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Asymptotics of solutions to a first-order partial differential equation
with a power-law boundary layer

A. S. Omuralieva,∗, P. Esengul kyzya, K. Matanovaa

aKyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan

Abstract. In the article, a regularized asymptotic of any order of a mixed problem for a first-order partial
differential equation is constructed, when the limit equation has a regular singularity. The constructed
asymptotic contains boundary-layer functions of two types: power, exponential, and angular functions.
The asymptotic of the solution is constructed by a special class of function corresponding to the structure of
the fundamental system of solutions. The asymptotic character of the constructed solution is established.

1. Introduction

So far, such problems have not been studied from the standpoint by the method of singularly perturbed
problems. In works [1-4] the asymptotic of the boundary layer type were constructed. The asymptotic
constructed there has a complex structure and the process of constructing the solution consists of several
stages. In the work [1], for a system of equations in partial derivatives of the first order, the asymptotic
of the inner transitional layer was constructed. In the works [2-4], the Cauchy problems for systems of
singularly perturbed partial differential equations of the first order are studied, when the matrix at the
desired function has one zero eigenvalue, and an asymptotic of any order of the boundary layer type is
constructed. Our approach greatly simplifies the process of constructing the asymptotic. The numerical
solution of singularly perturbed problems is the subject of works whose bibliography is given in [11-12].
Russian-language works not cited in [13-15]. The works [10-15] are devoted to the construction of difference
schemes for singularly perturbed ordinary differential equations. In [13], singularly perturbed problems
were studied on a piecewise uniform grid. The works [17-19] use the decomposition of the grid solution
into regular and singular components, which are solutions of grid sub problems on piecewise uniform
grids. This article proposes a new approach for the numerical solution of singularly perturbed ordinary
differential equations, which is based on the synthesis of S.A. Lomov’s regularization method [5] and known
numerical methods (finite elements, finite differences, direct lines). The idea of the method is to regularize a
singularly perturbed problem, by introducing an additional regularizing independent variable, the original
problem is expanded into a space of higher dimension. The extended problem obtained in this case will be
regular in a small parameter, then the resulting regular problem is decomposed, the resulting equations for

2020 Mathematics Subject Classification. Primary 35B25; Secondary 35B40.
Keywords. Partial differential equation, asymptotics of solution, law-power boundery layer, singularly perturbed problems.
Received: 02 February 2024; Accepted: 07 June 2024
Communicated by Marko Nedeljkov
* Corresponding author: A. S. Omuraliev
Email addresses: asan.omuraliev@manas.edu.kg (A. S. Omuraliev), peyil.esengul@manas.edu.kg (P. Esengul kyzy),

kalys.matanova@manas.edu.kg (K. Matanova)



A. Omuraliev et al. / Filomat 38:25 (2024), 8841–8847 8842

the components are applied, one of the known numerical methods is applied. Previously, this method was
applied in [20-24] to various singularly perturbed ordinary differential equations, and in [25] to a parabolic
equation. The method of lines in [20] solved the initial problem for a differential equation with a small first-
order parameter. Singularly perturbed ordinary differential equations with one boundary layer function
and two boundary layer functions, based on the finite difference method, were studied respectively in [21,
22]. The finite element method was applied in [23, 24] to solve singularly perturbed ordinary differential
equations. In [25], the finite difference method is used to solve a singularly perturbed heat equation.

2. Asymptotic solution

Consider the problem

(ε + t)∂tu + εa(x)∂xu + b(x, t)u = f (x, t), (x, t) ∈ Ω

u(x, t, ε)|t=0 = u0(x), u(x, t, ε)|x=0 = u1(t) (1)

here ε > 0 is a small parameter, a(x) ∈ C∞[0, 1], b(t) ∈ C∞(Ω), f (x, t) ∈ C∞(Ω), Ω = {0 < x < 1, 0 < t ≤ T}.
The problem is studied at b(x, 0) > 0, ∀t ∈ [0,T]. The degenerate (ε = 0) equation has a singularity at

t = 0, which leads to the appearance of a power-law boundary layer. The power-law boundary layer [1] is
described by the function

Π(t, ε) = (
ε

t + ε
)λ, λ > 0,

in addition, the problem (1) along the characteristic has a gap.
We have constructed a continuous asymptotic solution that contains regular, power and angular bound-

ary layer functions. Previously, the problem solutions of which contain power-law boundary-layer functions
were studied in [5-9]. Thus, in [5, 6] ordinary differential equations are studied, [7-9] are devoted to the
construction of an asymptotic solution of parabolic equations.

2.1. Regularization of the problem
Let’s regularize [5] the problem (1), for which we introduce the regularizing functions

ξ1 = φ1(x, t, ε), ξ2 = φ2(x, t, ε), φ1(x, 0, ε) = 0, φ2(0, t, ε) = 0 (2)

and the extended function

ũ(x, t, ξ, ε)|ξ=φ(x,t,ε)u(x, t, ε), ξ = (ξ1, ξ2), φ = (φ1, φ2). (3)

From (3), based on (2), we find the derivatives of ∂tu, ∂xu and choose the regularizing functions as solutions
of the equations

εa(x)∂xφ2(x, t, ε) + (ε + t)∂tφ2(x, t, ε) = b(x, 0), (ε + t)∂tφ1(x, t, ε) + εa(x)∂xφ1(x, t, ε) = b(x, 0) (4)

Then the extended task for ũ(x, t, ξ, ε) will be written

b(x, 0)∂τũ + b(x, 0)∂ξũ + b(x, 0)ũ + [b(x, t) − b(x, 0)]ũ + t∂tũ = −ε∂tũ − εa(x)∂xũ + f (x, t), (x, t, ξ) ∈ Q, (5)

ũ|t=τ=0 = u0(x), ũ|x=ξ=0 = u1(t), Q = Ω × (0,∞) × (0,∞)

Solving problems (4), (2) will be written:

φ1(x, t, ε) =
∫ τ

0
b(A−1(εη − τ + s), 0)ds, τ = b(x, 0)ln(

t + ε
ε

), (6)

φ2(x, t, ε) =
∫ η

0
b(A−1(εs), 0)ds, η =

1
ε

∫ x

0

ds
a(s)
≡

1
ε

A(x)
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The solution of problem (5) will be defined as a series

ũ(x, t, ξ, τ, ε) =
∞∑

k=0

εkuk(M), M = (x, t, ξ, τ),

then for the coefficients we get the following iterative problems:

Tu0 ≡ b(x, 0)[∂τ + ∂ξ + 1]u0 + t∂tu0 + [b(x, t) − b(x, 0)]u0 = f (x, t),

Tuk = −∂tuk−1 − a(x)∂xuk−1, (7)

u0|t=τ=0 = u0(x), u0|x=ξ=0 = u1(t),

uk|t=τ=0 = uk|x=ξ=0 = 0.

2.2. Solvability of iterative problems
Iterative problems (7) will be solved in the class of functions

U =
{
u(M) : u(M) = c1(x, t)e−τ + d1(x, t)e−ξ + e1(x, t)Φ(τ − ξ)e−ξ+

f1(x, t)Φ(ξ − τ)e−τ + v(x, t),

c1(x, t), d1(x, t), e1(x, t), f1(x, t), v(x, t) ∈ C∞(Ω̄)
}

Φ(ξ) =

0, ξ < 0,
e−ξ, ξ ≥ 0.

where the term c1(x, t)e−τ = c1(x, t)( εt+ε )
b(x,0) describes a power boundary layer along t = 0, d1(x, t)e−ξ describes

an exponential boundary layer along x = 0; the remaining two terms describe an angular boundary layer
in the vicinity of point (0, 0).

Calculate the action of the operator T on the function u(M) ∈ U:

Tu = b(x, 0)
[
−c1(x, t)e−τ − d1(x, t)e−ξ − e1(x, t)Φ(τ − ξ)e−ξ−

f1(x, t)Φ(ξ − τ)e−τ + e1(x, t)Φ
′

(τ − ξ)e−ξ − e1(x, t)Φ
′

(τ − ξ)e−ξ+

f1(x, t)Φ
′

(ξ − τ)e−τ − f1(x, t)Φ
′

(ξ − τ)e−τ+

c1(x, t)e−τ + d1(x, t)e−ξ + e1(x, t)Φ(τ − ξ)e−ξ+

f1(x, t)Φ(ξ − τ)e−τ
]
+ t
[
∂tc1(x, t)e−τ + ∂td1(x, t)e−ξ+

∂te1(x, t)Φ(τ − ξ)e−ξ + ∂t f1(x, t)Φ(ξ − τ)e−τ
]
+

[b(x, t) − b(x, 0)]
[
c1(x, t)e−t + d1(x, t)e−ξ + e1(x, t)Φ(τ − ξ)e−ξ+ (8)

f1(x, t)Φ(ξ − τ)e−τ
]
=
[
t[∂tc1(x, t) + (b(x, t) − b(x, 0))c1(x, t)]e−τ+

[t∂td1(x, t) + (b(x, t) − b(x, 0))d1(x, t)]e−ξ+

[t∂te1(x, t) + (b(x, t) − b(x, 0))e1(x, t)] ×Φ(τ − ξ)e−ξ+

[t∂t f1(x, t) − (b(x, t) − b(x, 0)) f1(x, t)]Φ(ξ − τ)e−τ+

b(x, t)v(x, t) + t∂tv(x, t),

here
c1(x, t) = c(x, t) + P1(x),
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d1(x, t) = d(x, t) + P2(x),

f1(x, t) = f (x, t) + P4(x),

e1(x, t) = e(x, t) + P3(x).

From the boundary conditions (7) of the function u(M) ∈ U we find

c1(x, t) = −v(x, 0) − P1(x), f1(x, t) = −d1(x, t) − P4(x),

d1(0, t) = −v(0, t) − P2(0), e1(0, t) = −c1(0, t) − P3(0). (9)

Satisfying the function u0(M) ∈ U to equation (7) for k = 0, based on calculations (8), we obtain

t∂tc0(x, t) + [b(x, t) − b(x, 0)]
[
c0(x, t) − P0

1(x)
]
= 0,

t∂td0(x, t) + [b(x, t) − b(x, 0)]
[
d0(x, t) − P0

2(x)
]
= 0, (10)

t∂te0(x, t) + [b(x, t) − b(x, 0)]
[
e0(x, t) − P0

3(x)
]
= 0,

t∂t f 0(x, t) + [b(x, t) − b(x, 0)]
[

f 0(x, t) − P0
4(x)
]
= 0.

These equations, under initial conditions (9), have smooth solutions. The functions P0
i (x), i = 1, 2, 3, 4

included here and in the initial condition will be defined in the next iteration step. In the next iteration step,
the right side of the equations will include

F1(M) = −∂tu0 − a(x)∂xu0.

We substitute only the term (c0(x, t)+P0
1(x))e−τ, into it, the other terms of the function u0(M) are transformed

in the same way:

F2(M) = −

∂tc0(x, t) + a(x)

∂xc0(x, t) +
dP0

1

dx

 e−τ.
To ensure the solvability of the equation with respect to c1(x, t) from (10), we assume

dP0
1(x)

dx
= −
(
∂tc0(x, t) + a(x)∂xc0(x, t)

) 1
a(x)
|t=0.

Substitute here the value of c0(x, t) found as the solution of the problem (10), (9), with respect to P0
1(x)

we obtain the equation. The resulting equation is solved under an arbitrary initial condition for x = 0.
Then the process repeats. The asymptotic character of the constructed solution is proved.

Theorem 2.1. The given functions satisfy the conditions: a(x) ∈ C∞([0, 1]), b(x, t), f (x, t) ∈ C∞(Ω̄) and initial
conditions. Then, for sufficiently small ε > 0, problem (1) has a smooth asymptotic solution, i.e. there is an estimate∣∣∣u(x, t, ε) − uεn (x, t, ξ, ε)

∣∣∣ < cεn+1, ∀n ≥ 0.

Proof. Let’s rewrite problem (1)

∂tu +
ε
ε + t

a(x)∂xu +
1
ε + t

b(x, t)u =
1
ε + t

f (x, t).

Here, the expression (t + ε) for sufficiently small ε does not affect the properties of the function a(x), b(x, t)
for which the conditions of the maximum principle theorem are valid [26]. Therefore, on the basis of this
theorem, it is not difficult to establish an estimate.
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3. Numerical solution

Our method is based on the method of S. A. Lomov. First, the singularly perturbed equation under study
is reduced by these methods to a regularly perturbed equation, then the resulting equation is decomposed.
The equations obtained after decomposition with initial conditions are solved by a well-known numerical
method. In the numerical solution in equation (4), b(x,−ε) is taken instead of b(x, 0).

In this work, the finite difference method is used. The solution of problem (5) will be defined as

ũ(x, t, ξ, τ, ε) = c1(x, t)e−τ + c2(x, t)e−ξ + Φ(ξ − τ)c3(x, t)e−τ + c4(x, t)Φ(τ − ξ)e−ξ + v(x, t), (11)

for the coefficients we obtain the problem

(ε + t)∂tcl(x, t) + εa(x)∂xcl(x, t) + [b(x, t) − b(x,−ε)] cl(x, t) = 0, l = 1, 2, 3, 4, (12)

(ε + t)∂tv(x, t) + εa(x)∂xv(x, t) + b(x, t)v(x, t) = f (x, t) (13)

Equation (13) is solved without the initial condition, and for equations (12) the initial conditions are given
in the form

c1(x, 0) = u0(x) − v(x, 0), c3(x, 0) = −c2(x, 0), c2(0, t) = u1(t) − v(0, t), c4(0, t) = −c1(0, t). (14)

Difference equations equivalent to these problems can be written as

(ε + t j)
cl

i, j+1 − cl
i, j

k
+ εai

cl
i+1, j − cl

i, j

h
+
[
bi j − bi

]
cl

i j = O(k + h), l = ¯1, 4 (15)

(ε + t j)
vi, j+1 − vi, j

k
+ εai

vi+1, j − vi, j

h
+ bi jvi j = fi j +O(k + h), i = ¯1,n, j = ¯1,m (16)

h =
1
n
, k =

1
m
, c1

i,0 = u0
i − vi,0, c3

i,0 = −c2
i , c2

0, j = u1
j − v0, j, c4

o, j = −c1
0, j, bi j = b(ih, jl), bi = b(ih,−ε).

Equation (15) with l = 1, 3 we write

cl
i, j+1 = qi jcl

i j − pi jcl
i+1, j +O(k + h), c1

i,0 = u0
i − vi,0, c3

i,0 = −c2
i,0, (17)

qi j = 1 +
εair − (bi j − bi)k

ε + t j
, r =

k
h
, pi j =

εai

t j + ε
r,

for l = 2, 4 we write

cl
i+1, j = q1

i jc
l
i j − r1p1

i jc
l
i, j+1 +O(k + h), c2

0, j = u1
j − v0, j, c4

0, j = −c1
oj, (18)

q1
i j = 1 +

r1(ε + t j) − (bi j − bi)h
εai

, p1
i j =

r1(t j + ε)
εai

, r1 =
h
k
.

To determine vi j, we have the equation

vi, j+1 = q2
i jvi j − p2

i jvi+1, j +
fi j

t j + ε
+O(k + h) (19)

q2
i j = 1 +

εair − bi jk
ε + t j

, p2
i j =

εair
t j + ε

From (17) we have the estimate ∣∣∣∣cl
i, j+1

∣∣∣∣ ≤ ∣∣∣∣∣∣1 − [bi j − bi]k
t j + ε

∣∣∣∣∣∣ ∣∣∣∣cl
i j

∣∣∣∣ +O(k + h),
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for sufficiently small ε > 0, for (18) we obtain∣∣∣∣cl
i+1, j

∣∣∣∣ ≤ ∣∣∣∣∣∣1 − [bi j − bi]h
εai

∣∣∣∣∣∣ ∣∣∣∣cl
i j

∣∣∣∣ +O(k + h). (20)

From (19)

∣∣∣vi, j+1

∣∣∣ ≤ ∣∣∣∣∣∣1 − bi jk
t j + ε

∣∣∣∣∣∣ ∣∣∣vi j

∣∣∣ + fi j

t j + ε
+O(k + h). (21)

These estimates, according to the assumptions made at the beginning, imply the stability and convergence
of schemes (17), (18), (19) at a rate of O(k + h). Solving problems (17) - (19) we find ci jl, vi j, i, j = ¯1,n, using
them we make a narrowing in (11) setting xi = (i − 1)h, t j = ( j − 1)k, i, j = ¯1,n:

τ = τi, j = φ
j
1,i =

∫ t j

0

1
s + ε

b(A−1(ε(zi j + ln(s + ε)), 0)ds

ξ = ξi j = φ
j
2,i =

1
ε

∫ xi

0

b(s, 0)
a(s, 0)

ds

define the solution of the original problem

uuv = ui j = vi j + c1
i, je
−τi j + c2

i je
−ξi j + Φ(ξi j − τi j)c3

i je
−τi j + Φ(τi j − ξi j)c4

i je
−ξi j .

Following the methodology of [17], [18] and based on estimates (20), (21), we obtain the estimate

|u(x, t, ε) − uuv| < c(k + h).

Theorem 3.1. Let the given functions satisfy the above conditions. Then the solution constructed by the methods
described above converges ε – uniformly at a rate of O(k + h).

4. Conclusion

To construct an asymptotic solution of the problem posed with respect to regularizing functions, a first-
order partial differential equation is obtained, the solution of which is described along the characteristic.
One regularizing variable is used to describe the power-law boundary layer (ξ1 = φ1(x, t, ε)), the second
regularizing variable allows describing the exponential boundary layer along the straight line x = 0(ξ2 =
φ2(x, t, ε)). To describe the corner boundary layer, an additional function Φ(ξ) is introduced, which allows
describing the named boundary layer.

References

[1] Vasilyeva A. B., On the internal transition layer in solving a system of the first order partial differential equations, Differential
Equations, 21, 1537-1544, 1985. (in Russian)

[2] Nesterov A. V., Shuliko O. V., Asymptotics of the solution of a singularly perturbed system of partial differential equations of the
first order with a small nonlinearity in the critical case, Journal of Computational Mathematics and Mathematical Physics, 47(3),
438–444, 2007. (in Russian)

[3] Nesterov A. V., Asymptotics of the solution of the Cauchy problem for a singularly perturbed system of hyperbolic equations,
Collection of Chebyshev, 12(3), 93–105, 2003. (in Russian)

[4] Nesterov A.V., On the asymptotics of the solution of a singularly perturbed system of partial differential equations of the first
order with a small nonlinearity in the critical case, Journal of Computational Mathematics and Mathematical Physics, 52(7), 1267
-1276, 2012. (in Russian)

[5] Lomov S. A., Introduction to the general theory of singular perturbations, Moscow(Nauk), 1981. (in Russian)
[6] Lomov S. A., Power-law boundary layer in problems with singular perturbation, Izv. AN USSR. Ser. Mat., 30(3), 525-572, 1966.

(in Russian)



A. Omuraliev et al. / Filomat 38:25 (2024), 8841–8847 8847

[7] Omuraliev A. S., Esengul kyzy P., Regularization of a singularly perturbed parabolic equation with power boundery layer, V
Congress of the Turkic World Mathematicians, Kyrgyzstan, ”Issyk-Kul Aurora”, 5-7 June, 136-142, 2014.

[8] Omuraliev A. S., Abylaeva E. D. and Esengul kyzy P., A system of singularly perturbed parabolic equations with a power
boundary layer, Lobachevskii Journal of Mathematics, 41(1), 71-79, 2020.

[9] Omuraliev A. S., Abylaeva E. D. and Esengul kyzy P., A parabolic problem with a power-law boundary layer, Differential
Equation, 57(1), 67-77, 2021.

[10] Bakhvalov N.S., On optimization of methods for solving boundary value problems in the presence of a boundary layer, Zh.
Vychisl. math. and Math. Phys., 9(4), 841-859, 1969. (in Russian)

[11] Ilyin A.M., Difference scheme for a differential equation with a small parameter at the highest derivative, Mat. Zametki, 6(2),
237-248, 1969. (in Russian)

[12] Doolan E., Miller J. and Shields W., Uniform numerical methods for solving boundary layer problems, Peace, 1983. (in Russian)
[13] Shishkin G. I., Grid approximations of singularly perturbed elliptic and parabolic equations, Yekaterinburg (Publishing House

of the Ural Branch of the Russian Academy of Sciences), 1992. (in Russian)
[14] Kellog R. B., Tsan A., Analysis of some difference approximations for a singular perturbation problem without turning points,

Mathematics of computation, 32(144), 1025 – 1039, 1978.
[15] Miller J. J. H., O’Riordan E. and Shishkin G. I., Fitted Numerical Methods for Singular Perturbation Problems, Singapore (World

Scientific), 1996.
[16] Zadorin AI, Tikhovskaya S. V., Analysis of a difference scheme for a singularly perturbed Cauchy problem on a refining grid,

Sib. Magazine Comput. Mat., 14(1), 47 – 57, 2011. (in Russian)
[17] Shishkin G. I., Shishkina L. P., Improved difference scheme of the solution decomposition method for a singularly perturbed

reaction-diffusion equation, Institute mathematician and mechanics of the Ural Branch of the Russian Academy of Sciences,
16(1), 2010. (in Russian)

[18] Shishkin G. I., Conditionality of the difference scheme of the solution decomposition method for a singularly perturbed
convection-diffusion equation, Institute mathematician and mechanics of the Ural Branch of the Russian Academy of Sciences,
18(2), 2012. (in Russian)

[19] Hradyesh Kumar Mishra, Sonali Saini, Various Numerical Methods for Singularly Perturbed Boundary Value Problems, American
Journal of Applied Mathematics and Statistics, 2(3), 129-142, 2014.

[20] Omuraliev A.S., Numerical solution of a singularly perturbed initial problem Method of a small parameter, Abstracts of reports
of the All-Union Conference, Nalchik 1987. (in Russian)

[21] Omuraliev A.S., Numerical regularization of a boundary value problem with a boundary layer arising at one end, Bulletin of
Osh State University, Ser.Physical Mathematics 4, 2001. (in Russian)

[22] Omuraliev A.S., Numerical regularization of a singularly perturbed boundary value problem, Kyrgyz-Turk Manas Univ., MJEN,
2, 2002. (in Russian)

[23] Omuraliev A.S., Regularization of a singularly perturbed boundary value problem for an ordinary dif. Equations Based on Finite
Elements, MJEN, 4, 2003. (in Russian)

[24] Omuraliev A.S., On one finite element approach to solving a singularly perturbed problem, Abstracts of the Intern. Conference.
according to calc. Mat. ICVM-2004 June 21-25, Akademgorodok, Novosibirsk, Russia, 2004. (in Russian)

[25] Omuraliev A.S., Numerical regularization of Cauchy problem for singularly perturbed parabolic equation, Kyrgyz-Turk Manas
Univ. MJEN, 5, 2004. (in Russian)

[26] Ladyzhenskaya O. A., Solonnikov V. A. and Uraltseva N. N., Linear and Quasilinear Equations of Parabolic Type,
Moscow(Nauka), 1967. (in Russian)


