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Abstract. The aim of this paper is to introduce and study a new class of operators between Banach lattices
based on the unbounded norm topology, nominated "unbounded-U-Dunford-Pettis operators". Namely,
we give some characterizations of this class, we study the relations between this class and other classes of
operators known in the literature of operator theory on Banach lattices, and we study the duality problem
for this class of operators.

1. Introduction

In [10], based on the unbounded norm topology the authors introduce and study the class of σ-un-
Dunford-Pettis operators which generalize that of Dunford-Pettis. Namely, an operator T : X −→ F from
a Banach space X to a Banach lattice F is said to be σ-un-Dunford-Pettis if T sends weakly null sequences
of X to unbounded norm null sequences of F. We recall that an operator T : X −→ Y between two Banach

spaces is said to be Dunford-Pettis if T(xn)
∥·∥

−→ 0 whenever xn
w
−→ 0. Following the same approach, we

introduce and study a new class of operators which generalize U-Dunford-Pettis operators. To be specific,
an operator T : E −→ F between two Banach lattices is said to be un-U-Dunford-Pettis if T(xn) un

−→ 0 for
every order bounded weakly null sequence of E. We recall from [1] that an operator T : E −→ Y from a

Banach lattice E to a Banach space Y is said to be U-Dunford-Pettis if T(xn)
∥·∥

−→ 0 for every order bounded
weakly null sequence (xn) of E.

This paper will be organized as follows, after a preliminary section in which the definitions, the concepts
and the notations used throughout this work are presented. We introduce the class of un-U-Dunford-Pettis
(Definition 3.1),we present some characterizations of this class via lattices properties (Proposition 3.2 and
3.3) and we give the characterization of un-U-Dunford-Pettis operators in terms of sets (Theorem 3.7),
after that we study the ideal of un-U-Dunford-Pettis operators (Proposition 3.5). In the third section, we
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present some results about the relations between the class of un-U-Dunford-Pettis operators and other
classes of operators (Theorem 3.12, Theorem 3.17, Theorem 3.18, Theorem 3.19, Theorem 3.21). The last
section of this work is devoted to study the duality property of un-U-Dunford-Pettis operators (Theorem
3.24 and Theorem 3.27). As consequences, we fined new characterizations of order continuous Banach
lattices (Corollary 3.25 and 3.26) and of σ-Dedekind complete Banach lattices (Corollary 3.28).

2. Preliminaries

We recall from [9] that a net (xα) in a Banach lattice E is unbounded norm convergent to x (abb. un-norm
convergent) if ∥|xα − x| ∧u∥ −→ 0 (abb. xα

un
−→x), for each u ∈ E+. We note that the norm convergence implies

the un-norm convergence and that un-norm convergence coincides with norm convergence on a Banach
lattice with order unit. A net (xα) is unbounded absolutely weakly convergent (abb. uaw-convergent) to x
if (|xα − x| ∧ u) converges weakly to zero for every u ∈ E+; we write xα

uaw
−→x ([16]).

To state our results, we need to fix some notations and recall some definitions. Let E be a vector lattice,
for each x, y ∈ E with x ≤ y, the set [x; y] = {z ∈ E : x ≤ z ≤ y} is called an order interval. A subset of
E is said to be order bounded if it is included in some order interval. A vector lattice E is σ-Dedekind
complete if every majorized countable nonempty subset of E has a supremum. A Banach lattice is a Banach
space (E, ∥ · ∥) such that E is a vector lattice and its norm satisfies the following property: for each x, y ∈ E
such that |x| ≤ |y|, we have ∥x∥ ≤ ∥y∥. A Banach lattice E is order continuous, if for each net (xα) such
that xα ↓ 0 in E, the net (xα) converges to 0 for the norm ∥.∥, where the notation xα ↓ 0 means that the
net (xα) is decreasing and inf(xα) = 0. Note that if E is a Banach lattice, its topological dual E′, endowed
with the dual norm and the dual order, is also a Banach lattice. A Banach lattice E is said to be KB-space,
if every increasing norm bounded sequence of E+ is norm convergent. The lattice operations in E are
weakly sequentially continuous, if the sequence (|xn|) converges to 0 in the weak topology, whenever the
sequence (xn) converges weakly to 0 in E. A positive element e in a vector lattice E is called an order unit
of E if Ee = E, where Ee = {x ∈ E; ∃λ > 0 such that |x| ≤ λe} is the order ideal generated by e. A nonzero
element x of a vector lattice E is discrete (atom) if the order ideal generated by x equals the vector subspace
generated by x. The vector lattice E is discrete (atomic), if it admits a complete disjoint system of discrete
elements. A Banach lattice E is said to be an AM-space if for each x, y ∈ E such that in f (x, y) = 0, we have
∥x + y∥ = max{∥x∥, ∥y∥}.

We will use the term operator to mean a bounded linear mapping. A linear mapping T from a vector
lattice E into another F is order bounded if it carries order bounded set of E into order bounded set of F. A
linear mapping between two vector lattices E and F is positive if T(x) ≥ 0 in F whenever x ≥ 0 in E. Note
that each positive linear mapping on a Banach lattice is continuous. If an operator T : E −→ F between
two Banach lattices is positive then, its adjoint T′ : F′ −→ E′ is likewise positive, where T′ is defined by
T′( f )(x) = f (T(x)) for each f ∈ F′ and for each x ∈ E.

3. Main Results

3.1. Space of un-U-Dunford-Pettis operators
Definition 3.1. An operator T between two Banach lattices E and F is said to be unbounded U-Dunford-Pettis
(un-U-DP, for short) if T(xn) un

−→ 0 for every order bounded weakly null sequence (xn) of E.

The collection of all unbounded U-Dunford-Pettis operators of L(E,F) will be denoted by unDPu(E,F).
That is,

unDPu(E,F) = {T ∈ L(E,F) : T is un-U-Dunford-Pettis}
and we note by

DPu(E,F) = {T ∈ L(E,F) : T is U-Dunford-Pettis}

We note by:
σ − unDP(E,F) = {T ∈ L(E,F) : T is σ-un-Dunford-Pettis operator }
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We note that a un-U-Dunford-Pettis is not in general σ-un-Dunford-Pettis. Indeed, the canonical injection
i : c0 −→ ℓ∞ is a un-U-Dunford-Pettis operator, but it is not σ-un-Dunford-Pettis. If E has an order unit, then
every un-U-Dunford-Pettis T defined on E is σ-un-Dunford-Pettis.

In the following result, we give some characterizations of un-U-DP operators.

Proposition 3.2. Let F be a Banach lattice. The following statements are equivalent:

1. Every operator from E into F is un-U-DP, for every Banach lattice E.
2. The identity operator of the Banach lattice F is un-U-DP.
3. F is atomic and order continuous.
4. Every operator from E into F is σ-un-DP, for every Banach lattice E.

Proof. 1)⇒ 2) Obvious.
2)⇒ 3) Let (xn) be an order bounded sequence in F such that xn

w
−→ 0. Since IdF is un-U-DP, then xn

un
−→ 0, and

hence (xn) converge in norm to 0. So, it follows from [3, Corollary 2.3] that F is an atomic order continuous
Banach lattice.
3)⇒ 4) Let (xn) be a weakly null sequence of E, we have T(xn) w

−→ 0. Since F is an atomic order continuous
Banach lattice, then by [11, Proposition 4.16] we infer that T(xn) un

−→ 0. So T is σ-un-DP operator.
4)⇒ 1) Obvious.

We recall from [12] that an operator T from a Banach lattice E into a Banach space Y is said to be
AM-compact if T(A) is relatively compact for every order bounded set A of E.

An other characterizations of un-U-DP operators are given in the following proposition.

Proposition 3.3. Let E be a Banach lattice. The following statements are equivalent:

1. Every operator from E into F is un-U-DP, for every Banach lattice F.
2. The identity operator of the Banach lattice E is un-U-DP.
3. E is atomic and order continuous.
4. Every operator from E into F is AM-compact, for every Banach lattice F.
5. Every operator from E into F is U-Dunford-Pettis, for every Banach lattice F.

Proof. The implications 1)⇒ 2), 4)⇒ 5) and 5)⇒ 1) are obvious.
2)⇒ 3) It is similar to the implication 2)⇒ 3) of the above proposition.
3) ⇒ 4) Let E be an atomic order continuous Banach lattice, then it follows from [15, Theorem 6.1] that
[−x, x] is compact for each x ∈ E+, and hence T([−x, x]) is relatively compact, that is T is AM-comapct.

Remark 3.4. The product of two un-U-Dunford-Pettis operators is not in general un-U-Dunford-Pettis. Indeed, let
E and F be two Banach lattices such that E and F are not order continuous and F is σ-Dedekind complete. We will
construct two un-U-Dunfrord-Pettis operators S and R such that the product T = R ◦ S is not un-U-Dunford-Pettis.
Since F is not order continuous, then by [12, Theorem 2.4.2] there exists a positive order bounded disjoint sequence
(yn) of F such that ∥yn∥ = 1 and yn ≤ y for all n and some y ∈ F+; and since E is not order continuous then it
follows from [12, Theorem 2.4.2] and [6, Lemma 3.4] that there exist a positive order bounded disjoint sequence (xn)
of E satisfying ∥xn∥ = 1 for all n and a positive disjoint sequence (1n) ∈ E′ with ∥1n∥ ≤ 1, 1n(xn) = 1 for all n and
1n(xm) = 0 for every n , m. On the other hand, since (xn) is an order bounded disjoint sequence then we infer that
xn

w
−→ 0.

Now, we consider the following operators,

S : E → c0
x 7→ (1n(x))

R : c0 → F
(λn)n 7→

∑
∞

n=1 λnyn.
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We note that S and R are two well defined operators which are un-U-Dunford-Pettis (because c0 is an atomic order
continuous Banach lattice), but the operator T = R ◦ S is not un-U-Dunford-Pettis. Indeed, we have

∥|T(xn)| ∧ y∥ = ∥|R ◦ S(xn)| ∧ y∥
= ∥|R(en)| ∧ y∥
= ∥|yn| ∧ y∥
= ∥yn∥ = 1,

where (en) is the unit basis of c0.

Recall from [8] that an operator T between two Banach lattices E and F is said to be unbounded norm
continuous (un-continuous, for short) whenever xα

un
−→ 0 implies T(xα)

un
−→ 0, for each norm bounded net

(xα) ⊂ E. If T(xn) un
−→ 0 for every norm bounded sequence (xn) ⊂ E such that xn

un
−→ 0, then T is called

σ-unbounded norm continuous operator ( σ-un-continuous, for short).

Proposition 3.5. Let E, F and G be Banach lattices. We have the following assertions:

1. If R : F −→ G is a un-U-Dunford-Pettis operator and F has an order unit, then the product operator R ◦ S is
un-U-Dunford-Pettis for every operator S : E −→ F.

2. If S : E −→ F is a un-U-Dunford-Pettis operator and R : F −→ G is a σ-un-continuous operator, then the
product operator R ◦ S is un-U-Dunford-Pettis.

3. If S : E −→ F is an order bounded operator and R : F −→ G is a un-U-Dunford-Pettis operator, then the
product operator R ◦ S is un-U-Dunford-Pettis.

Proof. 1. Let (xn) be an order bounded weakly null sequence in E. We have S(xn) w
−→ 0 in F. Since F has

order unit, then (S(xn)) is an order bounded sequence in F. As R is a un-U-Dunford-Pettis operator,
then R ◦ S(xn) un

−→ 0 in G, which means that R ◦ S is a un-U-Dunford-Pettis operator.
2. Let (xn) be an order bounded weakly null sequence in E. Since S is un-U-Dunford-Pettis, then

S(xn) un
−→ 0 in F, and since R is σ-un-continuous then R ◦ S(xn) un

−→ 0, that is R ◦ S is a un-U-Dunford-
Pettis operator.

3. Let (xn) be an order bounded weakly null sequence in E. Since S is an order bouned operator then
(S(xn)) is an order bounded weakly null sequence in F. As R is a un-U-Dunford-Pettis operator, then
R ◦ S is a un-U-Dunford-Pettis operator.

Remark 3.6. 1. The condition T : F −→ G is a σ-un-continuous operator is essential in the seconde assertion of
the Proposition 3.5. Indeed, let E be a Banach lattice such that E is not order continuous. So, we consider the
un-U-Dunford-Pettis operator S defined in the Remark 3.4,

S : E → c0
x 7→ (1n(x)) ;

and we consider the operator T : E S
−→ c0

i
−→ ℓ∞, where i is the canonical injection from c0 to ℓ∞. We note that

i is not σ-un-continuous. In fact, let (en) be the standard basis of c0; we have en
uaw
−−→ 0, and since c0 is order

continuous then it follow from [16, Theorem 4] that en
un
−→ 0 in c0, but i(en) = en is not un-convergent in ℓ∞.

Now, for the sequence (xn) used in the construction of the operator S which is an order bounded weakly null
sequence, we have T(xn) = en. Hence, the operator T is not un-U-Dunford-Pettis.

2. The condition S : E −→ F is an order bounded operator is essential in the third assertion of the Proposition
3.5. Indeed, let E be an infinite dimensional Banach lattice with order unit. We consider the same operator S
mentioned in the above assertion. We have S is not order weakly compact, hence S is a non-weakly compact
operator (because E has order unit). On the other hand, S is not order bounded. In fact, if S is order bounded
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then S(BE) will be order bounded in c0, where BE is the closed unit ball of E. As c0 is order continuous, it
follows from [2, Theorem 4.9] that S(BE) is weakly compact, and then S is a weakly compact operator, which is
a contradiction.
Now, we consider the following composed operator

T : E S
−→ c0

i
−→ ℓ∞.

The canonical injection i is un-U-Dunford-Pettis (because c0 is an atomic order continuous Banach lattice), but
T is not un-U-Dunford-Pettis.

We recall from [11] that a subset A of a Banach lattice E is said to be un-compact (respectively, sequentially un-
compact), if every net (xα) (respectively, every sequence (xn)) in A has a subnet (respectively, subsequence)
which is un-norm convergent.

Theorem 3.7. Let T be an operator from a Banach lattice E into a Banach lattice F. Then T is un-U-Dunford-Pettis if
and only if T sends order bounded weakly relatively compact subset of E to relatively sequentially un-compact subset
of F.

Proof. =⇒) Let A be an order bounded weakly relatively compact subset of E and let (xn) be a sequence of A,
then (xn) has a convergent subsequence (xnk ) to an element x ∈ E, on the other hand (xnk ) is order bounded.
Since T is un-U-Dunford-Pettis, then (T(xnk )) is un-convergent to T(x) and hence T is relatively sequentially
un-compact subset of F.
⇐=) Let (xn) be an order bounded weakly null sequence of E. The set A = {(xn),n ∈ N}

⋃
{0} is an order

bounded weakly relatively compact subset of E, then T(A) is a relatively sequentially un-compact subset
of F and hence there exists T(xnk ) a subsequence of (T(xn)) is un-convergent to y ∈ F; the uniqueness
of the un-limit implies that y = 0, so T(xnk )

un
−→ 0. This implies that T(xn) un

−→ 0 and shows that T is
un-U-Dunford-Pettis.

We recall from [14] that an operator T : E −→ F in said to be AM-unbounded norm-compact (AM-un-
compact, for short) whenever T[0, x] is an un-compact subset of F for each x ∈ E+.
We note by:

unAMc(E,F) = {T ∈ L(E,F) : T is AM − un − compact operator }

Proposition 3.8. 1. If S : E −→ F is an interval preserving operator and R : F −→ G is an AM-un-comapct
operator, then the product operator R ◦ S is un-U-Dunford-Pettis.

2. If S : E −→ F is a un-U-Dunford-Pettis operator and R : F −→ G is an M-weakly compact operator, then the
product operator R ◦ S is U-Dunford-Pettis.

Proof. 1. Let A be an order bounded weakly compact set in E, then there exist x ∈ E+ such that A ⊂ [−x, x],
as S is an interval preserving operator then S[−x, x] = [S(−x),S(x)] which implies that R ◦ S(A) ⊂
R([S(−x),S(x)]). Since R is AM-un-compact, then R ◦ S([−x, x]) is relatively un-comapct, and hence
R ◦ S in un-U-Dunford-Pettis.

2. Let A be an order bounded weakly compact set in E and S is a un-U-Dunford-Pettis operator, then
S(A) is relatively un-comapct, and since R is M-weakly compact then it follows from [10, Proposition
3.8] that R ◦ S(A) is relatively compact which means that R ◦ S is U-Dunford-Pettis operator.

Theorem 3.9. Let E and F be two Banach lattices such that F is σ-Dedekind complete. If every positive operator T
from E into F is un-U-Dunford-Pettis, then E or F is order continuous.

Proof. Assume that neither E nor F is not order continuous, then by [12, Theorem 2.4.2] there exists a disjoint
order bounded sequence (xn) of E+ which is not norm null, and it follows from [6, Lemma 3.4] that there
exists a bounded positive disjoint sequence (1n) in E′ such that 1n(xn) = 1 for all n and 1n(xm) = 0 for all
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m , n. So, we can define the following positive operator R from E into ℓ∞ by R(x) = (1n(x))n. On the other
hand, since F is not order continuous then by [12, Theorem 2.4.2] there exists a sequence (yn) of F with
∥yn∥ = 1 and 0 ≤ yn ≤ y for some y ∈ F+. Since F is σ-Dedekind complete, then we can consider the positive
operator S : ℓ∞ −→ F defined by S(λn) =

∑
∞

n=1 λnyn.
Now, we consider the positive operator T = S ◦R. We note that (xn) is a weakly null sequence, and we have

∥|T(xn)| ∧ y∥ = ∥yn ∧ y∥
= ∥yn∥ = 1

so that T(xn) is not un-null. That is T is not un-U-Dunford Pettis.

As a consequence of the above Theorem, we have the following result.

Corollary 3.10. Let E and F be two Banach lattices such that F is σ-Dedekind complete and E has o-un-UDPP (see
the definition 3.13). Then, the following statements are equivalent.

1. Every positive operator T from E into F is un-U-Dunford-Pettis.
2. E or F is order continuous.

3.2. Relationship between un-U-Dunford-Pettis and other operators
We recall from [2] that an operator T : E −→ X defined from a Banach lattice to a Banach space is said

to be order weakly compact whenever T[0, x] is a relatively weakly compact subset of X for each x ∈ E+,
equivalently, ∥T(xn)∥ −→ 0 for each order bounded sequence (xn) of E+. We note by

Lowc(E,F) = {T ∈ L(E,F) : T is order weakly compact }.

First, we consider the following class of operators.

Definition 3.11. An operator T : E −→ F between two Banach lattices E and F is un-order weakly compact if
T(xn) un

−→ 0 for every order bounded weakly null sequence (xn) of E+.

We note by:
unLowc(E,F) = {T ∈ L(E,F) : T is un-order weakly compact }

It is clear that every order weakly compact operator is un-order weakly compact, but the converse is not true
in general. In fact, in [10, Remark 3.4] we have T is un-order weakly compact but it not o-weakly compact.
On the other hand, every un-U-Dunford-Pettis operator is un-order weakly compact, but the converse is
not true in general. In fact, IdL2[0,1] is un-order weakly compact but it is not un-U-Dunford-Pettis.

We propose the following schema.

DPu(E,F)

unDPu(E,F)σ − unDP(E,F)

unLowc(E,F)

unAMc(E,F)

Now we will focus on the reciprocal inclusions of the above schema.
We note that a un-U-Dunford-Pettis is not in general U-Dunford-Pettis. In fact, every operator T :

ℓ∞ −→ c0 is un-U-Dunford-Pettis (Proposition 3.2), but it follows from the Proposition 3.3 that there exists
an operator T : ℓ∞ −→ c0 which is not U-Dunford-Pettis.
In the following results, we give sufficient conditions under which un-U-Dunford-Pettis operators are
U-Dunford-Pettis.
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Theorem 3.12. Let T : E −→ F be an operator between two Banach lattices. Then, every un-U-Dunford-Pettis
operator T from E into F is U-Dunford–Pettis if one of the following assertions is valid:

1. F has an order unit.
2. T is an order bounded operator.

Proof. 1. Let (xn) be an order bounded sequence in E such that xn
w
−→ 0. As T is un-U-Dunford-Pettis,

then T(xn) un
−→ 0, and since F has an order unit then by [11, Theorem 2.3] we infer that Txn

||.||
−→ 0, as

desired.
2. Let (xn) be an order bounded sequence in E such that xn

w
−→ 0. As T is un-U-Dunford-Pettis then

T(xn) un
−→ 0, and since T is order bounded then it follows from [9, Proposition 2.4] Txn

||.||
−→ 0.

We note that a weakly compact (resp, order weakly compact) operator is not necessarily un-U-Dunford-
Pettis and conversely a un-U-Dunford-Pettis operator is not weakly compact (resp, order weakly compact)
in general. Indeed, the identity operator of L2[0, 1] is weakly compact but it is not un-U-Dunford-Pettis, and
the identity operator of c0 is un-U-Dunford-Pettis but it is not weakly compact. On the other hand, there
exists a un-U-Dunford-Pettis operator which is not order weakly compact (see assertion (2) of Remark 3.6).
We recall from [1] that a Banach lattice E is said to have order U-Dunford-Pettis property (abb; o-UDPP),
if each order weakly compact operator T from E into a Banach space Y is U-Dunford-Pettis. On the other
hand, a Banach lattice E is said to have U-Dunford-Pettis property (abb; UDPP), if each weakly compact
operator T from E into a Banach space Y is U-Dunford-Pettis. A Banach lattice E is said to have the reciprocal
U-Dunford-Pettis property (abb; RUDPP), if each U-Dunford-Pettis operator T from E into a Banach space
Y is weakly compact.

Now, we present a generalization of the order U-Dunford-Pettis property, by introducing a new property
using the unbounded norm convergence in Banach lattices.

Definition 3.13. 1. A Banach lattice E is said to have the order un-U-Dunford-Pettis property (abb. o-un-
UDPP), if each order weakly compact operator T from E into F is un-U-Dunford-Pettis for each Banach lattice
F.

2. A Banach lattice E is said to have the reciprocal order un-U-Dunford-Pettis property (abb. R-o-un-UDPP), if
each un-U-Dunford-Pettis operator T from E into F is order weakly compact for each Banach lattice F.

3. A Banach lattice E is said to have the un-U-Dunford-Pettis property (abb. un-UDPP), if each weakly compact
operator T from E into F is un-U-Dunford-Pettis for each Banach lattice F.

4. A Banach lattice E is said to have the reciprocal un-U-Dunford-Pettis property (abb. R-un-UDPP), if each
un-U-Dunford-Pettis operator T from E into F is weakly compact for each Banach lattice F.

The spaces ℓ1, ℓ2, c0 have o-un-UDPP, but the spaces L1[0, 1] and L2[0, 1] does not have the o-un-UDPP.
The space ℓ2 has un-UDPP, but L2[0, 1] does not have the un-UDPP. On the other hand, c0 has the R-un-UDPP.

As a consequence of the above theorem, we can check the following corollaries:

Corollary 3.14. Let T : E −→ F be an operator from a Banach lattice E with o-un-UDPP into a Banach lattice F. If
T is an order bounded operator, then the following statements are equivalent:

1. T is un-U-Dunford-Pettis.
2. T is U-Dunford-Pettis.
3. T is order weakly compact.

Corollary 3.15. 1. If E is order continuous and E has the o-un-UDPP, then each operator T from E into a Banach
lattice F is un-U-Dunford-Pettis .

2. If E is order continuous, then the following statements are equivalent:
(a) E is atomic.
(b) The lattice operations of E are weakly sequentially continuous.
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(c) E has the o-UDPP.
(d) E has the o-un-UDPP.

Corollary 3.16. 1. If each un-U-Dunford-Pettis operator T : E −→ F is U-Dunford-Pettis then E has the
R-o-un-UDPP.

2. If a Banach lattice E has the R-un-UDPP then E′ is order continuous.

Proof. 1. Obvious.
2. Let E be a Banach lattice with the R-un-UDPP and T : E −→ ℓ1 a positive operator. It follows from

the Proposition 3.2 that T is a un-U-DP operator, and by our hypothesis T is weakly compact. So, it
follows from [2, Theorem 5.29] that E′ is order continuous.

We recall from ([13]) that an operator T : E −→ F is said σ-u-Dunford-Pettis (abb. σ-u-DP) if for every
sequence (xn) in E, xn

uaw
−−→ 0 implies T(xn) un

−→ 0.
We note by:

uDP(E,F) = {T ∈ L(E,F) : T is σ-u-Dunford-Pettis} .
A σ-u-Dunford-Pettis operator is not in general un-U-Dunford-Pettis. In fact, the identity operators

idL2[0,1] of the Banach lattice L2[0, 1] is σ-u-DP ([16, Theorem 4]), but it is not un-U-DP (see Proposition 3.3).
In the following result, we give a sufficient condition under which σ-u-DP operators are un-U-Dunford-

Pettis.

Theorem 3.17. Let E and F be two Banach lattices such that the lattice operations of E are weakly sequentially
continuous. Then, every σ-u-DP operator T from E into F is un-U-Dunford-Pettis.

Proof. Let (xn) be an order bounded sequence in E such that xn
w
−→ 0. Since the lattice operations of E are

weakly sequentially continuous, then |xn|
w
−→ 0 implies xn

uaw
−−→ 0. As T is σ-u-DP, then T(xn) un

−→ 0, so T is a
un-U-DP operator.

The converse is not true in generale. Indeed, let T be an operator defined from ℓ1 into R by T((xn)) =∑
∞

i=1 xn for every (xn) ∈ ℓ1. It is clear that T is compact and then it is un-U-Dunford-Pettis, but T can not be a
σ-u-DP operator. In fact, we consider the standard basis (en) of ℓ1 which is a disjoint sequence of ℓ1. By [16,
Lemma 2] we have that en

uaw
−−→ 0, but ||T(en)|| = 1.

If an addition E has order unit, then every un-U-DP operator T defined on E is σ-u-DP.
We note that a σ-un-DP operator is not necessarily U-Dunford-Pettis and conversely an U-Dunford-

Pettis operator is not σ-un-Dunford-Pettis in general. Indeed, there exists an operator T : ℓ∞ −→ c0 which
is not U-Dunford-Pettis (Proposition 3.3). However, every operator T : ℓ∞ −→ c0 is σ-un-Dunford-Pettis
(Proposition 3.2). On the other hand, there exists an operator T : c0 −→ ℓ∞which is not σ-un-DP (Proposition
3.2). However, every operator T : c0 −→ ℓ∞ is U-Dunford-Pettis.

The next results, tells us when every σ-un-Dunford-Pettis operator is U-Dunford-Pettis.

Theorem 3.18. Let E and F be two Banach lattices. We have the following assertions:

1. If F has an order unit, then every σ-un-Dunford-Pettis operator T defined from E into F is U-Dunford–Pettis.
2. Every σ-un-Dunford–Pettis order bounded operator T defined from E into F is U-Dunford–Pettis.

Proof. 1) Let (xn) be an order bounded sequence in E such that xn
w
−→ 0. Since T is a σ-un-Dunford-Pettis

operator, then T(xn) un
−→ 0 and since F has an order unit then T(xn)

||.||
−→ 0 ([11, Theorem 2.3 ]), so T is a

U-Dunford-Pettis operator.
2) Let (xn) be an order bounded sequence in E such that xn

w
−→ 0. Since T is σ-un-Dunford–Pettis operator

then T(xn) un
−→ 0 and by assumption T is an order bounded operator implies that T(xn)

||.||
−→ 0, as desired.
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We continue with study the relation between U-Dunford-Pettis and σ-u-Dunford-Pettis. We have the
canonical injection i from c0 into ℓ∞ is U-Dunford-Pettis but it is not σ-u-Dunford-Pettis. Conversely, the
identity operator idL2[0,1] of L2[0, 1] is σ-u-Dunford-Pettis but it is not U-Dunford-Pettis.
In the next results, we present a sufficient condition under which σ-u-Dunford-Pettis operators are U-
Dunford–Pettis, and conversely.

Theorem 3.19. Let E and F be two Banach lattices. Then we have the following assertions:

1. If the lattice operations of E are weakly sequentially continuous and F has an order unit, then every σ-u-
Dunford-Pettis operator T from E into F is U-Dunford–Pettis.

2. If E has an order unit, then every U-Dunford-Pettis operator T from E into F is σ-u-Dunford–Pettis.

Proof. 1) Let T be a σ-u-Dunford-Pettis operator, since the lattice operations of E are weakly sequentially
continuous then it follows from the Theorem 3.17 that T is un-U-Dunford-Pettis. As F has an order unit,
we infer that T is an U-Dunford-Pettis operator.

2) Let T be an U-Dunford-Pettis operator, then T is un-U-Dunford-Pettis, and since E has order unit then
it follows from [16, Theorem 7] that T is σ-u-Dunford–Pettis operator.

As a consequence of the preceding results we have;

Corollary 3.20. Let E and F be two Banach lattices such that E has an order unit and T be an order bounded operator
from E into F. The following statements are equivalent:

1. T is Dunford-Pettis.
2. T is σ-un-Dunford-Pettis.
3. T is un-U-Dunford-Pettis.
4. T is σ-u-Dunford-Pettis
5. T is U-Dunford-Pettis.
6. T is un-order weakly compact.
7. T is order weakly compact.
8. T is weakly compact.

In this position, we study the relation between un-U-Dunford-Pettis and un-order weakly compact
operators.

Theorem 3.21. Let E and F be two Banach lattices such that the lattice operations of E are weakly sequentially
continuous. Then each un-order weakly compact operator T : E −→ F is un-U-Dunford–Pettis.

Proof. Let (xn) be an order bounded sequence in E such that xn
w
−→ 0. Since the lattice operations of E

are weakly sequentially continuous, then x+n
w
−→ 0 and x−n

w
−→ 0. As T is un-order weakly compact, then

T(x+n ) un
−→ 0 and T(x−n ) un

−→ 0 implies that T(xn) un
−→ 0, and hence T is un-U-Dunford-Pettis.

Now, we are in position to study the relation between un-U-DP and AM-un-compact operators. It is
easy to show that every AM-un-compact operator is un-U-DP. And the converse is not true in general.
Indeed, we consider the Banach lattice ℓ∞. Since the norm of ℓ∞ is not order continuous and the Banach
lattice (ℓ∞)′ is not discrete, then it follows from [7, Theorem 2.5] that there exist two positive operators S,T
from ℓ∞ into ℓ∞ with 0 ≤ S ≤ T and T is AM-compact but S is not one; as S is order bounded then S is not
un-AM-compact. On the other hand, since T is a U-DP operator and ℓ∞ has o-U-DPP, it follows from [1,
Theorem 3.1] that S is U-DP and hence S is un-U-Dunford-Pettis.

Theorem 3.22. Let E and F be two Banach lattices. If E is order continuous, then each un-U-Dunford-Pettis operator
T form E into F is AM-un-compact.

Proof. Let x in E+. Since E is order continuous, then [−x, x] is a weakly compact subset of E. As T is un-U-DP,
then T[−x, x] is un-compact in F. So, T is an AM-un-compact operator.
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Now, we will show that the product of an order weakly compact operator and a un-U-Dunford-Pettis
operator is AM-un-compact.

Proposition 3.23. Let E and F be two Banach lattices and Y be a Banach space and let S : E −→ F and T : F −→ Y
be two operators. If T is un-U-Dunofrd-Pettis and S is order bounded and order weakly compact, then T ◦ S is
AM-un-compact.

Proof. Since S is order weakly compact and order bounded, then S[−x, x] order bounded weakly compact,
for each x in E+. As T is un-U-DP then T ◦ S[−x, x] is un-compact, and so T ◦ S AM-un-compact.

unAMc(E,F)

E o.cont

unDPu(E,F)

E o.contE wsc

uDP(E,F)

F o.cont & E wscE o.unit

DPu(E,F)

E wscunLowc(E,F)

E wscLowc(E,F)

F o.unit

E o.unit σ − unDP(E,F)

E o.unit F o.unit

F o.unit

3.3. On the duality problem for un-U-DP operators
In the class of un-U-Dunford-Pettis operators there exists a un-U-Dunford-Pettis operator whose adjoint

is not un-U-Dunford-Pettis. In fact, the identity operator Idℓ1 is un-U-Dunford-Pettis but its adjoint which
is the identity operator Idℓ∞ is not un-U-Dunford-Pettis.

In the following result, we give sufficient and necessary conditions under which an operator is un-U-
Dunford-Pettis whenever its adjoint operator is un-U-Dunford-Pettis.

Theorem 3.24. Let E and F be two Banach lattices such that the lattice operations of F′ are weakly sequentially
continuous. Then, the following statements are equivalent:

1. For each operator T : E −→ F, T′ : F′ −→ E′ is un-U-Dunford-Pettis.
2. The adjoint of each un-U-Dunford-Pettis operator T from E into F is un-U-Dunford-Pettis.
3. One of the following conditions is valid:



L. Zraoula et al. / Filomat 38:25 (2024), 8701–8713 8711

(a) E′ is order continuous;
(b) F′ is order continuous.

Proof. 1)⇒ 2) Obvious.
2) ⇒ 3) Assume that E′ is not order continuous and F′ is not order continuous. Then, by [12, Theorem

2.4.2] there exists an order bounded disjoint sequence (1n) ∈ (E′)+ such that ||1n|| = 1 for all n ∈ N and
|1n| ≤ 1 for some 1 ∈ (E′)+, and there exists a positive order bounded disjoint sequence ( fn) of F′ satisfying
|| fn|| = 1 for all n. So, we can find (yn) ∈ BF such that | fn(yn)| ≥ 1/2 for each n ∈ N.

We consider the following operators,

S2 : E→ ℓ1

x→ (1n(x))
S1 : ℓ1 → F

(λn)n →
∑
∞

n=1 λnyn

S1 and S2 are well-defined operators, and the product operator T = S1 ◦ S2 is un-U-Dunford-Pettis, but
its adjoint operator is not un-U-Dunford-Pettis. Indeed, we note that fn

w
−→ 0 and we put u = 1

21 ∈ (E′)+; we
have

|T′( fn)| ∧ u = |

∞∑
n=1

fn(yn)1n| ∧ u

= | ∨
∞

n=1 fn(yn)1n| ∧ u
≥ (| fn(yn)|1n) ∧ u

≥
1
2
1n ∧

1
2
1

≥
1
2
1n.

Hence, || |T′( fn)| ∧ u|| ≥ 1
2 ||1n|| =

1
2 , and so ( fn) is a weakly null sequence but T′( fn) is not un-null. That is

T′ is not un-U-Dunford-Pettis.
3-a)⇒ 1) Since E′ is order continuous (E′ is a KB-space), then it follows from [6, Theorem 3.3] that T′ is

an order weakly compact operator, and since the lattice operations of F′ are weakly sequentially continuous
then T′ is an U-DP operator and hence T′ is a un-U-DP operator.

3−b)⇒ 1) Since F′ is order continuous and the lattice operations of F′ are weakly sequentially continuous
then F′ is atomic and order continuous and hence it follows from the Proposition 3.3 that T′ : F′ −→ E′ is a
un-U-DP operator.

As consequences of the Theorem 3.24 and the Proposition 3.3, we have the following results.

Corollary 3.25. Let E be a Banach lattice. Then, the following statements are equivalent:

1. The adjoint of each un-U-Dunford-Pettis operator T : E −→ F is un-U-Dunford-Pettis, for each Banach lattice
F.

2. E′ is order continuous.

Corollary 3.26. Let F be a Banach lattice. Then, the following statements are equivalent:

1. The adjoint of each un-U-Dunford-Pettis operator T : E −→ F is un-U-Dunford-Pettis, for each Banach lattice
E.

2. F′ is order continuous.

Also, the Reciprocal duality is not satisfied in the class of un-U-Dunford-Pettis operators (it suffice to
consider the identity operator of the Banach lattice c).

Theorem 3.27. Let E and F be two Banach lattices such that the lattice operations of E are weakly sequentially
continuous and F a σ-Dedekind complet with the (b)-property. Then, the following statements are equivalent:
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1. Each operator T : E −→ F is un-U-Dunford-Pettis whenever its adjoint operator T′ : F′ −→ E′ is un-U-
Dunford-Pettis.

2. One of the following conditions is valid:
(a) E is order continuous;
(b) F is order continuous.

Proof. 2 − a) ⇒ 1) Since E is order continuous, then the operator T : E −→ F is order weakly compact, and
since the lattice operations of E are weakly sequentially continuous then, the operator T is U-Dunford-Pettis
and hence T is un-U-Dunford-Pettis.

2 − b) ⇒ 1) Since F is order continuous and has the (b)-property, then F is a KB-space, and hence it
follows from [6, Corollary 2.3] that T is an order weakly compact operator. As the lattice operations of E
are weakly sequentially continuous, then the operator T is un-U-Dunford-Pettis.

1) ⇒ 2) Assume that neither F is order continuous nor E is order continuous. Then, by [12, Theorem
2.4.2] there exists a disjoint sequence (yn) of F+ such that ||yn|| = 1 and 0 ≤ yn ≤ y for all n and some
0 ≤ y ∈ F; on the other hand, there exists a positive order bounded disjoint sequence (xn) of E satisfying
||xn|| = 1 for all n; and by [6, Lemma 3.4] there exists a disjoint sequence (1n) ∈ (E′)+ with ||1n|| ≤ 1 such that
1n(xn) = 1 for all n and 1n(xm) = 0 for n , m.

We consider the following operators which are mentioned in the Remark 3.4,

S : E → c0
x 7→ (1n(x))

R : c0 → F
(λn)n 7→

∑
∞

n=1 λnyn.

We consider the product operator T = R ◦S which is not un-U-Dunford-Pettis, and we note that T′ = S′ ◦R′

is un-U-Dunford-Pettis (because ℓ1 is an atomic order continuous Banach lattice).

As consequences of the Theorem 3.27, the Proposition 3.3 and [15, Theorem 6.1] we have the following
results.

Corollary 3.28. Let E be a Banach lattice such that the lattice operations of E are weakly sequentially continuous.
Then, the following statements are equivalent:

1. Each operator T : E −→ F is un-U-Dunford-Pettis whenever its adjoint is un-U-Dunford-Pettis, for each
Banach lattice F.

2. E is σ-Dedekind complete.

Corollary 3.29. Let F be a σ-Dedekind complete Banach lattice. Then, each operator T : E −→ F is un-U-Dunford-
Pettis whenever its adjoint is un-U-Dunford-Pettis, for each Banach lattice E.

Corollary 3.30. Let F be a σ-Dedekind complete with the (b)-property. If each operator T : E −→ F is un-U-Dunford-
Pettis whenever its adjoint is un-U-Dunford-Pettis, for each Banach lattice E, then F is order continuous.
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