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Abstract. In this paper, we present a direct methodology for solving a novel system of split quaternion
matrix equations. Leveraging the Moore-Penrose generalized inverse, the Kronecker product, the vec
operator, and the real representation of split quaternion matrices, we offer a comprehensive toolkit. The
primary aim of this paper is to establish the solvability conditions of a system over the split quaternions
and provide a general solution expression when it is consistent. We also give an algorithm to find the
approximate solution to this system when it is inconsistent. Finally, we give a numerical example to
showcase the efficacy of our approach.

1. Introduction

Hamilton quaternions were discovered by Irish mathematician, William Rowan Hamilton in 1843 [26].
It is a significant discovery in terms of the mathematical history. Quaternions and quaternion matrices are
not only used in mathematics but also have applications in numerous other fields, such as attitude control,
computer graphics, robotics, control theory, physics, orbital mechanics, and signal processing (see, e.g.[18],
[34], [52], [54]). The set of quaternions is denoted byH and defined as

H = {q = q0 + q1i + q2j + q3k : q0, q1, q2, q3 ∈ R},

where R is the real number field, i, j, k satisfy

i2 = j2 = k2 = ijk = −1.

General characteristics of quaternions and quaternion matrices can be found in [63]. In 1849, six years
after Hamilton discovered quaternions, the algebra of split quaternions or coquaternions was first presented
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by James Cockle [25]. The algebra of split quaternions is a four-dimensional real vector space with a specific
multiplicative operation. The set of split quaternions is denoted byHS and represented as

HS = {q = q0 + q1i + q2j + q3k : q0, q1, q2, q3 ∈ R},

where

i2 = −1, j2 = k2 = ijk = 1.

The main difference between split quaternions HS and quaternions H is that HS is not a skew field,
and it contains many zero divisors and nilpotent elements [29]. Due to these complicated characteristics,
studying split quaternions is more challenging than quaternions. As one of the emerging research topics,
the split quaternions have also been applied in split quaternionic mechanics and some other fields, such as
the model of public key cryptosystems, geometric theory, rotations in four-dimensional space E2

4, and so on
(see, e.g., [2],[19], [33], [35]). Many significant characteristics of split quaternions have been investigated in
recent years, one may be found in [29].

Quaternion matrix equations find wide applications in various fields, including mathematics, engi-
neering, system and control theory, data analysis, color image processing, and optimal control (see, e.g.,[7],
[14], [63]). The problem of solving matrix equations holds significant practical value which is attracting
considerable attention from scholars. As a result, numerous researchers (see, e.g., [1], [8–11], [26], [28], [36],
[39], [43], [50], [56], [61], [64],[65]) have used various approaches to investigate the solutions of the matrix
equations. As we know that Sylvester and Sylvester-type matrix equations are extensively applied in robust
control [4], graph theory [12], output feedback control [42], neural networks [66] and other fields (see, e.g.,
[3], [8], [40]). Roth [39] derived the Sylvester-type matrix equation for the first time over the polynomial
integral domian. Baksalary and Kala [1] gave the solvability conditions and established an expression of the
general solution of Sylvester-type matrix equation. He and Wang ( [15], [17], [47]) proposed the necessary
and sufficient conditions for the solvability to the systems of one-sided coupled Sylvester-type quaternion
matrix equations and derived the expressions of general solutions to these systems. Moreover, the general
solutions of some systems of mixed type generalized Sylvester matrix equations were also studied in ([48],
[49]). Wang et al. [51] derived the solvability conditions to the following two-sided coupled Sylvester-type
matrix equationsA1X = E1, XB1 = E2, C1Y = E3,

YD1 = E4, A2XB2 + C2YD2 = E5,
(1)

and then provided the least squares solution with the least norm to the system (1) in [53]. In 2019 [54], the
solvability conditions and the form of the general solution to the following system of matrix equations

A1X = C1, A2Y = C2, A3Z = C3,

XB1 = D1, YB2 = D2, ZB3 = D3,

A4XB4 + C4YD4 = P, A5ZB5 + C5YD5 = Q.
(2)

were also investigated. Xie and Wang [55] gave the solvability conditions and the general solution to the
system (2) over commutative quaternions. Some necessary and sufficient conditions for the solvability of
the system of five quaternion matrix equations in terms of the ranks of matrices were derived in [57]. In
2022, Yuan and Wang [60] investigated a system of twelve matrix equations over quaternion algebra and
established the solvability conditions and an expression of general solution when the system is consistent.

It is worth noting that η-Hermitian quaternion matrices and η-anti-Hermitian quaternion matrices
have important applications in linear modeling and convergence analysis in statistical signal processing
(see, e.g.,[44–46]). There are many results focusing on the η-Hermitian solution, the η-anti-Hermitian
solution, and other solutions with special forms (see, e.g., [5], [16], [27],[37], [38],[67]). Recently, Kyrchei
derived determinantal representations of the solutions to some systems of quaternion matrix equations and
two-sided generalized Sylvester matrix equations (see, e.g.,[21–24]).
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Now, we turn our attention to the solution of split quaternion matrix equations. A few studies have
expanded the results of quaternion matrix equations to the split quaternion equations. Li et al. [26] used
the real and complex representations of split quaternion matrices to examine the η-Hermitian solutions of
the equation (AXB,CXD) = (E,F). In [68], Zhang et al. studied the split quaternion least squares problem
and provided two algebraic methods for finding solutions to the problems in split quaternionic mechanics.
In order to explain the consistency of two types of split quaternion matrix equations AX∗−XB = CY+D and
X−AX∗B = CY+D, Liu and Zhang [29] derived some new real representations of split quaternion matrices.
Yuan et al. [59] discussed the Hermitian solution of split quaternion matrix equation AXB + CXD = E
and established the necessary and sufficient conditions for the existence of the solutions. Yue et al. [58]
investigated the bisymmetric and skew bisymmetric solutions of a split quaternion matrix equation and
found the equivalent solvable conditions and general expressions of the (skew) bisymmetric solutions.
Kyrchei [20] investigated Cramer’s rules for left and right systems of linear equations with Hermitian
split quaternion coefficient matrices. Liu and Zhang [30] derived the necessary and sufficient conditions
and provided the expression of general solutions for the matrix equation AXAη∗ = B. Si and Wang [41]
presented the general expression for solving a dual split quaternion matrix equation AXB = C. Gao et al.
[13] established the necessary and sufficient conditions for the system of split quaternion matrix equations
for the existence of η- anti-Hermitian solutions.

Motivated by the work mentioned above and keeping the interest in wide applications of split quater-
nion matrices, we in this paper consider the following problem which represents a significant extension of
the previously considered equations. For the convenience, throughout this paper, we denote the sets of all
m × n real matrices, complex matrices, quaternion matrices, and split quaternion matrices by Rm×n, Cm×n,
Hm×n, andHm×n

S , respectively.
Problem 1. Let A1, C1, E1 ∈Hm×n

S , A2, C2, E2 ∈Hn×k
S , E3, E4, E5 ∈Hm×n

S , F3, F4, F5 ∈Hn×k
S , B1, D1, F1 ∈Hm×n

S ,
B2, D2, F2 ∈Hn×k

S , and H ∈Hm×k
S . Find

χ =
{
[X,Y,Z]

X,Y,Z ∈Hn×n
S ,A1X = B1, XA2 = B2, C1Y = D1,

YC2 = D2, E1Z = F1, ZE2 = F2, E3XF3 + E4YF4 + E5ZF5 = H
}
.

(3)

The remainder of this paper is outlined as follows. In section 2, we study the real representation of
split quaternion matrix and also analyse the structure of vec(EXF) over split quaternions. In section 3,
considering different methods mentioned in ([26], [55], [60]), we propose some necessary and sufficient
conditions for the solvability of the system (3) and give an expression of the general solution to the system
(3) when it is solvable. In section 4, we present an algorithm and a numerical example to illustrate the main
results of this paper. Finally, we conclude this paper by giving some remarks in section 5.

2. Preliminary

In this section, we consider some definitions and lemmas that will be used in the following development
of this paper.

For A ∈Hm×n
S , A can be uniquely expressed as A = A0 +A1i+A2j+A3k, where A0, A1, A2, A3 ∈ Rm×n.

The conjugate matrix Ā is expressed as Ā = A0 − A1i − A2j − A3k, the transpose matrix AT is defined as
AT = AT

0 +AT
1 i+AT

2 j+AT
3 k, and the conjugate transpose matrix A∗ is represented as A∗ = AT

0 −AT
1 i−AT

2 j−AT
3 k.

Let A = (ai j) ∈ Rm×n and B ∈ Rs×t, then the Kronecker product of A and B is defined as

A ⊗ B =


a11B . . . a1nB
...
. . .

...

am1B . . . amnB

 .
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For any given ai = (a1i, a2i, · · · , ami), we define vec(A) = (a1, a2, · · · , an)T, where ai(i = 1, 2, · · · , n) is the ith

column of A. The Moore-Penrose generalized inverse of A ∈ Cm×n denoted by A† is a unique matrix which
satisfies the following equations,

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

For A = A0 + A1i + A2j + A3k ∈Hm×n
S , Ai ∈ Rm×n, a real representation of A is given by

G(A) =


A0 A1 A2 A3
−A1 A0 −A3 A2
A2 −A3 A0 −A1
A3 A2 A1 A0

 ∈ R4m×4n.

It is easy to verify the following results.

Proposition 2.1 ([26], [30]). For A, B ∈Hm×n
S and k1, k2 ∈ R, we have the following:

(1) A = B if and only if G(A) = G(B);
(2) G(AB) = G(A)G(B);
(3) G(k1A + k2B) = k1G(A) + k2G(B);
(4) G(In) = I4n, where In is an identity matrix with order n.

For any B = B0 + B1i + B2j + B3k ∈Hm×n
S , we define ϕB = (B0,B1,B2,B3). Clearly,

∥B∥ = ∥ϕB∥ =
√
∥B0∥

2 + ∥B1∥
2 + ∥B2∥

2 + ∥B3∥
2,

and

B + C � ϕB + ϕC.

Thus

∥ϕB+C∥ = ∥ϕB + ϕC∥.

Let
→

B = (B0,B1,B2,B3) and then

vec(
→

B) = vec(ϕB) =


vec(B0)
vec(B1)
vec(B2)
vec(B3)

 .
Moreover, we have

∥vec(
→

B)∥ = ∥vec(ϕB)∥ =

∥∥∥∥∥∥∥∥∥∥

vec(B0)
vec(B1)
vec(B2)
vec(B3)


∥∥∥∥∥∥∥∥∥∥ .

Theorem 2.2. If k is a real number and A,B ∈Hm×n
S . Then

(1) A = B if and only if ϕA = ϕB;
(2) ϕA+B = ϕA + ϕB and ϕkA = kϕA;
(3) ϕAB =ϕAG(B).
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Proof. (1) and (2) can be proved easily, here we only consider (3). The multiplication of two split quatrernion
matrices A and B is expressed as

AB = (A0 + A1i + A2j + A3k)(B0 + B1i + B2j + B3k)
= (A0B0 − A1B1 + A2B2 + A3B3) + (A0B1 + A1B0 − A2B3 + A3B2)i
+ (A0B2 − A1B3 + A2B0 + A3B1)j + (A0B3 + A1B2 − A2B1 + A3B0)k.

Thus

ϕAB = (A0,A1,A2,A3)


B0 B1 B2 B3
−B1 B0 −B3 B2
B2 −B3 B0 −B1
B3 B2 B1 B0

 = ϕA G(B).

By the definition of A ⊗ B, it follows that

vec(AXB) = (BT
⊗ A)vec(X).

However, it cannot hold in the split quaternion algebra for noncommutative multiplication of split quater-
nions. Thus, we have to study the structure of vec(ϕAXB).

Theorem 2.3. Let E = E0+E1i+E2j+E3k ∈Hm×n
S , X = X0+X1i+X2j+X3k ∈Hn×n

S , F = F0+F1i+F2j+F3k ∈Hn×k
S .

Then

vec(ϕEXF) = (G(F)T
⊗ E0, G(F)T

⊗ E1, G(F)T
⊗ E2, G(F)T

⊗ E3)


vec(ϕX)
vec(ϕiX)
vec(ϕ jX)
vec(ϕkX)

 ,
where

vec(ϕiX) =


vec(−X1)
vec(X0)

vec(−X3)
vec(X2)

 , vec(ϕ jX) =


vec(X2)

vec(−X3)
vec(X0)

vec(−X1)

 , vec(ϕkX) =


vec(X3)
vec(X2)
vec(X1)
vec(X0)

 .
Proof. By Theorem 2.2, it follows that

ϕEXF = ϕEG(XF) = ϕEG(X)G(F)

= (E0,E1,E2,E3)


X0 X1 X2 X3
−X1 X0 −X3 X2
X2 −X3 X0 −X1
X3 X2 X1 X0




F0 F1 F2 F3
−F1 F0 −F3 F2
F2 −F3 F0 −F1
F3 F2 F1 F0


= [(E0X0F0 − E1X1F0 + E2X2F0 + E3X3F0 − E0X1F1 − E1X0F1 + E2X3F1 − E3X2F1

+ E0X2F2 − E1X3F2 + E2X0F2 + E3X1F2 + E0X3F3 + E1X2F3 − E2X1F3 + E3X0F3),
(E0X0F1 − E1X1F1 + E2X2F1 + E3X3F1 + E0X1F0 + E1X0F0 − E2X3F0 + E3X2F0

− E0X2F3 + E1X3F3 − E2X0F3 − E3X1F3 + E0X3F2 + E1X2F2 − E2X1F2 + E3X0F2),
(E0X0F2 − E1X1F2 + E2X2F2 + E3X3F2 − E0X1F3 − E1X0F3 + E2X3F3 − E3X2F3

+ E0X2F0 − E1X3F0 + E2X0F0 + E3X1F0 + E0X3F1 + E1X2F1 − E2X1F1 + E3X0F1),
(E0X0F3 − E1X1F3 + E2X2F3 + E3X3F3 + E0X1F2 + E1X0F2 − E2X3F2 + E3X2F2

− E0X2F1 + E1X3F1 − E2X0F1 − E3X1F1 + E0X3F0 + E1X2F0 − E2X1F0 + E3X0F0)].
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Therefore,

vec(ϕEXY) = K1 + K2 + K3 + K4,

where

K1 =


(FT

0 ⊗ E0)vec(X0) + (−FT
1 ⊗ E0)vec(X1) + (FT

2 ⊗ E0)vec(X2) + (FT
3 ⊗ E0)vec(X3)

(FT
1 ⊗ E0)vec(X0) + (FT

0 ⊗ E0)vec(X1) + (−FT
3 ⊗ E0)vec(X2) + (FT

2 ⊗ E0)vec(X3)
(FT

2 ⊗ E0)vec(X0) + (−FT
3 ⊗ E0)vec(X1) + (FT

0 ⊗ E0)vec(X2) + (FT
1 ⊗ E0)vec(X3)

(FT
3 ⊗ E0)vec(X0) + (FT

2 ⊗ E0)vec(X1) + (−FT
1 ⊗ E0)vec(X2) + (FT

0 ⊗ E0)vec(X3)


=



FT

0 −FT
1 FT

2 FT
3

FT
1 FT

0 −FT
3 FT

2
FT

2 −FT
3 FT

0 FT
1

FT
3 FT

2 −FT
1 FT

0

 ⊗ E0



vec(X0)
vec(X1)
vec(X2)
vec(X3)


= (G(F)T

⊗ E0)


vec(X0)
vec(X1)
vec(X2)
vec(X3)

 .
Similarly, we can prove that

K2 = (G(F)T
⊗ E1)


vec(−X1)
vec(X0)

vec(−X3)
vec(X2)

 , K3 = (G(F)T
⊗ E2)


vec(X2)

vec(−X3)
vec(X0)

vec(−X1)

 , K4 = (G(F)T
⊗ E3)


vec(X3)
vec(X2)
vec(X1)
vec(X0)

 .
Hence,

vec(ϕEXF) = (G(F)T
⊗ E0,G(F)T

⊗ E1,G(F)T
⊗ E2,G(F)T

⊗ E3)


vec(ϕX)
vec(ϕiX)
vec(ϕ jX)
vec(ϕkX)

 .

Note that the above results are important for solving a system of constrained two-sided coupled Sylvester-
type matrix equations over the split quaternions.

Lemma 2.4. Suppose that C = C0 + C1i + C2j + C3k ∈Hn×k
S , then

vec(ϕC)
vec(ϕiC)
vec(ϕ jC)
vec(ϕkC)

 = ζnkvec
→

(C),

where

ζnk =


ζI
ζiI
ζ jI
ζkI

 , ζI =


Ink 0 0 0
0 Ink 0 0
0 0 Ink 0
0 0 0 Ink

 , ζiI =


0 −Ink 0 0

Ink 0 0 0
0 0 0 −Ink
0 0 Ink 0

 ,

ζ jI =


0 0 Ink 0
0 0 0 −Ink

Ink 0 0 0
0 −Ink 0 0

 , ζkI =


0 0 0 Ink
0 0 Ink 0
0 Ink 0 0

Ink 0 0 0

 .
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Proof.
vec(ϕC)
vec(ϕiC)
vec(ϕ jC)
vec(ϕkC)

 =


vec(C0) + vec(C1)i + vec(C2) j + vec(C3)k
vec(−C1) + vec(C0)i + vec(−C3) j + vec(C2)k
vec(C2) + vec(−C3)i + vec(C0) j + vec(−C1)k

vec(C3) + vec(C2)i + vec(C1) j + vec(C0)k


=


ζI
ζiI
ζ jI
ζkI



vec(C0)
vec(C1)
vec(C2)
vec(C3)

 = ζnkvec
→

(C).

Using Theorem 2.3 and Lemma 2.4, we can obtain the following result.

Corollary 2.5. If E = E0+E1i+E2j+E3k ∈Hm×n
S , X = X0+X1i+X2j+X3k ∈Hn×n

S , and F = F0+F1i+F2j+F3k ∈
Hn×k

S . Then

vec(ϕEXF) = (G(F)T
⊗ E0, G(F)T

⊗ E1, G(F)T
⊗ E2, G(F)T

⊗ E3) ζnkvec
→

(X).

To find the solution of system (3), we recall the following lemma.

Lemma 2.6 ([55]). The matrix equation Ax = b , A ∈ Rm×n and b ∈ Rn, has a solution x ∈ Rn if and only if

AA†b = b.

In this case, the general solution can be expressed as

x = A†b + (In − A†A)y,

where y ∈ Rn is an arbitrary vector. If rank(A) = n the equation has a unique solution x = A†b.

3. The Solution of Problem 1

From the above discussions, we now pay attention to solving the system of split quaternion matrix
equations (3). For convenience, we provide the following notations that will be used in the sequel. Let
A1 = A10+A11i+A12j+A13k, C1 = C10+C11i+C12j+C13k, E1 = E10+E11i+E12j+E13k ∈Hm×n

S , A2,C2,E2 ∈Hn×k
S ,

Et = Et0 + Et1i + Et2j + Et3k ∈ Hm×n
S (t = 3, 5), F3,F4,F5 ∈ Hn×k

S , B1,D1,F1 ∈ Hm×n
S , B2,D2,F2 ∈ Hn×k

S , and
H ∈Hm×k

S . Set

L =



G(I)T
⊗ A10 G(I)T

⊗ A11 G(I)T
⊗ A12 G(I)T

⊗ A13
G(A2)T

⊗ I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

G(F3)T
⊗ E30 G(F3)T

⊗ E31 G(F3)T
⊗ E32 G(F3)T

⊗ E33


ζn2 ,

P =



0 0 0 0
0 0 0 0

G(I)T
⊗ C10 G(I)T

⊗ C11 G(I)T
⊗ C12 G(I)T

⊗ C13
G(C2)T

⊗ I 0 0 0
0 0 0 0
0 0 0 0

G(F4)T
⊗ E40 G(F4)T

⊗ E41 G(F4)T
⊗ E42 G(F4)T

⊗ E43


ζn2 ,
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Q =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

G(I)T
⊗ E10 G(I)T

⊗ E11 G(I)T
⊗ E12 G(I)T

⊗ E13
G(E2)T

⊗ I 0 0 0
G(F5)T

⊗ E50 G(F5)T
⊗ E51 G(F5)T

⊗ E52 G(F5)T
⊗ E53


ζn2 .

Let

V j = [L j, P j, Q j] ( j = 0, 3), (4)

T1 =

V0
V1
V2

 , ϵ =

E0
E1
E2
E3

 , (5)

where

E j =



vec(ϕB1 j )
vec(ϕB2 j )
vec(ϕD1 j )
vec(ϕD2 j )
vec(ϕF1 j )
vec(ϕF2 j )
vec(ϕH j )


( j = 0, 3).

Theorem 3.1. For A1, C1, E1 ∈Hm×n
S , A2, C2, E2 ∈Hn×k

S , E3, E4, E5 ∈Hm×n
S , F3, F4, F5 ∈Hn×k

S , B1, D1, F1 ∈

Hm×n
S , B2, D2, F2 ∈Hn×k

S , and H ∈Hm×k
S . Let T1, V3 and ϵ be defined in (4) and (5). Then, Problem 1 has a solution

[X,Y,Z] ∈Hn×n
S if and only if[

T1
V3

] [
T1
V3

]†
ϵ = ϵ. (6)

In this case, the set of general solution can be expressed as

χ =

{
[X,Y,Z]



vec(

→

X)

vec(
→

Y)

vec(
→

Z)

 =
[
T1
V3

]†
ϵ +

[
I12n2 −

[
T1
V3

]† [
T1
V3

] ]
y
}
, (7)

where y is an arbitrary vector with appropriate order. Furthermore, if (6) holds, then the system of split quaternion
matrix equations (3) has a unique solution [X,Y,Z] ∈ χ if and only if

rank
[
T1
V3

]
= 12n2. (8)

In this case, we have

χ =

{
[X,Y,Z]



vec(

→

X)

vec(
→

Y)

vec(
→

Z)

 =
[
T1
V3

]†
ϵ

}
. (9)
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Proof. By Corollary 2.5 and Theorem 2.2, it follows that

(3)⇔

ϕA1X = ϕB1 , ϕXA2 = ϕB2 , ϕC1Y = ϕD1 , ϕYC2 = ϕD2 ,

ϕE1Z = ϕF1 , ϕZE2 = ϕF2 , ϕE3XF3 + ϕE4YF4 + ϕE5ZF5 = ϕH,

⇔

vec(ϕA1X) = vec(ϕB1 ), vec(ϕXA2 ) = vec(ϕB2 ), vec(ϕC1Y) = vec(ϕD1 ), vec(ϕYC2 ) = vec(ϕD2 ),
vec(ϕE1Z) = vec(ϕF1 ), vec(ϕZE2 ) = vec(ϕF2 ), vec(ϕE3XF3 ) + vec(ϕE4YF4 ) + vec(ϕE5ZF5 ) = vec(ϕH),

⇔ Lvec(
→

X) + Pvec(
→

Y) +Qvec(
→

Z) = ϵ,

⇔


L0 P0 Q0
L1 P1 Q1
L2 P2 Q2
L3 P3 Q3



vec(

→

X)

vec(
→

Y)

vec(
→

Z)

 = ϵ,

⇔

[
T1
V3

] 
vec(

→

X)

vec(
→

Y)

vec(
→

Z)

 = ϵ.
By Lemma 2.6, Problem 1 has a solution [X,Y,Z] ∈ χ if and only if (6) holds. If this condition is satisfied,
then 

vec(
→

X)

vec(
→

Y)

vec(
→

Z)

 =
[
T1
V3

]†
ϵ +

[
I12n2 −

[
T1
V3

]† [
T1
V3

] ]
y,

which implies (7) holds. Moreover, if (6) holds, Problem 1 has a unique solution [X,Y,Z] ∈ χ if and only if[
T1
V3

]† [
T1
V3

]
= I12n2 , (10)

that means that (8) holds. Thus we have (9).

As mentioned in ([59], [64]), Theorem 3.1 is simple and convenient to solve the split quaternion matrix
equations (3), especially when the known matrices are small in size. In order to deal with the Moore-

Penrose generalized inverse of the block matrix
[
T1
V3

]†
, we use the following results from [31] and derive

them as follows. Let

s = 12mn + 12kn + 4km,

R = (I12n2 − T†1T1)VT
3 ,

Z = (Is + (Is − R†R)V3T†1T†T1 VT
3 (Is − R†R))−1,

W = R† + (Is − R†R)ZV3T†1T†T1 (I12n2 − VT
3 R†),

Θ11 = I3s − T1T†1 + T†T1 VT
3 Z(Is − R†R)V3T†1,

Θ12 = −T†T1 VT
3 (Is − R†R)Z,

Θ22 = (Is − R†R)Z.

From the results in [31], we have[
T1
V3

]†
= [T†1 −WTV3T†1,W

T],
[
T1
V3

]† [
T1
V3

]
= T†1T1 + RR†, (11)
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and

I4s −

[
T1
V3

]† [
T1
V3

]
=

[
Θ11 Θ12
ΘT

12 Θ22

]
. (12)

Theorem 3.2. Problem 1 has a solution [X,Y,Z] if and only if[
Θ11 Θ12
ΘT

12 Θ22

]
ϵ = 0. (13)

In this case, the set of general solution can be expressed as

χ =

{
[X,Y,Z]



vec(

→

X)

vec(
→

Y)

vec(
→

Z)

 = [T†1 −WTV3T†1,W
T]ϵ + (I12n2 − T†1T1 − RR†)y

}
, (14)

where y is an arbitrary vector with appropriate order. Furthermore, if (13) holds, then the system of split quaternion
matrix equations has a unique solution [X,Y,Z] ∈ χ if and only if (8) holds. In this case,

χ =

{
[X,Y,Z]



vec(

→

X)

vec(
→

Y)

vec(
→

Z)

 = [T†1 −WTV3T†1,W
T]ϵ

}
. (15)

Proof. We have seen in Theorem 3.1 that (6) is the necessary and sufficient condition for the existence of
solution [X,Y,Z] ∈ χ. We can rewrite (6) as(

I4s −

[
T1
V3

] [
T1
V3

]† )
ϵ = 0.

From (12), system (3) has a solution [X,Y,Z] ∈ χ if and only if (13) holds. From Theorem 3.1, and (11), (7)
implies (14). Furthermore, if both (8) and (13) hold then we can write (9) in the form of (15).

Corollary 3.3. Let the condition be satisfied in Theorem 3.2. Then the optimization problem

min
[X,Y,Z]∈χ

(∥ϕX∥
2 + ∥ϕY∥

2 + ∥ϕZ∥
2)

has a unique minimizer [Xl,Yl,Zl] which satisfies
vec(

→

Xl)

vec(
→

Yl)

vec(
→

Zl)

 = [T†1 −WTV3T†1,W
T]ϵ. (16)

Proof. From (14), we can see that the solution set χ is a nonempty closed convex set. Hence,

min
[X,Y,Z]∈χ

(∥ϕX∥
2 + ∥ϕY∥

2 + ∥ϕZ∥
2) = min

[X,Y,Z]∈χ
(∥
→

X∥2 + ∥
→

Y∥2 + ∥
→

Z∥2)

= min
[X,Y,Z]∈χ

(∥vec
→

(X)∥2 + ∥vec
→

(Y)∥2 + ∥vec
→

(Z)∥2)

= min
[X,Y,Z]∈χ

∥∥∥∥∥∥∥∥∥∥

vec(

→

X)

vec(
→

Y)

vec(
→

Z)


∥∥∥∥∥∥∥∥∥∥

2

.
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By Theorem 3.2, we have


vec(

→

Xl)

vec(
→

Yl)

vec(
→

Zl)

 is in the form of (16).

We have two theorems to solve Problem 1 so far. We have derived the necessary and sufficent conditions
for the existence of a solution of the system of equations (3) and provide the general solution formulas,
respectively. Obviously, Theorem 3.2 is based on Theorem 3.1. The only difference between them is from
the viewpoint of calculations. Theorem 3.2 takes advantages of the results of equations (11) and (12) to
solve Problem 1. Consequently, Theorem 3.2 is more general than Theorem 3.1.

4. Numerical Verification

Based on the discussions in sections 2 and 3, we provide an algorithm and a numerical example for
finding the solution of Problem 1. The algorithm is based on Theorem 3.2 and Corollary 3.3. If the condition
(13) for the system of matrix equations (3) holds, the following algorithm give the numerical solution of
Problem 1 for [X,Y,Z] ∈Hn×n

S .

Algorithm 1

1. Input the matrix: Input A1 = A10 +A11i+A12j+A13k, C1 = C10 +C11i+C12j+C13k, E1 = E10 +E11i+
E12j+E13k ∈Hm×n

S , A2, C2, E2 ∈Hn×k
S , Et = Et0+Et1i+Et2j+Et3k ∈Hm×n

S (t = 3, 5), F3,F4,F5 ∈Hn×k
S ,

B1, D1, F1 ∈Hm×n
S , B2, D2, F2 ∈Hn×k

S and H ∈Hm×k
S .

2. Compute T1, V3, R, Z, W, Θ11, Θ12, Θ22 and ϵ.
3. If both (8) and (13) hold, then calculate [Xl, Yl, Zl] ∈ χ according to (15).
4. If only (13) holds, then calculate [Xl, Yl, Zl] ∈ χ according to (14). Or else, go to next step.
5. Calculate [Xl, Yl, Zl] ∈ χ according to (16).

If the system (3) is consistent, then

N1 =

∥∥∥∥∥∥∥
[

T1
V3

] [
T1
V3

]†
ϵ − ϵ

∥∥∥∥∥∥∥ , N2 =

∥∥∥∥∥∥
[
Θ11 Θ12
ΘT

12 Θ22

]
ϵ

∥∥∥∥∥∥
and

N3 =

∥∥∥∥∥∥∥I −
[

T1
V3

] [
T1
V3

]†
−

[
Θ11 Θ12
ΘT

12 Θ22

]∥∥∥∥∥∥∥
must be small.

Example 4.1. Let m = 3, n = 2, k = 3, and Au = Au0 +Au1i+Au2j+Au3k, Cu = Cu0 +Cu1i+Cu2j+Cu3k, u = 1, 2
Ev = Ev0 + Ev1i + Ev2j + Ev3k, (v = 1, 5), Fw = Fw0 + Fw1i + Fw2j + Fw3k, (w = 3, 5),
X̂ = X10 + X11i + X12j + X13k , Ŷ = Y10 + Y11i + Y12j + Y13k, Ẑ = Z10 + Z11i + Z12j + Z13k. We take

A10 =

0.15 0
0.38 0.87
0.16 0.35

 , A11 =

 0 −2
−1 1
2 2

 , A12 =

−1 0
0 −2
−2 0

 , A13 =

 1 −2
0 0
−2 2

 ,
A20 =

[
0.65 0.94 0.24
0.96 0.46 0.76

]
, A21 =

[
1 0.25 2
0 1 −1

]
, A22 =

[
1 0 1
−1 −2 1

]
,

A23 =

[
0 −2 −2
2 −1 0

]
, C10 =

0.66 0.75
0.04 0
0.81 0.53

 , C11 = C12 = C13 = zeros(3, 2),
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C20 =

[
0.79 0.44 0.75
0.58 0.26 0.23

]
, C21 =

[
2 0.5 0
1 0 1

]
, C22 =

[
0 −1 0
1 0 2

]
, C23 =

[
1 2 −1
0 2 0

]
,

E10 =

0.5 0.4
0.6 0
0.9 0.8

 , E11 =

2 −1
0 −1
2 0

 , E12 =

−1 2
1 2
1 2

 , E13 =

0 2
2 1
1 0

 ,
E20 =

[
−0.2 0.2 0.8
0.9 0 0.6

]
, E21 =

[
2 −1 0
0 −2 2

]
, E22 =

[
0 −2 −1
0 0 −1

]
, E23 =

[
1 −2 1
0 2 −1

]
,

E30 =

0.38 0.53
0.62 0.26
0.58 0.25

 , E31 =

−2 −1
0 1
2 −2

 , E32 =

 0 1
2 −2
−1 −1

 , E33 =

 0 1
−1 −2
−1 0

 ,
E40 =

0.14 0.04
0.22 0.11
0.18 0.62

 , E41 =

 1 −2
2 0
−1 0

 , E42 =

 −1 2
0.25 0

0 2

 , E43 =

−2 1
0 0
−1 −2

 ,
E50 =

0.09 0
0.04 0.31
0.56 0.18

 , E51 = zeros(3, 2),E52 =

−1 −2
1 0
−2 −2

 , E53 =

 0 −1
−1 −2
2 2

 ,
F30 =

[
0.55 0.51 0
0.58 0.08 0.99

]
, F31 =

[
−2 −1 2
−1 2 2

]
, F32 =

[
0 1 −1

0.5 0 2

]
, F33 =

[
−1 0 0
0 −0.3 0.25

]
,

F40 =

[
0.70 0.22 0.67
0.73 0.27 0.48

]
, F41 =

[
1 0.5 0
1 0 1

]
, F42 = zeros(2, 3), F43 =

[
1 2 −1
−1 2 −1

]
,

F50 =

[
0.65 0.39 0.84
0.83 0.75 0.32

]
, F51 =

[
2.5 1 1
2 0.25 0

]
, F52 =

[
zeros(1, 3)
ones(1, 3)

]
, F53 =

[
−1 1 1
−2 −2 1

]
,

X10 =

[
1 −1
1 −1

]
, X11 =

[
0.97 0.84
0.33 0.73

]
, X12 = ones(2, 2), X13 =

[
1 −0.25
−1 0

]
,

Y10 =

[
1 0.1
−1 1

]
, Y11 =

[
0.25 0.5
−1 0.89

]
, Y12 = zeros(2, 2), Y13 =

[
1 0
−1 0

]
,

Z10 =

[
1 1
−1 −1

]
, Z11 =

[
−1 1
1 −1

]
, Z12 =

[
1 1

0.5 1

]
, Z13 =

[
0.01 −0.05
−0.1 −0.02

]
,

where zeros(n, k) is an n × k matrix whose all elements are zero and ones(n, k) is an n × k matrix with all one
elements. Let

ϕB1 = ϕA1 G(X̂), ϕB2 = ϕX̂G(A2), ϕD1 = ϕC1 G(Ŷ),
ϕD2 = ϕŶG(C2), ϕF1 = ϕE1 G(Ẑ), ϕF2 = ϕẐG(E2),

ϕH = ϕE3 G(X̂)G(F3) + ϕE4 G(Ŷ)G(F4) + ϕE5 G(Ẑ)G(F5).

Using Matlab and Algorithm 1, we obtain

rank
[

T1
V3

]
= 48, N2 = 9.6181 × 10−14.

Therefore, we can see that the system of equations (3) is consistent. Additionally, we can compute N1 = 9.904× 10−14

and N3 = 9.7774 × 10−14. Thus, Problem 1 has a unique solution [X,Y,Z] = [Xl,Yl,Zl] ∈ χ and we can get
∥ϕ[Xl,Yl,Zl] − ϕ[X̂,Ŷ,Ẑ]∥ = 1.1036 × 10−14.
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5. Conclusion

In this paper, we have discused how to find the solution of the system of split quaternion matrix
equations (3) by using the Kronecker product, the Moore-Penrose generalized inverse, the vec operator,
and the real representation of split quaternion matrix. We have proposed necessary and sufficient conditions
for the solvability of the system (3) and established the expression of the general solution of the system
(3). If the system (3) is inconsistent, then we have given an algorithm to find its approximate solution.
Moreover, a numerical example has also been designed to illustrate the results of this paper. Inspired by
([32], [62]), we plan to explore solving the system (3) of tensor equations over the split quaternion algebra
in future work.
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