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Abstract. This paper presents an iterative algorithm to solve coupled Sylvester complex matrix equations
with conjugate of two unknowns over Hermitian R - conjugate matrices. Necessary and sufficient conditions
are given such that the proposed iterative algorithms converge to the exact solution for arbitrary initial
Hermitian R - conjugate solution matrices V1,W1. A numerical example verifies the proposed method is
given.

1. Introduction

In this paper, we use AT,AH,A and tr(A) to denote the transpose, conjugate transpose, conjugate, and the
trace of a matrix A, respectively. The Frobenius norm of A is denoted by∥A∥, that is ∥A∥ =

√
Re[ tr(AHA)].

For A ∈ Cm×n, vec(A) is defined as vec (A) =
[
aT

1 aT
2 · · · · · · a

T
n

]T
. For two matrices A and B, A ⊗ B is their

Kronecker product. A well-known property of the Kronecker product is for matrices A,B and C with
appropriate dimension vec(ABC) = (CT

⊗ A)vec(B). Let R be an n × n symmetric orthogonal matrix, that
is, RT = R,R2 = I, a matrix A ∈ Cn×n is termed Hermitian R- conjugate matrix if RAR = A,AH = A. Let
HRCn×n represent the set of all Hermitian R - conjugate matrices, that is,HRCn×n =

{
A : RAR = A,AH = A

}
where R be an n × n symmetric orthogonal matrix.

Consider the generalized coupled Sylvester–conjugate matrix equations{
A11VB11 + C11WD11 + A12VB12 + C12WD12 = E1

A21VB21 + C21WD21 + A22VB22 + C22WD22 = E2
(1)

where A11,A12,C11,C12,A21,A22,C21,C22 ∈ Cm×n, B11,B12,D11,D12,B21,B22,D21,D22 ∈ Cn×r and E1,E2 ∈ Cm×r

are given matrices, while V,W ∈HRCn×n are matrices to be determined. Chang et al. [10] give the expression
of (R,S) - conjugate solution about AX = C,XB = D by matrix decompositions. Trench investigated a system
of linear equations Az = w for R - conjugate matrices in Trench [12] and min ∥Az − w∥ for (R,S) - conjugate
matrices in Trench [13], respectively, where z,w are known column vectors. Bayoumi and Ramadan [4]
provided (R,S) - conjugate solutions for solving coupled Sylvester complex matrix equations with conjugate
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of two unknowns. Dong et al. [9] presented an expression of the Hermitian R - conjugate solution to the
system of complex matrix equations AX = C,XB = D when the solvability conditions are satisfied and
presented necessary and sufficient conditions for the existence of the Hermitian R- conjugate solution to
this system. Bayoumi and Ramadan [3] presented a finite iterative Hermitian R-conjugate solution of the
generalized coupled Sylvester-conjugate matrix equations. Li [11] established an iterative technique to
solve the coupled Sylvester matrix equations

∑p
j=1 Ai jX jBi j=Ci, i= 1, 2,. . ., p over Hermitian R - conjugate

matrices. Bayoumi [5] introduced a relaxed gradient iterative technique for solving coupled Sylvester
conjugate transpose matrix equations with two unknowns. Bayoumi [6] introduced a method based on a
shift-splitting Jacobi-gradient iterative approach for solving the matrix equation AV − VB = C. Bayoumi
[7] offered an accelerated Jacobi-gradient iterative technique for solving the matrix equation AZ − ZB = C.
Bayoumi [8] introduced two iterative methods for solving a complex matrix equation with two unknowns
utilizing a real inner product in a complex matrix space.

This paper is organized as follows: In section 2, we give some definitions and lemmas that will be used
in this paper. In section 3, we propose an iterative algorithm to obtain the solutions to coupled Sylvester
complex matrix equation with conjugate of two unknown over Hermitian R - conjugate matrices, and we
give the convergence properties of these iterative algorithms. Section 4 gives an example to demonstrate
the proposed algorithms.

2. Preliminaries

Lemma 2.1 [1]
For the matrix equation AXB = F where A ∈ Cm×r, B ∈ Cs×n and F ∈ Cm×n are known matrices and

X ∈ Cr×s is the matrix to be determined, an iterative algorithm is constructed as
X(k + 1) = X(k) + AH(F − AX(k)B)BH with 0 < < 2

∥A∥22∥B∥
2
2

If this matrix equation has a unique solution X, then the iterative solution X(k) converges to the unique
solution X, that is, limk→∞X (k) = X.
Definition 2.1 Inner product [14]

A real inner product space is a vector space V over the real field R together with an inner product that
is with a map

⟨., .⟩ : V × V → R

satisfying the following three axioms for all vectors x, y, z ∈ V and all scalars a ∈ R

1. Symmetry:
〈
x, y

〉
=

〈
y, x

〉
.

2. Linearity in the first argument:
〈
ax, y

〉
= a

〈
x, y

〉
,
〈
x + y, z

〉
= ⟨x, z⟩ +

〈
y, z

〉
.

3. Positive definiteness: ⟨x, x⟩> 0 for all x , 0.

Definition 2.2 [2]
For the space Cm×n over the field R, an inner product can be defined as

⟨A,B⟩ = Re
[

tr
(
AHB

)]
.

Lemma 2.2 [11]
For any X ∈ Cn×n, then X + XH + R(X + XH)R ∈ HRCn×n where R be an n × n symmetric orthogonal

matrix.
Proof

1. [X + XH + R(X + XH)R]H = X + XH + R(X + XH)R.

2. R
[
X + XH + R(X + XH)R

]
R = R

(
X + XH

)
R + (X + XH) = X + XH + R(X + XH)R.
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Lemma 2.3
For any X ∈ Cn×n, P ∈HRCn×n, then

〈
P, X+XH+R(X+XH)R

4

〉
= ⟨P,X⟩ .

Proof〈
P,

X + XH + R(X + XH)R
4

〉
=

1
4
⟨P,X⟩ +

1
4

〈
P,XH

〉
+

1
4

〈
P,R(X + XH)R

〉
=

1
4
⟨P,X⟩ +

1
4

〈
PH,XH

〉
+

1
4

〈
RPR, (X + XH)

〉
=

1
4
⟨P,X⟩ +

1
4
⟨X,P⟩ +

1
4

〈
P, (X + XH)

〉
=

1
4
⟨P,X⟩ +

1
4
⟨P,X⟩ +

1
4

〈
P, (X + XH)

〉
= ⟨P,X⟩ .

At the end of this section, we give a very simple fact which will be utilized in the next sections.
Lemma 2.4

For any two square complex matrices A and B, if tr(A) + tr(B) is real, then

tr(A) + tr(B) = tr (A) + tr (B) = tr(A) + tr
(
B
)
.

3. The Main Results

In this section, we propose an iterative solution to the generalized coupled Sylvester – conjugate matrix
equations given in (1).
Denote f1(V,W) = A11VB11 + C11WD11 + A12VB12 + C12WD12,

f2(V,W) = A21VB21 + C21WD21 + A22VB22 + C22WD22.

Lemma 3.1
A necessary and sufficient condition of the consistency of the system of matrix equations (1) over

Hermitian R - conjugate matrices is that the following matrix equations

A11VB11 + C11WD11 + A12VB12 + C12WD12 = E1

A21VB21 + C21WD21 + A22VB22 + C22WD22 = E2

BH
11VAH

11 +DH
11WCH

11 + BH
12V

H
AH

12 +DH
12W

H
CH

12 = EH
1

BH
21VAH

21 +DH
21WCH

21 + BH
22V

H
AH

22 +DH
22W

H
CH

22 = EH
2

A11RVRB11 + C11RWRD11 + A12VB12 + C12WD12 = E1

A21RVRB21 + C21RWRD21 + A22VB22 + C22WD22 = E2

B11
H

RVRA11
H
+D11

H
RWRC11

H
+ B12

H
VA12

H
+D12

H
WC12

H
= E1

H

B21
H

RVRA21
H
+D21

H
RWRC21

H
+ B22

H
VA22

H
+D22

H
WC22

H
= E2

H


(2)

are consistent.
Proof

If the system of matrix equations (1) have solution V∗,W∗
∈HRCn×n i.e. V∗H = V∗, RV∗R = V∗ and

W∗H =W∗,RW∗R =W∗, it is easy to get that V∗,W∗are also solutions of Eqs. (2). Conversely, if matrix equa-

tions (2) have solutions V1,W1 ∈ Cn×n, let V∗ = 1
4

[
V1 + VH

1 + R
(
V1 + VH

1

)
R
]
, W∗ = 1

4

[
W1 +WH

1 + R
(
W1 +WH

1

)
R
]
,
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then V∗,W∗
∈ HRCn×n and

A11V∗B11 + C11W∗D11 + A12V∗B12 + C12W∗D12 =
1
4

[
A11V1B11 + A11VH

1 B11 + A11RV1RB11 + A11RVH
1 RB11

+ C11W1D11 + C11WH
1 D11 + C11RW1RD11 + C11RWH

1 RD11

+ A12V1B12 + A12VH
1 B12 + A12RV1RB12 + A12RVH

1 RB12

+ C12W1D12 + C12WH
1 D12 + C12RW1RD12 + C12RWH

1 RD12

]
=

1
4

[
A11V1B11 + C11W1D11 + A12V1B12 + C12W1D12

+ A11VH
1 B11 + C11WH

1 D11 + A12VH
1 B12 + C12WH

1 D12

+ A11RV1RB11 + C11RW1RD11 + A12RV1RB12 + C12RW1RD12

+ A11RVH
1 RB11 + C11RWH

1 RD11 + A12RVH
1 RB12 + C12RWH

1 RD12

]
=

1
4

[E1 + E1 + E1 + E1] = E1.

A21VB21 + C21WD21 + A22VB22 + C22WD22 =
1
4

[
A21V1B21 + A21VH

1 B21 + A21RV1RB21 + A21RVH
1 RB21

+ C21W1D21 + C21WH
1 D21 + C21RW1RD21 + C21RWH

1 RD21

+ A22V1B22 + A22VH
1 B22 + A22RV1RB22 + A22RVH

1 RB22

+ C22W1D22 + C22WH
1 D22 + C22RW1RD22 + C22RWH

1 RD22

]
=

1
4

[
A21V1B21 + C21W1D21 + A22V1B22 + C22W1D22

+ A21VH
1 B21 + C21WH

1 D21 + A22VH
1 B22 + C22WH

1 D22

+ A21RV1RB21 + C21RW1RD21 + A22RV1RB22 + C22RW1RD22

+ A21RVH
1 RB21 + C21RWH

1 RD21 + A22RVH
1 RB22 + C22RWH

1 RD22

]
=

1
4

[E2 + E2 + E2 + E2] = E2.

Therefore, V∗,W∗ are the solutions of the system of matrix equations (1). So, the solvability of a system
of matrix equations (1) is equivalent to that of matrix equations (2). ■

By rewriting the matrix equations (2) into the equivalent system Sz = b , let

S =



BH
11 ⊗ A11 + BH

12R ⊗ A12R DH
11 ⊗ C11 +DH

12R ⊗ C12R
BH

21 ⊗ A21 + BH
22R ⊗ A22R DH

21 ⊗ C21 +DH
22R ⊗ C22R

A11 ⊗ BH
11 + A12R ⊗ BH

12R C11 ⊗DH
11 + C12R ⊗DH

12R
A21 ⊗ BH

21 + A22R ⊗ BH
22R C21 ⊗DH

21 + C22R ⊗DH
22R

B
H
11R ⊗ A11R + B

H
12 ⊗ A12 D

H
11R ⊗ C11R +D

H
12 ⊗ C12

B
H
21R ⊗ A21R + B

H
22 ⊗ A22 D

H
21R ⊗ C21R +D

H
22 ⊗ C22

A11R ⊗ B
H
11R + A12 ⊗ B

H
12 C11R ⊗D

H
11R + C12 ⊗D

H
12

A21R ⊗ B
H
21R + A22 ⊗ B

H
22 C21R ⊗D

H
21R + C22 ⊗D

H
22



, b =



vec(E1)

vec(E2)

vec(EH
1 )

vec(EH
2 )

vec(E1)

vec(E2)

vec(E1
H

)

vec(E2
H

)



, z =
[

vec(V)

vec(W)

]
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We have the following well-known theorem.
Theorem 3.1 [11]

The system of matrix equations (2) has a unique Hermitian R - conjugate solutions iff rank(S, b) = rank(S)
and S has a full column rank.

Now, we present the iterative algorithm shown below for solving the system of matrix equations (1)
over Hermitian R – conjugate matrices
Algorithm I

1. Input matrices A11,A12,C11,C12,A21,A22,C21,C22 ∈ Cm×n,B11,B12,D11,D12,B21,B22,D21,D22 ∈ Cn×r, and
E1,E2 ∈ Cm×r.

2. Chosen arbitrary initial Hermitian R - conjugate matrices V1,W1 ∈ HRCn×n where R be an n × n
symmetric orthogonal matrix.

3. Compute

V(k + 1) = V(k) +
µ

4

[
AH

11r1 (k) BH
11 + A

H
12r1 (k)B

H
12 + AH

21r2 (k) BH
21 + A

H
22r2 (k)B

H
22

+ B11rH
1 (k) A11 + B12r1 (k)

H
A12 + B21rH

2 (k) A21 + B22r2 (k)
H

A22

+ RAH
11r1 (k) BH

11R + RA
H
12r1 (k)B

H
12R + RAH

21r2 (k) BH
21R + RA

H
22r2 (k)B

H
22R

+ RB11rH
1 (k) A11R + RB12r1 (k)

H
A12R + RB21rH

2 (k) A21R + RB22r2 (k)
H

A22R
]
.

W(k + 1) = W(k) +
µ

4

[
CH

11r1 (k) DH
11 + C

H
12r1 (k)D

H
12 + CH

21r2 (k) DH
21 + C

H
22r2 (k)D

H
22

+D11rH
1 (k) C11 +D12r1 (k)

H
C12 +D21rH

2 (k) C21 +D22r2 (k)
H

C22

+ RCH
11r1 (k) DH

11R + RC
H
12r1 (k)D

H
12R + RCH

21r2 (k) DH
21R + RC

H
22r2 (k)D

H
22R

+ RD11rH
1 (k) C11R + RD12r1 (k)

H
C12R + RD21rH

2 (k) C21R + RD22r2 (k)
H

C22R
]
.

where

r1 (k) = E1 − f1 (V (k) ,W (k)) = E1 − A11V(k)B11 − C11W(k)D11 − A12V(k)B12 − C12W(k)D12,

r2(k) = E2 − f2 (V (k) ,W (k)) = E2 − A21V(k)B21 − C21W(k)D21 − A22V(k)B22 − C22W(k)D22.

4. If r1(k + 1) = 0, r2(k + 1) = 0, then stop and Vk, Wk are the solution; else set k = k + 1 go to STEP 3.

Theorem 3.2
If the system of matrix equations in (1) has a unique Hermitian R - conjugate solutions pair [V∗,W∗],

then the iterative solution pair [V (k) ,W (k)] given by algorithm I, converges to [V∗,W∗] for any initial
Hermitian R - conjugate matrices pair [V (1) ,W (1)] if

0 < µ <
2
H

(3)

with

H = ∥A11∥
2
∥B11∥

2 + ∥A12∥
2
∥B12∥

2 + ∥A21∥
2
∥B21∥

2 + ∥A22∥
2
∥B22∥

2

+∥C11∥
2
∥D11∥

2 + ∥C12∥
2
∥D12∥

2 + ∥C21∥
2
∥D21∥

2 + ∥C22∥
2
∥D22∥

2.

Proof
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First, we define the estimation error matrices as

ξ1(k) = V (k) − V∗ and ξ2(k) =W (k) −W∗ for k = 1, 2, · · · .

Since V(k),W(k),V∗,W∗
∈HRCn×n, we have

Rξ1(k)R = RV(k)R − RV∗R = V(k) − V∗ = V(k) − V∗ = ξ1(k)

Rξ2(k)R = RW(k)R − RW∗R =W(k) −W∗ =W(k) −W∗ = ξ2(k)

ξH
1 (k) = VH(k) − V∗H = V(k) − V∗ = ξ1(k)

ξH
2 (k) =WH(k) −W∗H =W(k) −W∗ = ξ2(k)

These demonstrate that ξ1 (k) , ξ2 (k) ∈HRCn×n

Denote

Z1(k) = A11ξ1(k)B11 + C11ξ2(k)D11 + A12ξ1(k)B12 + C12ξ2(k)D12 (4)

Z2(k) = A21ξ1(k)B21 + C21ξ2(k)D21 + A22ξ1(k)B22 + C22ξ2(k)D22 (5)

Utilizing the above error matrices and Algorithm I, we can obtain

ξ1(k + 1) = ξ1(k) −
µ

4

[
AH

11Z1 (k) BH
11 + A

H
12Z1 (k)B

H
12 + AH

21Z2 (k) BH
21 + A

H
22Z2 (k)B

H
22

+ B11ZH
1 (k) A11 + B12Z1 (k)

H
A12 + B21ZH

2 (k) A21 + B22Z2 (k)
H

A22

+ RAH
11Z1 (k) BH

11R + RA
H
12Z1 (k)B

H
12R + RAH

21Z2 (k) BH
21R + RA

H
22Z2 (k)B

H
22R

+ RB11ZH
1 (k) A11R + RB12Z1 (k)

H
A12R + RB21ZH

2 (k) A21R + RB22Z2 (k)
H

A22R
]
.

(6)

ξ2(k + 1) = ξ2(k) −
µ

4

[
CH

11Z1 (k) DH
11 + C

H
12Z1 (k)D

H
12 + CH

21Z2 (k) DH
21 + C

H
22Z2 (k)D

H
22

+D11ZH
1 (k) C11 +D12Z1 (k)

H
C12 +D21ZH

2 (k) C21 +D22Z2 (k)
H

C22

+ RCH
11Z1 (k) DH

11R + RC
H
12Z1 (k)D

H
12R + RCH

21Z2 (k) DH
21R + RC

H
22Z2 (k)D

H
22R

+ RD11ZH
1 (k) C11R + RD12Z1 (k)

H
C12R + RD21ZH

2 (k) C21R + RD22Z2 (k)
H

C22R
]
.

(7)

Now, by taking the norm of both sides of (6) and (7) and utilizing the following facts for two square
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complex matrices tr(AB) = tr(BA), ∥A + B∥ ≤ ∥A∥ + ∥B∥, ∥RAR∥ = ∥A∥ =
∥∥∥A

∥∥∥, we have

∥ξ1(k + 1)∥2 = Re
(
tr

(
ξH

1 (k + 1) ξ1 (k + 1)
))

= Re
(
tr

(
ξH

1 (k) ξ1 (k)
))
−
µ

2
Re

(
tr

([
AH

11Z1 (k) BH
11 + A

H
12Z1 (k)B

H
12 + AH

21Z2 (k) BH
21

+ A
H
22Z2 (k)B

H
22 + B11ZH

1 (k) A11 + B12Z1 (k)
H

A12 + B21ZH
2 (k) A21 + B22Z2 (k)

H
A22

+ RAH
11Z1 (k) BH

11R + RA
H
12Z1 (k)B

H
12R + RAH

21Z2 (k) BH
21R + RA

H
22Z2 (k)B

H
22R

+ RB11ZH
1 (k) A11R + RB12Z1 (k)

H
A12R + RB21ZH

2 (k) A21R + RB22Z2 (k)
H

A22R]Hξ1 (k)
))

+
µ2

16

[∥∥∥∥AH
11Z1 (k) BH

11 + A
H
12Z1 (k)B

H
12 + AH

21Z2 (k) BH
21 + A

H
22Z2 (k)B

H
22 + B11ZH

1 (k) A11

+ B12Z1 (k)
H

A12 + B21ZH
2 (k) A21 + B22 Z2(k)

H
A22 + RAH

11Z1(k)BH
11R

+ R A
H
12Z1(k)B

H
12 R + RAH

21Z2(k)BH
21R + RA

H
22Z2(k)B

H
22R + RB11ZH

1 (k)A11R

+ RB12Z1(k)
H

A12R + RB21ZH
2 (k)A21R + R B22Z2(k)

H
A22 R

∥∥∥∥∥∥
2]

(8)

Applying properties of the trace of a matrix, one has

Re
(
tr

([
AH

11Z1 (k) BH
11 + A

H
12Z1 (k)B

H
12 + AH

21Z2 (k) BH
21 + A

H
22Z2 (k)B

H
22 + B11ZH

1 (k) A11 + B12Z1 (k)
H

A12

+ B21ZH
2 (k) A21 + B22Z2 (k)

H
A22 + RAH

11Z1 (k) BH
11R + RA

H
12Z1 (k)B

H
12R + RAH

21Z2 (k) BH
21R + RA

H
22Z2 (k)B

H
22R

+ RB11ZH
1 (k) A11R + RB12Z1 (k)

H
A12R + RB21ZH

2 (k) A21R + RB22Z2 (k)
H

A22R]Hξ1 (k)
))

= Re
(
tr

(
ZH

1 (k) A11ξ1 (k) B11 + Z1 (k)
H

A12ξ1 (k) B12 + ZH
2 (k) A21ξ1 (k) B21 + Z2 (k)

H
A22ξ1 (k) B22

+ Z1 (k) BH
11ξ1 (k) AH

11 + Z1 (k)B
H
12ξ1 (k) A

H
12 + Z2 (k) BH

21ξ1 (k) AH
21 + Z2 (k)B

H
22ξ1 (k) A

H
22

+ ZH
1 (k)A11Rξ1 (k) RB11 + ZH

1 (k) A12Rξ1 (k) RB12 + ZH
2 (k)A21Rξ1 (k) RB21

+ ZH
2 (k) A22Rξ1 (k) RB22 + Z1 (k)B

H
11Rξ1 (k) RA

H
11 + Z1 (k) BH

12Rξ1 (k) RAH
12

+ Z2 (k)B
H
21Rξ1 (k) RA

H
21 + Z2 (k) BH

22Rξ1 (k) RAH
22

))
= 4 Re

(
tr

(
ZH

1 (k)
(
A11ξ1(k)B11 + A12ξ1 (k)B12

)
+ ZH

2 (k)
(
A21ξ1 (k) B21 + A22ξ1 (k)B22

) ))

Substituting from the preceding relation into (8), gives
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∥ξ2(k + 1)∥2 = ∥ξ2 (k)∥2 − 2µRe
(
tr

(
ZH

1 (k)
(
A11ξ1 (k) B11 + A12ξ1 (k)B12

)
+ ZH

2 (k)
(
A21ξ1 (k) B21 + A22ξ1 (k)B22

)))
+
µ2

16

[∥∥∥∥AH
11Z1 (k) BH

11 + A
H
12Z1 (k)B

H
12 + AH

21Z2 (k) BH
21 + A

H
22Z2 (k)B

H
22 + B11ZH

1 (k) A11 + B12Z1 (k)
H

A12

+ B21ZH
2 (k) A21 + B22 Z2(k)

H
A22 + RAH

11Z1(k)BH
11R + R A

H
12Z1(k)B

H
12 R + RAH

21Z2(k)BH
21R

+RA
H
22Z2(k)B

H
22R + RB11ZH

1 (k)A11R + RB12Z1(k)
H

A12R + RB21ZH
2 (k)A21R + R B22Z2(k)

H
A22 R

∥∥∥∥∥∥
2]

∥ξ1(k + 1)∥2 ≤∥ξ1 (k)∥2 − 2µRe
(
tr

(
ZH

1 (k)
(
A11ξ1 (k) B11 + A12ξ1 (k)B12

)
+ ZH

2 (k)
(
A21ξ1 (k) B21 + A22ξ1 (k)B22

)))
+ µ2

(
∥A11∥

2
∥B11∥

2 + ∥A12∥
2
∥B12∥

2 + ∥A21∥
2
∥B21∥

2 + ∥A22∥
2
∥B22∥

2
) (
∥Z1 (k)∥2 + ∥Z2 (k)∥2

)
(9)

Similarly to the above, we can write

∥ξ2(k + 1)∥2 ≤∥ξ2 (k)∥2 − 2Re
(
tr

(
ZH

1 (k)
(
C11ξ2 (k) D11 + C12ξ2 (k)D12

)
+ ZH

2 (k)
(
C21ξ2 (k) D21 + C22ξ2 (k)D22

)))
+ µ2

(
∥C11∥

2
∥D11∥

2 + ∥C12∥
2
∥D12∥

2 + ∥C21∥
2
∥D21∥

2 + ∥C22∥
2
∥D22∥

2
) (
∥Z1(k)∥2 + ∥Z2(k)∥2

)
(10)

From (9) and (10)

∥ξ1(k + 1)∥2 + ∥ξ2(k + 1)∥2 ≤∥ξ1 (k)∥2 + ∥ξ2 (k)∥2 − 2Re
(
tr

(
ZH

1 (k)
(
A11ξ1 (k) B11 + A12ξ1 (k)B12 + C11ξ2 (k) D11

+C12ξ2 (k)D12

)
+ ZH

2 (k)
(
A21ξ1 (k) B21 + A22ξ1 (k)B22 + C21ξ2 (k) D21 + C22ξ2 (k)D22

) ))
+ µ2

(
∥A11∥

2
∥B11∥

2 + ∥A12∥
2
∥B12∥

2 + ∥A21∥
2
∥B21∥

2 + ∥A22∥
2
∥B22∥

2 + ∥C11∥
2
∥D11∥

2

+ ∥C12∥
2
∥D12∥

2 + ∥C21∥
2
∥D21∥

2 + ∥C22∥
2
∥D22∥

2)
(
∥Z1(k)∥2 + ∥Z2(k)∥2

)
Define the non negative definite function η(k) by:

η(k) = ∥ξ1(k)∥2 + ∥ξ2(k)∥2

From the previous results, this function can be computed as

η(k + 1) = ∥ξ1(k + 1)∥2 + ∥ξ2(k + 1)∥2

η(k + 1) ≤ η(k) − 2µRe
(
tr

(
ZH

1 (k) Z1 (k) + ZH
2 (k) Z2 (k)

))
+ µ2(H)(∥Z1(k)∥2 + ∥Z2(k)∥2) (11)

where

H = ∥A11∥
2
∥B11∥

2 + ∥A12∥
2
∥B12∥

2 + ∥A21∥
2
∥B21∥

2 + ∥A22∥
2
∥B22∥

2

+∥C11∥
2
∥D11∥

2 + ∥C12∥
2
∥D12∥

2 + ∥C21∥
2
∥D21∥

2 + ∥C22∥
2
∥D22∥

2.

η (k + 1) ≤ η (k) − 2µ
(
∥Z1 (k)∥2 + ∥Z2 (k)∥2

)
+ µ2 (H)

(
∥Z1 (k)∥2 + ∥Z2 (k)∥2

)
η (k + 1) ≤ η (k) − 2µ

(
1 −
µ

2
H
) (
∥Z1 (k)∥2 + ∥Z2 (k)∥2

)
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η (k + 1) ≤ η (k) − 2µ
(
1 −
µ

2
H
)  k∑

m=1

∥Z1 (m)∥2 +
k∑

m=1

∥Z2 (m)∥2


If the convergence factor µis chosen to satisfy (3), then one has

∞∑
m=1

∥Z1(m)∥2 +
∞∑

m=1

∥Z2(m)∥2 < ∞

Since the matrix equation (1) has a unique solution pair. It follows from the definition (4) and (5) of Zi(k)
that

limi→∞ξ1 (i) = 0 and limi→∞ξ2 (i) = 0
Or

limi→∞V (i) = V∗ and limi→∞W (i) =W∗

This completes the proof of the theorem.

4. Numerical examples

In this section, we will give two examples to illustrate the effectiveness of our Algorithm I to solve
generalized Sylvester matrix equations (1).
Example 4.1

Given A11 =

 −i 2 1 + i
0 2i −2 − i

3 − i 1 −1 + i

, A21 =

 i 0 −2 + i
−1 −3i 1 + i
2i 1 + 2i i

, A12 =

 −1 − i 2i −i
1 + 2i −1 −i
−3i 0 2


, B11 =

 i 2 + i
−3 1 + i
0 1

 ,A22 =

 0 −i −1 − i
2 − 2i 1 2 + i
1 + i 1 − i 3i

 , C11 =

 i 3 −2i
1 − i 2 + i −1
−i 2 − i 1 + i


, C21 =

 0 i 1 + i
−i 1 2i

1 − i −3i 1 + i

 ,B21 =

 1 − i 2 + i
1 − 3i −2i

0 0

 , D11 =

 1 − i 2 + 2i
−i 0
0 −1 + 3i


, D21 =

 −1 + i 2 + 2i
−i 0
−3 1 + 3i

 ,B12 =

 −1 + i −2
−i 1 − i

2 + 2i 0

 ,B22 =

 0 −3i
1 + i 0

0 2 − i


, C12 =

 0 2 − i −3i
1 + i 2 + 2i 0
−1 0 −2 + i

 ,D12 =

 2 + i −3i
0 0

1 + i 3

 ,C22 =

 0 0 −i
2 + i 1 − i 5

2 + 2i 0 −3

 ,
D22 =

 0 −i
1 + i 2 − 2i
−1 + 3i −i

 , E1 =

 20 + 18i −187 − 125i
114 + 38i −179 + 13i
−46 − 86i −75 + 63i

 , E2 =

 48 + 14i 11 − 29i
−46 + 16i 155 + 217i
−112 + 58i −18 + 136i

 .
This system of matrix equations (1) has a unique Hermitian R - conjugate solution of the following form

V =

 −8 −3 − 3i 3 + 3i
3 + 3i −2 4i
3 − 3i −4i −2

 ,W =
 −12 3 − 7i 3 + 7i

3 + 7i −2 −2 + 4i
3 − 7i −2 − 4i −2

 .
We apply Algorithm I to solve generalized Sylvester matrix equations (1). When the initial Hermitian

R - conjugate solution matrices are chosen as

V1 =

 4 2 + 4i 2 − 4i
2 − 4i 2 6i
2 + 4i −6i 2

 ,W1 =

 4 −1 − 3i −1 + 3i
−1 + 3i 0 4 + 4i
−1 − 3i 4 − 4i 0

 , let R =

 1 0 0
0 0 1
0 1 0

 .
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Figure 1: the convergence performance of Algorithm I

According to theorem 3.2, the Algorithm I is convergent for 0 < µ < 6.45 × 10−4. We can see in fig.1 that
for µ = 6.45 × 10−4, µ = 6 × 10−4 and µ = 5.5 × 10−4, then the iteration stops at k = 1805, k = 1941 , and
k = 2117, respectively. Define the relative iterative error as

f (k) =

√
∥V(k) − V∥2 + ∥W(k) −W∥2

∥V∥2 + ∥W∥2

From fig. 1, it is clear that the error f becomes smaller and goes to zero as k increases. The effect of
changing the convergence factor µ is illustrated in fig. 1. As we can see, the larger the convergence factor
µ, the faster the rate of convergence.
Example 4.2

This example illustrates the theoretical findings of algorithm I for solving the matrix equation (1) with
the following randomly produced matrices
Given A1=randi([−5, 4] , 10, 10)+i∗randi ([−3, 5] , 10, 10) ,A2 = randi ([−6, 3] , 10, 10)+i∗randi ([−4, 5] , 10, 10) ,
E1 = randi ([−3, 1] , 10, 10) + i ∗ randi ([−6, 1] , 10, 10) ,E2 = randi ([−4, 2] , 10, 10) + i ∗ randi ([−5, 4] , 10, 10) ,
C1 = randi ([−1, 5] , 10, 10) + i ∗ randi ([−2, 6] , 10, 10) ,C2 = randi ([−2, 6] , 10, 10) + i ∗ randi ([−1, 7] , 10, 10) ,
B1 = randi ([−7, 3] , 10, 10) + i ∗ randi ([−4, 8] , 10, 10) ,B2 = randi ([−6, 7] , 10, 10) + i ∗ randi ([−5, 4] , 10, 10) ,
D1 = randi ([−3, 1] , 10, 10) + i ∗ randi ([−8, 4] , 10, 10) ,D2 = randi ([−2, 5] , 10, 10) + i ∗ randi ([−7, 0] , 10, 10) ,
F1 = randi ([−8, 1] , 10, 10) + i ∗ randi ([−3, 7] , 10, 10) ,F2 = randi ([−6, 5] , 10, 10) + i ∗ randi ([−7, 3] , 10, 10) ,
C12 = randi ([−4, 6] , 10, 10) + i ∗ randi ([−6, 2] , 10, 10) ,D12 = randi ([−5, 4] , 10, 10) + i ∗ randi ([−4, 5] , 10, 10) ,
C22 = randi ([−3, 6] , 10, 10) + i ∗ randi ([−3, 7] , 10, 10) ,D22 = randi ([−2, 4] , 10, 10) + i ∗ randi ([−8, 5] , 10, 10) ,
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R(k, k) = (−1)k, k = 1 : n.

If we choose the Hermitian R - conjugate solutions V,W of the matrix equations (1) as follows
v=randi([−2, 5] , 10, 10) + i ∗ randi ([−4, 4] , 10, 10) ; w = randi ([−3, 2] , 10, 10) + i ∗ randi ([−5, 3] , 10, 10) ;
V = v + vH + R(v + vH)R,W = w + wH + R(w + wH)R.

It follows that from the complex matrix equations (1), we can calculate E1,E2. When the initial Hermitian
R - conjugate matrices are selected as V1 = eye (10, 10) , W1 = eye (10, 10). We can see in fig.2 that the iteration
stops at k = 5903.

Iteration steps 

0 1000 2000 3000 4000 5000
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k
 )

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2: the convergence performance of Algorithm I

5. Conclusions

An iterative algorithm is constructed to give Hermitian R - conjugate solutions to coupled Sylvester
complex matrix equations with conjugate of two unknowns. We have established the necessary and suf-
ficient conditions for the existence of Hermitian R - conjugate solution to system (1). our future work to
determine the optimal value of the convergence factor µ. We test the proposed algorithm using MATLAB
and the results verify our theoretical findings.
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