
f (xk+1 + αdk+1) ≤ fk+1 + σ1α1T

k+1dk+1,
1(xk+1 + αdk+1)Tdk+1 ≥ σ21

T
k+1dk+1,

(4)

where fk+1 = f (xk+1), 0 < σ1 < (1/2) and σ1 < σ2 < 1, the step length αk+1 is obtained [32]. Finally, the next
iteration xk+2 is considered as

xk+2 = xk+1 + αk+1dk+1. (5)

Some well-known CG methods with γk+1 = 0 (two-term CG methods) are Hestenes-Stiefel (HS) [26],
Fletcher-Reeves (FR) [23], Polak-Ribiére-Polyak (PRP) [33, 34]. It is worth to notice that, these methods are
equivalent for convex quadratic functions.

To the best knowledge of authors, the introduction of the new conjugacy condition

dT
k+1yk = −t1T

k+1sk, (6)

where t ∈ [0,∞) and sk = xk+1 − xk = αkdk by Dai and Liao [16] has been a source of inspiration for many
like Hager and Zhang [25], Babaie-Kafaki and Ghanbari [9], Dong et al. [21], Zheng and Zheng [46] and
Liu and Liu [30] to create new nonlinear CG methods.

By choosing βk+1 = βHS
k+1, γk+1 = 1

T
k+1yl/dT

l yl and pk = dl where 1 ≤ l < k for (2), Beale introduced the
first three-term CG method in [10]. The directions of this method was not always descent but the idea
of three-term CG method was interesting. Therefore, many researchers like Zhang et al. [44], Andrei [5],
Narushima et al. [31], Al-Baali et al. [2], Wu [38] and Liu et al. [28] developed this idea and proposed more
efficient three-term CG methods.

One way to have a better numerical behavior in CG methods is to multiply the gradient part of CG
directions in a positive parameter τk or actually using the scaled CG direction

d0 = −10, dk+1 = −τk1k+1 + βk+1dk + γk+1pk, for k = 0, 1, 2, . . . . (7)

In [11], Birgin and Martı́nez introduced two parameters for τk and showed that their scaled methods are
more effective than PRP and FR methods. Interested readers can find other examples of scaled CG directions
in [4, 22, 29, 36, 45]. The authors of these papers indicated that scaled CG methods usually produce more
efficient directions than non-scaled ones, in both analytical and numerical points of view.

On the other hand, by carefully examining the structure of the limited memory BFGS (L-BFGS) direction

dk+1 = −1k+1 +

1T
k+1yk

sT
k yk

−

τk +
∥yk∥

2

sT
k yk

 1T
k+1sk

sT
k yk

 sk +
1T

k+1sk

sT
k yk

yk, for some τk ≥ 0, (8)

it turns out that the L-BFGS directions and the three-term CG directions have similar structure. For example,
the L-BFGS direction (8) can be considered as a modification of HS method because they are identical under
exact line search. These similarities enable the authors of [12, 14] to add some parameters to (8) and create
some families of three-term CG methods. Interested readers can find other research articles in this field in
[7, 17, 20, 40].

An important subject in nonlinear CG methods is the global convergence of algorithms. Based on [1]
Gilbert and Nocedal [24] presented a process to prove the global convergence of HS, FR and PRP methods.
An important key in their process is that the directions of the method satisfy the sufficient descent condition

1T
k+1dk+1 ≤ −c∥1k+1∥

2, for some 0 < c ≤ 1 and all k ≥ 0. (9)

For general smooth functions, under WWP line search technique and conditions (9), some researchers
used Powell’s restart procedures [35] and set β+k+1 = max{βk+1, 0} or obtained a weaker global convergence
theorem.
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Another main element in proving the convergence of a CG algorithm is the property

yT
k sk ≥ µ∥sk∥

2, (10)

of uniformly convex functions. Therefore, in the case of non-convex functions, Yuan et al. [42] proposed a
modified WWP line search technique (MWWP) and showed that under a few more conditions, the BFGS
and PRP methods are globally convergent. Recently, the authors of [13] introduced another modified WWP
line search technique. In some numerical experiences, they showed that this technique behave better than
both WWP and MWWP techniques. Furthermore, they indicated that under this line search technique,
property (10) and the global convergence of BFGS method are true for general smooth functions .Some
other modified line search techniques are presented in [15, 19, 27, 41].

Due to the vast applications of large-scale unconstrained optimization problems and the efficiency of CG
methods to solve them, in this paper, we introduce a family of scaled three-term CG methods. Furthermore,
to achieve an appropriate global convergence theorem for the new family, we propose a modified WWP
line search technique. Our main contributions in this paper are as follows:

• Showing that the directions of our family are sufficiently descent.

• Proving a strong global convergence theorem for the new family for uniformly convex and general
smooth functions.

• Indicating that the new modified WWP line search technique is well-defined.

• Observing the efficiency and effectiveness of the new presented methods in comparison with similar
methods in some numerical experiments.

The rest of this paper is organized as follows. In the next section, we will introduce the new family of
three-term CG methods. Then, in Section 3, we will prove the global convergence of the new family for
uniformly convex and general smooth functions under WWP line search techniques. In Section 4, we will
propose a new modified WWP line search technique and obtain the strong global convergence theorem
of the presented family for general smooth functions. In the last section, we will present the results of
numerical experiments.

2. The new family of three-term CG methods and its properties

As we mentioned in introduction, two directions (7) and (8) are the source of inspiration of many
researchers to introduce efficient CG methods. In both of these directions, a free parameter is added to
control the balance between the parts of directions. Plus, the free parameters in a family of CG directions
enable the researchers to choose an appropriate member of the family for solving their special problems.
Many numerical experiences also indicated that using the free parameters in directions (7) and (8) yielded
better numerical results. Given this fact, we decided to use some free parameters in a three-term CG
direction which created by combining directions (7) and (8). Therefore, in this section, we first introduce
the new family of three-term CG direction as

dk+1 = −τ11k+1 +
1

dT
k yk

(
τ11

T
k+1yk − τ2ck∥yk∥

2
− τ31

T
k+1sk

)
dk − τ1ckyk, (11)

where ck = 1
T
k+1sk/yT

k sk, 0 < τ1 ≤ 1 and τ2, τ3 ≥ 0. Then, in the following of this section, we show that
conditions (6) and (9) are true for (11).

Proposition 2.1. The directions of the family (11) satisfy the conjugacy condition (6), whenever the line search
algorithm guaranty yT

k sk > 0.
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Proof. For directions (11) we have

dT
k+1yk = −τ11

T
k+1yk + τ11

T
k+1yk − τ2ck∥yk∥

2
− τ31

T
k+1sk − τ1ck∥yk∥

2

= −

 (τ1 + τ2)∥yk∥
2

yT
k sk

+ τ3

 1T
k+1sk := −tk1

T
k+1sk.

So, if we use any line search technique which can guaranty yT
k sk > 0, then tk is non-negative. Therefore,

direction (11) satisfy conjugacy condition (6).

Throughout this article, for simplicity, we will call the new family of scaled three-term CG directions
(11) as STTCGF. Since under exact line search we have 1T

k+1sk = 0, so STTCGF family can be considered as
a modification of HS method.

Proposition 2.2. Under any line search technique which can guaranty the positiveness of yT
k sk, the directions of

STTCGF family are sufficient descent.

Proof. For STTCGF we have

dT
k+11k+1 = −τ1∥1k+1∥

2 + τ1ck1
T
k+1yk − τ2c2

k∥yk∥
2
− τ3

(1T
k+1sk)2

yT
k sk

− τ1ck1
T
k+1yk ≤ −τ1∥1k+1∥

2. (12)

So, the sufficient descent condition (9) is satisfied.

Algorithm 2.3. Scaled three-term CG family STTCGF
Initialization: Choose ϵ > 0 and x0 ∈ Rn. Set k = 0.

while ∥1k∥∞ > ϵ do
if k = 0 then

Set dk = −1k,
else

Calculate the search direction dk by (11).
end if
Calculate αk by an appropriate line search technique.
Set xk+1 = xk + αkdk.
Set k = k + 1.

end while

Remark 2.4. If we set τ2 or τ3 equal to zero in STTCGF family, we can create two new families of scaled three-term
CG directions:

• τ2 = 0:

dk+1 = −τ11k+1 +
1

dT
k yk

(
τ11

T
k+1yk − τ31

T
k+1sk

)
dk − τ1ckyk,

where, 0 < τ1 ≤ 1 and τ3 ≥ 0.

• τ3 = 0:

dk+1 = −τ11k+1 +
1

dT
k yk

(
τ11

T
k+1yk − τ2ck∥yk∥

2
)

dk − τ1ckyk,

where, 0 < τ1 ≤ 1 and τ2 ≥ 0.

Note that, Propositions 2.1 and 2.2 are true for these families.

In Algorithm 2.3, we propose the pseudo code of the STTCGF family. In the next section, we prove the
global convergence of Algorithm 2.3 for uniformly convex and general smooth functions under WWP line
search technique.
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3. Global convergence analysis under WWP line search technique

In this section, we first consider an assumption and Zoutendijk lemma [32]. Then, we prove the global
convergence property of Algorithm 2.3 under WWP line search technique for uniformly convex and general
smooth functions. Note that, since WWP line search technique can guaranty the positiveness of yT

k sk, so
Propositions 2.1 and 2.2 of STTCGF family are true under it.

Assumption 3.1.

i) The level set Ω = {x ∈ Rn
| f (x) < f (x0)} is bounded.

ii) In some neighborhood N ofΩ, f is continuously differentiable and its gradient function 1 is Lipschitz continuous;
namely, there exists a constant L > 0 such that

∥1(x) − 1(y)∥ ≤ L∥x − y∥, ∀x, y ∈ N.

Remark 3.2. From Assumption 3.1, we know that

• There exists a constant B > 0 such that

∥sk∥ ≤ B, ∀k ≥ 0. (13)

• 1 is bounded or actually there exists a constant θ > 0 such that

∥1(x)∥ ≤ θ, ∀x ∈ N. (14)

• For all k ≥ 1

∥yk∥ ≤ L∥sk∥. (15)

Lemma 3.3. (Zoutendijk lemma) Under Assumption 3.1 and WWP line search technique, for any iteration of the
form (5) with a descent direction dk we have

∑
k≥0

(1T
k+1dk+1)2

∥dk+1∥
2 < ∞. (16)

Proof. See Theorem 3.2 of [32].

From Propositions 2.2, we are sure that the directions of STTCGF family are descent, therefore, we can
apply Zoutendijk lemma 3.3 to dk and 1k generated by Algorithm 2.3. In the next theorem, we establish the
global convergence of Algorithm 2.3 for uniformly convex functions.

Theorem 3.4. Let Assumption 3.1 be true for a uniformly convex function f and an initial point x0. Under WWP
line search technique, for any sequence {xk} generated by Algorithm 2.3 we have

lim
k→+∞

∥1k+1∥ = 0.

Proof. From Theorem 1.3.16 of [37], for a uniformly convex function f there exists a constant µ > 0 such
that for all k ≥ 0

yT
k sk ≥ µ∥sk∥

2. (17)
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Now, by considering (11), (14), (15), (17) and Cauchy–Schwarz inequality, we have

∥dk+1∥ =

∥∥∥∥∥∥−τ11k+1 +
1

dT
k yk

(τ11
T
k+1yk − τ2ck∥yk∥

2
− τ31

T
k+1sk)dk − τ1ckyk

∥∥∥∥∥∥
≤ |τ1|∥1k+1∥ + |τ1|

|1T
k+1yk|∥dk∥

|dT
k yk|

+ |τ2|
|1T

k+1sk|∥yk∥
2
∥dk∥

|yT
k sk||dT

k yk|

+ |τ3|
|1T

k+1sk|∥dk∥

|dT
k yk|

+ |τ1|
|1T

k+1sk|∥yk∥

|yT
k sk|

≤ τ1∥1k+1∥ + 2τ1
∥1k+1∥∥yk∥∥sk∥

µ∥sk∥
2 + τ2

∥1k+1∥∥yk∥
2
∥sk∥

2

µ2∥sk∥
4

+ τ3
∥1k+1∥∥sk∥

2

µ∥sk∥
2

≤

(
τ1 + 2τ1

L
µ
+ τ2

L2

µ2 +
τ3

µ

)
∥1k+1∥

≤

(
τ1 + 2τ1

L
µ
+ τ2

L2

µ2 +
τ3

µ

)
θ :=M. (18)

Therefore, inequalities (12), (16) and (18) yield

∞ >
∑
k≥0

(1T
k+1dk+1)2

∥dk+1∥
2 ≥

τ2
1

M2

∑
k≥0

∥1k+1∥
4.

So, the proof is complete.

At the end of this section, we prove a weaker global convergence theorem for general smooth functions
under WWP line search technique, Assumption 3.1 and one of the following conditions:

A1: There exists µ
′

> 0 such that sT
k yk > µ

′

for all k ≥ 0.

A2: α := mink≥0{αk} is positive.

Theorem 3.5. Consider Assumption 3.1 and one of the conditions A1 and A2 for a smooth function f and an initial
point x0. Under WWP line search technique for sequence {xk+1} generated by Algorithm 2.3 we have

lim inf
k→+∞

∥1k+1∥ = 0. (19)

Proof. The proof is similar to Lemma 2 and Theorem 2 of [12].

In the next section, we obtain a strong global convergence theorem for Algorithm 2.3 for general smooth
functions under a new modification of WWP line search technique.

4. The new modified WWP line search technique

As we mentioned before, inequality (10) play the main role of proving the strong global convergence of
many CG algorithms. The obvious way to attain inequality (10) is using the uniformly convexity property
of f (similar to Theorem 3.4). On the other hand, it was shown that by improving the WWP line search
technique, it may be possible to achieve inequality (10) for general smooth functions [13]. Motivated by
this idea, in this section, we first introduce the modified WWP line search{

f (xk + αkdk) ≤ fk + σ1αk1
T
k dk + δh(αk, dk),

1(xk + αkdk)Tdk ≥ σ21
T
k dk − δαk∥dk∥

2h(αk, dk), (20)
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where

h(α, d) =


0, if α = 0,

−e
−

α
2
∥d∥2

2


, if α > 0,

(21)

and

0 < σ1 <
1
2
, σ1 < σ2 < 1, 0 < δ < 1,

which we will call as M-WWP line search technique. Then, we prove that M-WWP line search technique is
well-defined. At the end of this section, we indicate that under M-WWP line search technique, Algorithm
2.3 is globally convergence for general smooth functions.

Theorem 4.1. Let Assumption 3.1 be true for a function f and 1T
k dk ≤ 0. For any 0 < σ1 < (1/2), σ1 < σ2 < 1 and

0 < δ < 1, there exists αk ∈ [αl, αu] where 0 < αl < αu, which satisfies condition (20).

Proof. Consider function φk(α) as

φk(α) = f (xk + αdk) − f (xk) − σ1α1
T
k dk − δh(α, dk).

So, obviously we have

φk(0) = 0, lim
α→+∞

φk(α) = +∞. (22)

Furthermore,

φ
′+

k (0) = (1 − σ1)1T
k dk < 0. (23)

Therefor, from (22) and (23) there exists an α
′

> 0, such that

φk(α
′

) = 0, (24)

and

φk(α) < 0, for all α ∈ (0, α
′

), (25)

which means that

f (xk + αdk) ≤ f (xk) + σ1α1
T
k dk + δh(α, dk), for all α ∈ [0, α

′

].

Now, from (23), (24), (25) and the fact that φk is a differentiable function for all α > 0, there exists an interval
[αl, αu] ⊂ (0, α

′

] as which

φ
′

k(α) ≥ 0, for all α ∈ [αl, αu],

or namely for all α ∈ [αl, αu], we have

1(xk + αdk)Tdk ≥ σ11
T
k dk − δα∥dk∥

2h(α, dk) ≥ σ21
T
k dk − δα∥dk∥

2h(α, dk).

Note that the last inequality is true because σ1 < σ2 and 1T
k dk < 0. The proof is complete.

In the next theorem, we present some appropriate properties of M-WWP line search technique.

Theorem 4.2. Under M-WWP line search technique, the following three properties are true for any descent direction
dk (1T

k dk ≤ 0):
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1) Consider Assumption 3.1. We have

∑
k≥0

(1T
k dk)2

∥dk∥
2 < ∞.

2) For all k ≥ 0 we have

sT
k yk > 0. (26)

3) There exists a constant µ′ > 0 such that for all k ≥ 0 we have

sT
k yk > µ

′

∥sk∥
2.

Proof.

1) From part (ii) of Assumption 3.1 and the second part of conditions (20), we have

αkL∥dk∥
2
≥ (1k+1 − 1k)Tdk ≥ (σ2 − 1)1T

k dk − δαk∥dk∥
2h(αk, dk) ≥ (σ2 − 1)1T

k dk,

or

−αk ≤
(1 − σ2)
L∥dk∥

2 1
T
k dk. (27)

Now, by using the fact that h(α, d) ≤ 0 for all α > 0 and vector d and by substituting inequality (27)
into the first condition of (20), we get

f (xk + αkdk) ≤ fk + σ1αk1
T
k dk + δh(αk, dk) ≤ fk + σ1αk1

T
k dk

≤ fk −
σ1(1 − σ2)

L∥dk∥
2 (1T

k dk)2 = fk − ξ
(1T

k dk)2

∥dk∥
2 , (28)

where ξ = σ1(1 − σ2)/L is a positive constant. If we organize inequality (28) as

fk − f (xk + αkdk) ≥ ξ
(1T

k dk)2

∥dk∥
2 ,

and sum it over index k, then from part (i) of Assumption 3.1 the proof is complete.

2) From the second part of conditions (20), we have

sT
k yk ≥ (σ2 − 1)1T

k sk − δ∥sk∥
2h(αk, dk). (29)

Since function h(α, d) is always non-positive and σ2 < 1, so the proof is complete.

3) From inequality (29) we have

sT
k yk ≥ δ∥sk∥

2 e
−

∥sk∥
2

2


.

Now, by considering inequality (13) the proof is complete with 0 < µ
′

:= δe
−

B2

2


< ∞.
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Table 1: The test problems.
N. Name N. Name
1 Extended Trigonometric function 21 Quadratic QF2 function
2 Extended Rosenbrock function 22 Extended quadratic exponential EP1 function
3 Extended Beale function 23 Extended Tridiagonal 2 function
4 Extended Penalty function 24 DQDRTIC function (CUTE)
5 Perturbed Quadratic function 25 Broyden Tridiagonal function
6 Raydan 2 function 26 Almost Perturbed Quadratic function
7 Hager function 27 Perturbed Tridiagonal Quadratic function
8 Generalized Tridiagonal 1 function 28 ENGVAL1 function (CUTE)
9 Extended Tridiagonal 1 function 29 EDENSCH function (CUTE)
10 Extended TET function 30 BDEXP function (CUTE)
11 Diagonal 4 function 31 QUARTC function (CUTE)
12 Diagonal 5 function 32 Extended DENSCHNB function (CUTE)
13 Extended Himmelblau function 33 Extended DENSCHNF function (CUTE)
14 Extended PSC1 function 34 COSINE function (CUTE)
15 Extended BD1 function 35 Generalized Quartic function
16 Extended Maratos function 36 Diagonal 7 function
17 Extended Wood function 37 Diagonal 8 function
18 Quadratic QF1 function 38 Full Hessian FH3 function
19 Extended quadratic penalty QP1 function 39 SINCOS function
20 Extended quadratic penalty QP2 function 40 HIMMELBG function (CUTE)

Here, we are ready to prove a strong global convergence theorem for Algorithm 2.3 for general smooth
functions. Note that from (26) we know that under M-WWP line search technique, Propositions 2.1 and 2.2
of STTCGF family are true.

Theorem 4.3. Consider Assumption 3.1 for a smooth function f and an initial point x0. Under M-WWP line search
technique for any sequence {xk} generated by Algorithm 2.3 we have

lim
k→+∞

∥1k+1∥ = 0.

Proof. By considering Theorem 4.2, the proof is similar to Theorem 3.4.

At the end of this section, we present two remarks to explain some other appropriate advantages of our
proposed methods.

Remark 4.4. By using M-WWP instead of WWP line search technique the global convergence theorems of many line
search methods (like the Broyden family in quasi-Newton and DL family in CG classes) can be obtained for general
smooth functions.

Remark 4.5. In recent decades, many researchers such as [39, 43, 47] have developed conjugate gradient methods for
solving systems of nonlinear equations. They showed that the roots of the equation F(x) = 0 where F : Rn

−→ Rn is
Lipschitz continuous and the solutions of the optimization problem

min
x∈Rn

1
2
∥F(x)∥2,

are equivalent. Consequently, STTCGF family can be considered as a family of derivative-free methods for solving
systems of nonlinear equations. Note that, if we use M-WWP line search technique, the resulting algorithm will be
convergence for non-monotone problems.

5. Numerical results

In this section, we are going to prove the numerically efficiency of M-WWP line search technique and
STTCGF family. To this aim, we design two competitions including forty standard test problems and their
initial points from [3]. The first competition is between WWP and M-WWP line search techniques and the
second one is between STTCGF family and five different CG methods. We compare all of these methods in
four terms:
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Table 2: The methods which participate in the second competition.
Name Direction Reference

CGLFZ dk+1 = −1k+1 +
1T

k+1 yk

∥dk∥
2 dk −

1T
k+1dk

∥dk∥
2 yk, [28]

CGYN dk+1 = −1k+1 +max

 tk 1
T
k+1 yk − 1

T
k+1sk

dT
k yk

, 0

 dk + tk
1T

k+1sk

sT
k yk

yk , [40]

tk = min

 (sT
k yk)2

(sT
k yk)2 + ∥sk∥

2∥yk∥
2
,

sT
k yk

∥yk∥
2


CGDW dk+1 = −1k+1 −


1 −min

1,
∥yk∥

2

sT
k yk


 1T

k+1sk

sT
k yk

−
1T

k+1 yk

sT
k yk

 sk −
1T

k+1sk

sT
k yk
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CGBKG dk+1 = −1k+1 +
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CGHZ dk+1 = −1k+1 +

 1T
k+1 yk

dT
k yk

−

2
∥yk∥

2

sT
k yk

 1T
k+1sk

dT
k yk

 dk , [25]

STTCGFs dk+1 = −τ11k+1 +
1

dT
k yk

τ11
T
k+1 yk − τ2

1T
k+1sk

sT
k yk
∥yk∥

2
− τ31

T
k+1sk

 dk presented

−τ1
1T

k+1sk

sT
k yk

yk, (τ1, τ2, τ3) = (0.7, 0.2, 0.75) method

• k: The number of iterations.

• k f : The number of function evaluations.

• k1: The number of gradient evaluations.

• t: The CPU time in seconds.

The names of these chosen test problems are shown in Table 1. The methods which participate in
the second competition are presented in Table 2. We consider all these problems in five dimensions
[100, 500, 1000, 5000, 10000] for the first competition and in five dimensions [1000, 5000, 10000, 15000, 20000]
for the second one and run all the codes in MATLAB 8.4.1 and a LAP’s (Intel Core i7-7500U, up to 3.5 GHz,
8GB Memory) with Windows 10 operating system.

It is important to notice that, CGLFZ, CGYN and CGDW methods are three well-behaved newly devel-
oped three-term CG methods with global convergence property under WWP line search technique. On the
other hand, CGBKG is a member of DL family with optimal parameter which shows interesting results in
numerical experiments. Likewise, CGHZ is a well-known member of DL family with sufficiently descent
directions and superior numerical results.

Remark 5.1. In Table 2, we consider a member of STTCGF family and called it STTCGFs. Since defining the best
CG direction and also finding an optimal parameter for CG classes are open problems [6], the parameters of STTCGFs
method are selected based on some numerical experiments and they are not optimal. Therefore, better values for
parameters (τ1, τ2, τ3) or actually more efficient members of STTCGF family can be find to solve the chosen set of test
problems in Table 1 or for any set of test problems.

For both WWP and M-WWP line search techniques, we use a bisection algorithm similar to Algorithm
2.5.1 of [37] and set the initial step lengths as

α0
0 = 1, α0

k+1 = αk
∥dk∥

∥dk+1∥
, for k = 0, 1, 2, ....

Furthermore, in all experiments, we set σ1 = 10−4, σ2 = 0.8 for WWP and M-WWP line search techniques
and ϵ = 10−5 for termination condition in CG algorithms. Also, we terminate the CG algorithms when the
number of iterations or the number of function evaluations are greater than 4000 or 20000, respectively.
Furthermore, to avoid an uphill search direction in numerical experiments, we stop the loop of line search
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Table 3: Some numerical results of Comparing three line search techniques.
No. Dim. WWP M-WWPs1 M-WWPs2

(×102) k/k f/k1/t k/k f/k1/t k/k f/k1/t
2 1 248/731/474/0.0227 241/740/479/0.0222 248/731/474/0.0213

5 2371/2955/2648/0.2214 324/932/613/0.0511 2315/2899/2592/0.2328
10 2510/3092/2786/0.3724 2510/3092/2786/0.3931 2481/3063/2757/0.3942
50 2434/3066/2736/1.594 799/1480/1124/0.6636 2434/3066/2736/1.632

3 10 110/268/178/0.0901 87/204/133/0.0678 110/268/178/0.0901
5 1 276/436/341/0.0264 213/339/261/0.0132 276/436/341/0.0184

5 793/1427/1092/0.0741 781/1402/1074/0.0789 763/1374/1050/0.0778
10 1044/1860/1432/0.1346 1014/1827/1401/0.1453 1015/1804/1391/0.1425

11 10 175/399/274/0.0298 175/399/274/0.0317 174/401/274/0.0318
16 1 469/1097/768/0.0437 407/993/686/0.0328 469/1097/768/0.0377

5 441/906/658/0.0578 447/1014/714/0.0646 441/906/658/0.0604
10 359/801/565/0.0798 355/800/564/0.0827 359/801/565/0.0831
100 291/675/469/0.5803 275/666/454/0.6099 291/675/469/0.6614

17 1 939/1891/1396/0.2861 965/1901/1414/0.310 939/1891/1396/0.288
5 1740/2571/2138/1.909 1993/2723/2339/2.079 1740/2571/2138/1.920
10 2913/3461/3170/5.424 1807/2506/2138/3.792 2911/3459/3168/5.679
50 1923/2635/2260/22.50 1911/2663/2252/23.71 1923/2635/2260/23.25
100 1886/2743/2297/44.26 1950/2814/2363/45.19 1886/2743/2297/44.61

18 5 791/1396/1076/0.0714 819/1444/1116/0.0860 722/1254/970/0.0669
10 1420/1878/1631/0.1799 1451/1997/1705/0.1967 1420/1878/1631/0.1900

20 1 147/408/267/0.0180 125/356/227/0.0145 147/408/267/0.0164
10 236/689/444/0.0909 208/630/402/0.0830 236/689/444/0.0948
100 448/840/623/1.154 456/909/663/1.233 448/840/623/1.191

21 1 331/531/416/0.0288 367/609/472/0.0271 325/529/411/0.0250
24 1 343/631/469/0.0276 310/614/444/0.0260 326/608/449/0.0273

5 404/751/559/0.0500 347/659/484/0.0487 394/724/540/0.0550
10 197/383/271/0.0385 263/501/364/0.0595 199/378/270/0.0427
50 370/704/518/0.3163 275/506/372/0.2385 370/704/518/0.3321
100 359/714/518/0.6190 352/689/501/0.6384 379/737/539/0.6483

25 10 305/527/403/0.0743 279/482/366/0.0711 305/527/403/0.0782
26 5 503/918/693/0.0451 669/1054/844/0.0636 503/918/693/0.0501

10 2084/2573/2310/0.2686 916/1679/1278/0.1254 1524/2013/1750/0.1991
27 1 279/426/338/0.0214 305/478/377/0.0222 262/413/322/0.0191

5 712/1119/898/0.0848 919/1492/1186/0.1281 712/1119/898/0.0975
10 1279/1845/1544/0.2459 1279/1845/1544/0.2512 1149/1715/1414/0.2324

algorithm after 15 tries. In these case we does not stop the CG algorithm because some CG methods may
find better direction after a very small step.

For comparing the methods, we use the technique of Dolan and Moré [18]. They supposed that there
are nq solvers {q1, q2, . . . qnq } in set Q and np problems {p1, p2, . . . pnp } in set P. To comparing all solvers in Q
in term of property a, they defined a probability function Pqi (τ) with a threshold τ ≥ 1. For example, in
term of t, Pq1 (τ) = 0.7 means that solver q1 solved 70% of all the problems in P within a factor τ of the best
possible t. We name the graph of Pqi (τ) for i = 1, 2, . . .nq, the performance profiles.

In the first competition, we set δ = 10−8 and δ = 10−13 in M-WWP line search technique and called them
M-WWPs1 and M-WWPs2, respectively. For finding the directions, we consider a member of STTCGF
family which is presented in Table 2 as STTCGs method.

Since showing all the results of this competition needed a huge space, in Table 3 we just present the
problems which different methods solve them with different k. In addition, the Pq(1) of comparing these
three algorithms is shown in Table 4 in three parts:

• Part 1: Pq(1) of comparing three algorithms WWP, M-WWPs1 and M-WWPs2 with each other.

• Part 2: Pq(1) of comparing two algorithms WWP and M-WWPs1 with each other.

• Part 3: Pq(1) of comparing two algorithms WWP and M-WWPs2 with each other.

Note that, for example, the number 0.3650 in the second row and last column of Table 4 means that
M-WWPs1 solved 36.50% of test problems with best t.

The results of our first competition in Tables 3 and 4 show that:

1) Even with a small coefficient δ (nearly zero in M-WWPs2), WWP and M-WWP techniques can
eventuate different results (Table 3).
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Table 4: Pq(1) of the first competition.

Part 1: k k f k1 t
WWP 0.8100 0.8150 0.8150 0.2550
M-WWPs1 0.8600 0.8500 0.8550 0.3650
M-WWPs2 0.8400 0.8550 0.8550 0.3200
Part 2: k k f k1 t
WWP 0.8400 0.8450 0.8450 0.3350
M-WWPs1 0.8800 0.8750 0.8750 0.6050
Part 3: k k f k1 t
WWP 0.8750 0.8750 0.8750 0.3850
M-WWPs2 0.9300 0.9300 0.9350 0.5550
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Figure 1: The performance profiles of six methods of second competition in term of k.
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Figure 2: The performance profiles of six methods of second competition in term of k f .

2) As the coefficient δ is increased, the number of iterations (k) and the CPU time (t) have decreased and
the numbers of function and gradient evaluations (k f and k1) have increased (Part 1 of Table 4).
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Figure 3: The performance profiles of six methods of second competition in term of k1.

Table 5: Pq(1) of all methods in second competition.

CGLFZ CGYN CGDW CGBKG CGHZ STTCGFs
k 0.3000 0.3750 0.3600 0.3400 0.2950 0.3950
k f 0.3350 0.3950 0.3150 0.2950 0.2700 0.4500
k1 0.3250 0.3750 0.3350 0.3250 0.3000 0.4000
t 0.1300 0.0750 0.1450 0.1800 0.1000 0.2450

3) M-WWP technique outstrips WWP technique in numerical experiments (Parts 2 and 3 of Table 4).

4) Since the result of Theorem 4.3 is true as long as δ > 0, we can enjoy the advantage of using M-WWP
technique at no extra numerical cost over using WWP technique (Part 3 of Table 4).

The second result of our first competition can be confirm from theoretical point of view. Because as
the coefficient δ has increased, the conditions of M-WWP technique become stronger and thus the resulted
value of αk is closer to its optimal value (the solution of exact line search problem (3)). Therefore, it is likely
that the number of iterations which are required for the CG algorithm to achieve the optimal solution (k),
will be reduced. On the other hand, as the conditions of M-WWP technique are stronger, so the number of
iterations of the line search algorithm and naturally k f and k1 have increased. In addition, the behavior of
t depends on the tested problem. Here, since in most of the problems in Table 1, the cost of computing the
values of the objective functions and their gradients are low, so the cost of the CG algorithm depends on k.
As a result, the value of t has also decreased with decreasing k.

In the second competition, we compare STTCGFs method (which is introduced in Table 2 as a member of
STTCGF family) with five other well-behaved CG methods. Since we do not prove the global convergence
of the first five methods of Table 2 under M-WWP line search technique, in all the CG algorithms of this
competition we use WWP line search technique.

We propose the performance profiles of the second competition in Figs. 1, 2, 3 and 4. In order to have
more clearance, we present the Pq(1) of all the methods of the second competition in Table 5.

As we can see, the selected member of STTCGF family is the best one in all terms. Therefore, this
competition indicate the efficiency of our proposed family of scaled three-term CG methods in numerical
experiments.
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Figure 4: The performance profiles of six methods of second competition in term of t.

6. Conclusion

In this paper,

• We proposed a family of scaled three-term CG methods (STTCGF) to solve a large-scale smooth
unconstrained optimization problem.

• We indicated that, the directions of STTCGF family are sufficiently descent and fulfill the Dai-Liao
conjugacy conditions.

• We proved the strong global convergence theorem of STTCGF family for uniformly convex functions
and a weaker one for general smooth functions under WWP line search technique.

• We introduced a modified WWP line search technique (M-WWP) and established the strong global
convergence theorem of STTCGF family for general smooth functions.

• We observed the numerical efficiency and effectiveness of the proposed new methods in comparison
with similar methods, in two sets of numerical experiments.
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