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Abstract. In this paper, we give a new characterization of Browder’s theorem by means of the generalized
Drazin-1-meromorphic Weyl spectrum and the generalized Drazin-1-meromorphic spectrum. Also, for
operators A and B satisfying AkBkAk = Ak+1 for some positive integer k, we generalize Cline’s formula to
the case of generalized Drazin-1-meromorphic invertibility.

1. Introduction and Preliminaries

Throughout this paper, let N and C denote the set of natural numbers and complex numbers, respec-
tively. Let B(X) denote the Banach algebra of all bounded linear operators acting on a complex Banach
space X. For T ∈ B(X), we denote the adjoint of T, null space of T, range of T and spectrum of T by
T∗, N(T), R(T) and σ(T), respectively. For a subset A of C, the set of interior points of A and the set of
accumulation points of A are denoted by int(A) and acc(A), respectively. For T ∈ B(X), let α(T) be the nullity
of T, defined as the dimension of N(T) and β(T) be the deficiency of T, defined as codimension of R(T). An
operator T ∈ B(X) is called a lower semi-Fredholm operator if β(T) < ∞. An operator T ∈ B(X) is called
an upper semi-Fredholm operator if α(T) < ∞ and R(T) is closed. The class of all lower semi-Fredholm
operators (upper semi-Fredholm operators, respectively) is denoted by ϕ−(X) (ϕ+(X), respectively). An
operator T is called semi-Fredholm if it is upper or lower semi-Fredholm. For a semi-Fredholm operator
T ∈ B(X), the index of T is defined by ind (T) = α(T)−β(T). The class of all Fredholm operators is defined by
ϕ(X) = ϕ+(X)∩ϕ−(X). The class of all lower semi-Weyl operators (upper semi-Weyl operators, respectively)
is defined by W−(X) = {T ∈ ϕ−(X) : ind (T) ≥ 0} (W+(X) = {T ∈ ϕ+(X) : ind (T) ≤ 0}, respectively). An
operator T ∈ B(X) is said to be Weyl if T ∈ ϕ(X) and ind (T) = 0. The spectra for upper semi-Fredholm operator,
lower semi-Fredholm operator, Fredholm operator, upper semi-Weyl operator, lower semi-Weyl operator and Weyl

2020 Mathematics Subject Classification. Primary 47A10; Secondary 47A53.
Keywords. 1-meromorphic operators, generalized Drazin-1-meromorphic invertible, Cline’s formula.
Received: 09 December 2023; Revised: 26 April 2024; Accepted: 28 April 2024
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operator are defined by

σu f (T) := {λ ∈ C : λI − T is not upper semi-Fredholm},
σl f (T) := {λ ∈ C : λI − T is not lower semi-Fredholm},
σ f (T) := {λ ∈ C : λI − T is not Fredholm},
σuw(T) := {λ ∈ C : λI − T is not upper semi-Weyl},
σlw(T) := {λ ∈ C : λI − T is not lower semi-Weyl},
σw(T) := {λ ∈ C : λI − T is not Weyl}, respectively.

A bounded linear operator T is said to be bounded below if R(T) is closed and T is injective. The approximate
point and surjective spectra are defined by

σa(T) := {λ ∈ C : λI − T is not bounded below},
σs(T) := {λ ∈ C : λI − T is not surjective}, respectively.

For an operator T ∈ B(X), the ascent p(T) is the smallest non negative integer p such that N(Tp) = N(Tp+1).
If no such integer exists, we set p(T) = ∞. For an operator T ∈ B(X), the descent q(T) is the smallest non
negative integer q such that R(Tq) = R(Tq+1). If no such integer exists, we set q(T) = ∞. By [1, Theorem 1.20]
we know that if both p(T) and q(T) are finite, then p(T) = q(T).

An operator T ∈ B(X) is said to have the single-valued extension property (SVEP) at µ0 ∈ C if for every
neighborhood U of µ0 the only analytic function f : U→ X satisfying (µI − T) f (µ) = 0 is the function f = 0.
An operator T is said to have SVEP if T has SVEP at every µ ∈ C. It is known that if p(µI − T) is finite, then
T has SVEP at µ and if q(µI − T) is finite, then T∗ has SVEP at µ.

An operator T ∈ B(X) is said to be Drazin invertible if there exist S ∈ B(X) and a positive integer n such
that

ST = TS, Tn+1S = Tn and STS = S.

By [1, Theorem 1.132] T is Drazin invertible if and only if p(T) = q(T) < ∞. An operator T ∈ B(X) is said
to be left Drazin invertible if p(T) < ∞ and R(Tp+1) is closed. An operator T ∈ B(X) is said to be lower
semi-Browder if it is a lower semi-Fredholm and q(T) < ∞. An operator T ∈ B(X) is said to be right Drazin
invertible if q(T) < ∞ and R(Tq) is closed. An operator T ∈ B(X) is said to be upper semi-Browder if it
is an upper semi-Fredholm and p(T) < ∞. We say that an operator T ∈ B(X) is Browder if it is lower
semi-Browder and upper semi-Browder. The spectra for lower semi-Browder operator, upper semi-Browder
operator and Browder operator are defined by

σlb(T) : = {λ ∈ C : λI − T is not lower semi-Browder},
σub(T) : = {λ ∈ C : λI − T is not upper semi-Browder},
σb(T) : = {λ ∈ C : λI − T is not Browder}, respectively.

Clearly, every Browder operator is Drazin invertible.
An operator T ∈ B(X) is said to be semi-regular if R(T) is closed and N(T) ⊂ R(Tn) for every n ∈ N.

An operator T ∈ B(X) is said to be nilpotent if Tn = 0 for some n ∈ N. An operator T ∈ B(X) is said to be
quasi-nilpotent if λI − T is invertible for all λ ∈ C \ {0}. An operator T ∈ B(X) is said to be Riesz if λI − T is
Browder for all λ ∈ C \ {0}. An operator T ∈ B(X) is said to be meromorphic if λI−T is Drazin invertible for
all λ ∈ C \ {0}. Clearly, every Riesz operator is meromorphic.

A subspace M of X is said to be T-invariant if T(M) ⊂ M. For a T-invariant subspace M of X, we define
TM : M → M by TM(x) = T(x), x ∈ M. We say that T is completely reduced by the pair (M,N) (denoted by
(M,N) ∈ Red(T)) if M and N are two closed T-invariant subspaces of X such that X =M ⊕N.

An operator T is said to possess a generalized Kato decomposition (GKD) if there exists a pair (M,N) ∈ Red(T)
such that TM is semi-regular and TN is quasi-nilpotent. Here, if we assume that TN to be nilpotent, then T is
said to be of Kato type. An operator is said to possess a Kato-Riesz decomposition (GKRD), if there exists a pair
(M,N) ∈ Red(T) such that TM is semi-regular and TN is Riesz (see [20]). Živković-Zlatanović and Duggal
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[22] introduced the notion of generalized Kato-meromorphic decomposition. An operator T ∈ B(X) is said
to possess a generalized Kato-meromorphic decomposition (GKMD), if there exists a pair (M,N) ∈ Red(T) such
that TM is semi-regular and TN is meromorphic. Živković-Zlatanović[19] generalized Kato-1-meromorphic
decomposition and introduced the notion of 1-meromorphic operators. An operator T ∈ B(X) is called
1-meromorphic if every nonzero spectral point is an isolated point. Clearly, every meromorphic operator
is 1-meromorphic. An operator T ∈ B(X) is said to possess a generalized Kato-1-meromorphic decomposition
(GK(1M)D), if there exists a pair (M,N) ∈ Red(T) such that TM is semi-regular and TN is 1-meromorphic. For
T ∈ B(X), the generalized Kato spectrum, generalized Kato Riesz spectrum, generalized Kato meromorphic spectrum
and generalized Kato-1-meromorphic spectrum are defined by

σ1KD(T) : = {λ ∈ C : λI − T does not admit a GKD},
σ1KRD(T) : = {λ ∈ C : λI − T does not admit a GKRD},
σ1KMD(T) : = {λ ∈ C : λI − T does not admit a GKMD},
σ1K(1M)(T) : = {λ ∈ C : λI − T does not admit a GK(gM)D}, respectively.

For T ∈ B(X) and a non negative integer n, define T[n] to be the restriction of T to Tn(X). If for some non
negative integer n, the range space Tn(X) is closed and T[n] is Fredholm (an upper semi Fredholm, a lower
semi Fredholm, an upper semi Browder, a lower semi Browder, Browder, respectively) then T is said to be
B-Fredholm (an upper semi B-Fredholm, a lower semi B-Fredholm, an upper semi B-Browder, a lower semi
B-Browder, B-Browder, respectively). For a semi B-Fredholm operator T (see [8]), the index of T is defined
as index of T[n]. The spectra for upper semi B-Fredholm operator, lower semi B-Fredholm operator, B-Fredholm
operator, upper semi B-Browder operator, lower semi B-Browder operator and B-Browder operator are defined by

σusb f (T) := {λ ∈ C : λI − T is not upper semi B-Fredholm},
σlsb f (T) := {λ ∈ C : λI − T is not lower semi B-Fredholm},
σb f (T) := {λ ∈ C : λI − T is not B-Fredholm},
σusbb(T) := {λ ∈ C : λI − T is not upper semi B-Browder},
σlsbb(T) := {λ ∈ C : λI − T is not lower semi B-Browder},
σbb(T) := {λ ∈ C : λI − T is not B-Browder}, respectively.

By [1, Theorem 3.47] we know that an operator T ∈ B(X) is upper semi B-Browder (lower semi B-Browder,
B-Browder, respectively) if and only if T is left Drazin invertible (right Drazin invertible, Drazin invertible,
respectively).

An operator T ∈ B(X) is said to be an upper semi B-Weyl (a lower semi B-Weyl, respectively) if it
is an upper semi B-Fredholm (a lower semi B-Fredholm, respectively) having ind (T) ≤ 0 (ind (T) ≥ 0,
respectively). An operator T ∈ B(X) is said to be B-Weyl if ind (T) = 0 and T is B-Fredholm. The spectra for
upper semi B-Weyl operator, lower semi B-Weyl operator and B-Weyl operator are defined by

σusbw(T) := {λ ∈ C : λI − T is not upper semi B-Weyl},
σlsbw(T) := {λ ∈ C : λI − T is not lower semi B-Weyl},
σbw(T) := {λ ∈ C : λI − T is not B-Weyl}, respectively.

By [8, Theorem 2.7], it is known that T ∈ B(X) is B-Fredholm (B-Weyl, respectively) if there exists (M,N) ∈
Red(T) such that TM is Fredholm (Weyl, respectively) and TN is nilpotent.

An operator T ∈ B(X) is called Drazin invertible if there exists a pair (M,N) ∈ Red(T) such that TM is
invertible and TN is nilpotent. This definition aligns with the assertion that there exists S ∈ B(X) such that
TS = ST, STS = S and TST − T is nilpotent. Koliha [17] replaced the third condition with TST − T is quasi-
nilpotent and generalized this concept. An operator is called generalized Drazin invertible if there exist a
pair (M,N) ∈ Red(T) such that TM is invertible and TN is quasi-nilpotent. Cvetković and Živković-Zlatanović
[11] introduced the concept of operators which are direct sum of a quasi-nilpotent and a bounded below
(surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl). An operator T ∈ B(X)
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is said to be generalized Drazin bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper
(lower) semi-Weyl, Weyl, respectively) if there exists a pair (M,N) ∈ Red(T) such that TM is bounded below
(surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl, respectively) and
TN is quasi-nilpotent. The generalized Drazin, generalized Drazin bounded below, generalized Drazin surjective
spectra, generalized Drazin lower (upper) semi-Fredholm, generalized Drazin Fredholm, generalized Drazin upper
(lower) semi-Weyl and generalized Drazin Weyl spectra are defined by

σ1D(T) := {λ ∈ C : λI − T is not generalized Drazin invertible},
σ1DJ (T) := {λ ∈ C : λI − T is not generalized Drazin bounded below},
σ1DQ(T) := {λ ∈ C : λI − T is not generalized Drazin surjective},

σ1Dϕ+ (T) := {λ ∈ C : λI − T is not generalized Drazin upper semi-Fredholm},
σ1Dϕ− (T) := {λ ∈ C : λI − T is not generalized Drazin lower semi-Fredholm},
σ1Dϕ(T) := {λ ∈ C : λI − T is not generalized Drazin Fredholm},
σ1DW+ (T) := {λ ∈ C : λI − T is not generalized Drazin upper semi-Weyl},
σ1DW− (T) := {λ ∈ C : λI − T is not generalized Drazin lower semi-Weyl},
σ1DW(T) := {λ ∈ C : λI − T is not generalized Drazin Weyl}, respectively.

By [11], it is known that

σ1Dϕ(T) = σ1Dϕ+ (T) ∪ σ1Dϕ− (T),
σ1KD(T) ⊂ σ1Dϕ+ (T) ⊂ σ1DW+ (T) ⊂ σ1DJ (T),
σ1KD(T) ⊂ σ1Dϕ− (T) ⊂ σ1DW− (T) ⊂ σ1DQ(T),

σ1KD(T) ⊂ σ1Dϕ(T) ⊂ σ1DW ⊂ σ1D(T).

Recently, Živković-Zlatanović and Cvetković [20] introduced the notion of generalized Drazin-Riesz in-
vertible operators by substituting the third condition with TST − T is Riesz. They established that an
operator T ∈ B(X) is generalized Drazin-Riesz invertible if and only if there exists a pair (M,N) ∈ Red(T)
such that TM is invertible and TN is Riesz. An operator T ∈ B(X) is said to be generalized Drazin-Riesz
bounded below (surjective, upper (lower) semi-Fredholm, upper (lower) semi-Weyl, Weyl, respectively) if
there exists a pair (M,N) ∈ Red(T) such that TM is bounded below (surjective, upper (lower) semi-Fredholm,
upper (lower) semi-Weyl, Weyl, respectively) and TN is Riesz. The generalized Drazin-Riesz bounded below,
generalized Drazin-Riesz surjective, generalized Drazin-Riesz invertible, generalized Drazin-Riesz upper (lower)
semi-Fredholm, generalized Drazin-Riesz Fredholm, generalized Drazin-Riesz upper (lower) semi-Weyl and gener-
alized Drazin-Riesz Weyl spectra are defined by

σ1DRJ (T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz bounded below},
σ1DRQ(T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz surjective},

σ1DR(T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz invertible},
σ1DRϕ+ (T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz upper semi-Fredholm},
σ1DRϕ− (T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz lower semi-Fredholm},
σ1DRϕ(T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz Fredholm},
σ1DRW+ (T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz upper semi-Weyl},
σ1DRW− (T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz lower semi-Weyl},
σ1DRW(T) := {λ ∈ C : λI − T is not generalized Drazin-Riesz Weyl}, respectively.

Recently, Živković-Zlatanović and Duggal [22] replaced the third condition with TST − T is meromorphic
and introduced the notion of generalized Drazin-meromorphic invertible operators. They established
that an operator T ∈ B(X) is generalized Drazin-meromorphic invertible if and only if there exists a pair
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(M,N) ∈ Red(T) such that TM is invertible and TN is meromorphic. An operator T ∈ B(X) is said to be
generalized Drazin-meromorphic bounded below (surjective, upper (lower) semi-Fredholm, Fredholm,
upper (lower) semi-Weyl, Weyl, respectively) if there exists a pair (M,N) ∈ Red(T) such that TM is bounded
below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl respectively)
and TN is meromorphic. The generalized Drazin-meromorphic bounded below, generalized Drazin-meromorphic
surjective, generalized Drazin-meromorphic invertible spectra, generalized Drazin-meromorphic upper (lower) semi-
Fredholm, generalized Drazin-meromorphic Fredholm, generalized Drazin-meromorphic upper (lower) semi-Weyl
and generalized Drazin-meromorphic Weyl spectra are defined by

σ1DMJ (T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic bounded below},
σ1DMQ(T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic surjective},

σ1DM(T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic invertible},
σ1DMϕ+ (T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic upper semi-Fredholm},
σ1DMϕ− (T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic lower semi-Fredholm},
σ1DMϕ(T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic Fredholm},
σ1DMW+ (T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic upper semi-Weyl},
σ1DMW− (T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic lower semi-Weyl},
σ1DMW(T) := {λ ∈ C : λI − T is not generalized Drazin-meromorphic Weyl}, respectively.

Also, Živković-Zlatanović [19] introduced the notion of generalized Drazin-1-meromorphic invertible oper-
ators by substituting the third condition with TST−T is 1-meromorphic. They established that an operator
T ∈ B(X) is generalized Drazin-1-meromorphic invertible if and only if there exists a pair (M,N) ∈ Red(T)
such that TM is invertible and TN is 1-meromorphic. An operator T ∈ B(X) is said to be generalized
Drazin-1-meromorphic bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower)
semi-Weyl, Weyl, respectively) if there exists a pair (M,N) ∈ Red(T) such that TM is bounded below (sur-
jective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl, respectively) and TN is
1-meromorphic. The generalized Drazin-1-meromorphic bounded below, generalized Drazin-1-meromorphic surjec-
tive, generalized Drazin-1-meromorphic invertible, generalized Drazin-1-meromorphic lower (upper) semi-Fredholm,
generalized Drazin-1-meromorphic Fredholm, generalized Drazin-1-meromorphic lower (upper) semi-Weyl and gen-
eralized Drazin-1-meromorphic Weyl spectra are defined by

σ1D(1M)J (T) := {λ ∈ C : λI − T is not generalized Drazin-1-meromorphic bounded below},
σ1D(1M)Q(T) := {λ ∈ C : λI − T is not generalized Drazin-1-meromorphic surjective},

σ1D(1M)(T) := {λ ∈ C : λI − T is not generalized Drazin-1-meromorphic invertible},
σ1D(1M)ϕ+ (T) := {λ ∈ C : λI − T is not generalized Drazin-1-meromorphic upper semi-Fredholm},
σ1D(1M)ϕ− (T) := {λ ∈ C : λI − T is not generalized Drazin-1-meromorphic lower semi-Fredholm},
σ1D(1M)ϕ(T) := {λ ∈ C : λI − T is not generalized Drazin-1-meromorphic Fredholm},
σ1D(1M)W+ (T) := {λ ∈ C : λI − T is not generalized Drazin-1-meromorphic upper semi-Weyl},
σ1D(1M)W− (T) := {λ ∈ C : λI − T is not generalized Drazin-1-meromorphic lower semi-Weyl},
σ1D(1M)W(T) := {λ ∈ C : λI − T is not generalized Drazin-1-meromorphic Weyl}, respectively.

By [19, 20, 22], it is known that

σ1D∗ϕ(T) = σ1D∗ϕ+ (T) ∪ σ1D∗ϕ− (T),
σ1K∗(T) ⊂ σ1D∗ϕ+ (T) ⊂ σ1D∗W+ (T) ⊂ σ1D∗J (T),
σ1K∗(T) ⊂ σ1D∗ϕ− (T) ⊂ σ1D∗W− (T) ⊂ σ1D∗Q(T),

σ1K∗(T) ⊂ σ1D∗ϕ(T) ⊂ σ1D∗W ⊂ σ1D∗(T),

where ∗ stands for Riesz or meromorphic or 1-meromorphic operators.
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Recall that an operator T satisfies Browder’s theorem ifσb(T) = σw(T) and generalized Browder’s theorem
if σbb(T) = σbw(T). Amouch et al. [6] and Karmouni and Tajmouati [16] provided a novel characterization
of Browder’s theorem using the spectra derived from Drazin invertibilty and Fredholm theory. Gupta and
Kumar [14] gave a new characterization of generalized Browder’s theorem by taking equality between
the generalized Drazin-meromorphic spectrum and the generalized Drazin-meromorphic Weyl spectrum.
Motivated by them, we give a new characterization of operators satisfying Browder’s theorem. We prove
that an operator T satisfies Browder’s theorem if and only if σ1D(1M)W(T) = σ1D(1M)(T). In the last section,
for operators A and B satisfying AkBkAk = Ak+1 for some positive integer k, we generalize Cline’s formula
to the case of generalized Drazin-1-meromorphic invertibility.

2. Main Results

In this section, we will utilize the following result:

Theorem 2.1. [19, Theorem 3.7] Let T ∈ B(X), then T is generalized Drazin-1-meromorphic upper semi-Weyl (gen-
eralized Drazin-1-meromorphic lower semi-Weyl, generalized Drazin-1-meromorphic upper semi-Fredholm, general-
ized Drazin-1-meromorphic lower semi-Fredholm, generalized Drazin-1-meromorphic Weyl, respectively) if and only
if T admits a GK(1M)D and 0 < accσ1DW+ (T) (accσ1DW− (T), accσ1Dϕ+ (T), accσ1Dϕ− (T), accσ1DW(T), respectively).

Theorem 2.2. [11, Theorem 3.4] Let T ∈ B(X), then T is generalized Drazin upper semi-Weyl (generalized Drazin
lower semi-Weyl, generalized Drazin upper semi-Fredholm, generalized Drazin lower semi-Fredholm, generalized
Drazin Weyl, respectively) if and only if T admits a GKD and 0 < accσuw(T) (accσlw(T), accσu f (T), accσl f (T),
accσw(T), respectively).

The following example illustrates that the inclusions σ1D(1M)W− (T) ⊂ σ1D(1M)Q(T) and
σ1D(1M)W+ (T) ⊂ σ1D(1M)J (T) can be proper.

Example 2.3. [20, Example 3.3] Let X = c(N), c0(N), lp(N) (p ≥ 1) or l∞(N). Let U and V be the forward
and the backward unilateral shifts on X, respectively. Let T = U ⊕ V. Then σa(T) = σs(T) = D, where D
denotes the closed unit disc. Therefore, 0 ∈ intσa(T) and 0 ∈ intσs(T). Thus, by [19, Theorems 3.13 and
3.14] 0 ∈ σ1D(1M)J (T) and 0 ∈ σ1D(1M)Q(T). Since 0 < σ1DRW+ (T) and we know that σ1D(1M)W+ (T) ⊂ σ1DRW+ (T),
0 < σ1D(1M)W+ (T). Thus, 0 ∈ σ1D(1M)J (T) \ σ1D(1M)W+ (T). Similarly, 0 ∈ σ1D(1M)Q(T) \ σ1D(1M)W− (T).

In the following results we obtain necessary and sufficient conditions to get equality.

Proposition 2.4. Let T ∈ B(X), then σ1D(1M)J (T) = σ1D(1M)W+ (T) if and only if T has SVEP at every λ <
σ1D(1M)W+ (T).

Proof. Assume that σ1D(1M)J (T) = σ1D(1M)W+ (T). Let λ < σ1D(1M)W+ (T), then λI − T is generalized Drazin-
1-meromorphic bounded below. Therefore, by [19, Theorem 3.13] T has SVEP at λ. Conversely, assume
that T has SVEP at every λ < σ1D(1M)W+ (T). It is sufficient to show that σ1D(1M)J (T) ⊂ σ1D(1M)W+ (T). Let λ <
σ1D(1M)W+ (T) which implies that λI − T is generalized Drazin-1-meromorphic upper semi-Weyl. Therefore,
by Theorem 2.1 λI − T admits a GK(1M)D. Thus, there exists (M,N) ∈ Red(λI − T) such that (λI − T)M is
semi-regular and (λI−T)N is 1-meromorphic. Since T has SVEP at every λ < σ1D(1M)W+ (T), (λI−T) has SVEP
at 0. As SVEP at a point is transmitted to the restrictions on closed invariant subspaces, (λI−T)M has SVEP
at 0. Therefore, by [1, Theorem 2.91] (λI − T)M is bounded below. Thus, by [19, Theorem 3.13] we have
λI − T is generalized Drazin-1-meromorphic bounded below. Hence, λ < σ1D(1M)J (T).

Proposition 2.5. Let T ∈ B(X), then σ1D(1M)Q(T) = σ1D(1M)W− (T) if and only if T∗ has SVEP at every λ <
σ1D(1M)W− (T).

Proof. Assume that σ1D(1M)Q(T) = σ1D(1M)W− (T). Let λ < σ1D(1M)W− (T), then λI − T is generalized Drazin-
1-meromorphic surjective. Therefore, by [19, Theorem 3.14] T∗ has SVEP at λ. Conversely, assume that
T∗ has SVEP at every λ < σ1D(1M)W− (T). It is sufficient to show that σ1D(1M)Q(T) ⊂ σ1D(1M)W− (T). Let
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λ < σ1D(1M)W− (T) which implies that λI−T is generalized Drazin-1-meromorphic lower semi-Weyl. Then by
Theorem 2.1 λI−T admits a GK(1M)D and λ < accσ1DW− (T). Since T∗ has SVEP at every λ < σ1D(1M)W− (T) and
σ1D(1M)W− (T) ⊂ σlw(T) then T∗ has SVEP at everyλ < σlw(T) = σuw(T∗). Therefore, by [1, Theorem 5.27] we have
σlw(T) = σuw(T∗) = σub(T∗) = σlb(T). Now we prove that σ1DW− (T) = σ1DQ(T). Clearly, σ1DW− (T) ⊂ σ1DQ(T). Let
µ < σ1DW− (T), then by Theorem 2.2, we have µI−T has GKD and µ < accσlw(T) = accσlb(T). Therefore, by [11,
Theorem 3.7] µ < σ1DQ(T). Thus, σ1DW− (T) = σ1DQ(T). This implies that λ < accσ1DQ(T). Therefore, by [19,
Theorem 3.14]λI−T is generalized Drazin-1-meromorprhic surjective and it follows thatλ < σ1D(1M)Q(T).

Corollary 2.6. Let T ∈ B(X), then σ1D(1M)(T) = σ1D(1M)W(T) if and only if T and T∗ have SVEP at every λ <
σ1D(1M)W(T).

Proof. Suppose that σ1D(1M)(T) = σ1D(1M)W(T). Let λ < σ1D(1M)W(T), then λI − T is generalized Drazin-1-
meromorphic invertible. Therefore, by [19, Theorem 3.10] T and T∗ have SVEP at λ. Conversely, let
λ < σ1D(1M)W(T) = σ1D(1M)W+ (T) ∪ σ1D(1M)W− (T). Then by proofs of Proposition 2.4 and Proposition 2.5 we
have λ < σ1D(1M)J (T) ∪ σ1D(1M)Q(T) = σ1D(1M)(T).

Theorem 2.7. Let T ∈ B(X), then following statements are equivalent:
(i) σ1D(1M)(T) = σ1D(1M)W(T),
(ii) T or T∗ have SVEP at every λ < σ1D(1M)W(T).

Proof. Suppose that T has SVEP at every λ < σ1D(1M)W(T). It is sufficient to prove that σ1D(1M)(T) ⊂
σ1D(1M)W(T). Let λ < σ1D(1M)W(T) then λI − T admits a GK(1M)D and λ < accσ1DW(T). Since σ1D(1M)W(T) ⊂
σw(T), T has SVEP at every λ < σw(T). Therefore, by [1, Theorem 5.4] we have σw(T) = σb(T). Now we prove
σ1DW(T) = σ1D(T). Clearly, σ1DW(T) ⊂ σ1D(T). Let µ < σ1DW(T), then by Theorem 2.2, we have µI − T has
GKD and µ < accσw(T) = accσb(T). Therefore, by [11, Theorem 3.9] µ < σ1D(T). Thus, σ1DW(T) = σ1D(T). This
implies that λ < accσ1D(T). Therefore, by [19, Theorem 3.10] λI − T is generalized Drazin-1-meromorphic
invertible.

Now suppose that T∗ has SVEP at every λ < σ1D(1M)W(T). Since σ1D(T) = σ1D(T∗) and σ1DW(T) = σ1DW(T∗)
we have σ1D(1M)(T) = σ1D(1M)W(T). The converse is an immediate consequence of Corollary 2.6.

Recall that an operator T ∈ B(X) is said to satisfy generalized a-Browder’s theorem if σusbb(T) = σusbw(T).
An operator T ∈ B(X) satisfies a-Browder’s theorem if σub(T) = σuw(T). By [4, Theorem 2.2] we know that
a-Browder’s theorem is equivalent to generalized a-Browder’s theorem.

Theorem 2.8. Let T ∈ B(X), then the following holds:
(i) a-Browder’s theorem holds for T if and only if σ1D(1M)J (T) = σ1D(1M)W+ (T),
(ii) a-Browder’s theorem holds for T∗ if and only if σ1D(1M)Q(T) = σ1D(1M)W− (T),
(iii) Browder’s theorem holds for T if and only if σ1D(1M)(T) = σ1D(1M)W(T).

Proof. (i) Suppose that a-Browder’s theorem holds for T which implies that σuw(T) = σub(T). Then by proof
of Proposition 2.5, we have σ1DJ (T) = σ1DW+ (T). It is sufficient to prove that σ1D(1M)J (T) ⊂ σ1D(1M)W+ (T). Let
λ < σ1D(1M)W+ (T), then λI − T is generalized Drazin-1-meromorphic upper semi-Weyl. By Theorem 2.1 it
follows that λI − T admits a GK(1M)D and λ < accσ1DW+ (T). This gives λ < accσ1DJ (T). Therefore, by [19,
Theorem 3.13] λI − T is generalized Drazin-1-meromorphic bounded below which gives λ < σ1D(1M)J (T).
Conversely, suppose that σ1D(1M)J (T) = σ1D(1M)W+ (T). Using Proposition 2.4 we deduce that T has SVEP at
every λ < σ1D(1M)W+ (T). Since σ1D(1M)W+ (T) ⊂ σuw(T), T has SVEP at every λ < σuw(T). By [1, Theorem 5.27]
T satisfies a-Browder’s theorem.
(ii) Suppose that a-Browder’s theorem holds for T∗ which implies that σlb(T) = σlw(T). By proof of Propo-
sition 2.5, we have σ1DQ(T) = σ1DW− (T). It is sufficient to prove that σ1D(1M)Q(T) ⊂ σ1D(1M)W− (T). Let
λ < σ1D(1M)W− (T), then λI − T is generalized Drazin-1-meromorphic lower semi-Weyl. By Theorem 2.1 it
follows that λI − T admits a GK(1M)D and λ < accσ1DW− (T). This gives λ < accσ1DQ(T). Therefore, by
[19, Theorem 3.14] λI − T is generalized Drazin-1-meromorphic surjective which gives λ < σ1D(1M)Q(T).
Conversely, suppose that σ1D(1M)Q(T) = σ1D(1M)W− (T). Using Proposition 2.5 we deduce that T∗ has SVEP at
every λ < σ1D(1M)W− (T). Since σ1D(1M)W− (T) ⊂ σlw(T), T∗ has SVEP at every λ < σlw(T) = σuw(T∗). Therefore,
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a-Browder’s theorem holds for T∗.
(iii) Suppose that Browder’s theorem holds for T which implies that σb(T) = σw(T). Then by proof of
Theorem 2.7, we have σ1D(T) = σ1DW(T). It is sufficient to prove that σ1D(1M)(T) ⊂ σ1D(1M)W(T). Let
λ < σ1D(1M)W(T), then λI − T is generalized Drazin-1-meromorphic Weyl. By Theorem 2.1 it follows that
λI − T admits a GK(1M)D and λ < accσ1DW(T). This gives λ < accσ1D(T). Therefore, by [19, Theorem 3.10]
λI−T is generalized Drazin-1-meromorphic invertible which gives λ < σ1D(1M)(T). Conversely, suppose that
σ1D(1M)(T) = σ1D(1M)W(T). Using Corollary 2.6 we deduce that T and T∗ have SVEP at every λ < σ1D(1M)W(T).
Since σ1D(1M)W(T) ⊂ σw(T), T and T∗ have SVEP at every λ < σw(T). Therefore, by [1, Theorem 5.4] Browder’s
theorem holds for T.

Using Theorem 2.8, [2, Theorem 2.3], [4, Theorem 2.1], [5, Proposition 2.2], [16, Theorem 2.6] and [14,
Theorem 2.8] we have the following theorem:

Theorem 2.9. Let T ∈ B(X), then the following statements are equivalent:
(i) Browder’s theorem holds for T,
(ii) Browder’s theorem holds for T∗,
(iii) T has SVEP at every λ < σw(T),
(iv) T∗ has SVEP at every λ < σw(T),
(v) T has SVEP at every λ < σbw(T),
(vi) generalized Browder’s theorem holds for T,
(vii) T or T∗ has SVEP at every λ < σ1DRW(T),
(viii) σ1DR(T) = σ1DRW(T),
(ix) T or T∗ has SVEP at every λ < σ1DMW(T),
(x) T or T∗ has SVEP at every λ < σ1D(1M)W(T),
(xi) σ1DM(T) = σ1DMW(T),
(xii) σ1D(T) = σ1DW(T),
(xiii) σ1D(1M)(T) = σ1D(1M)W(T).

Using [4, Theorem 2.2], [16, Theorem 2.7] and [14, Theorem 2.9] a similar result for a-Browder’s theorem
can be stated as follows:

Theorem 2.10. Let T ∈ B(X), then the following statements are equivalent:
(i) a-Browder’s theorem holds for T,
(ii) generalized a-Browder’s theorem holds for T,
(iii) T has SVEP at every λ < σ1DRW+ (T),
(iv) σ1DRJ (T) = σ1DRW+ (T),
(v) T has SVEP at every λ < σ1DMW+ (T),
(vi) T has SVEP at every λ < σ1D(1M)W+ (T),
(vii) σ1DMJ (T) = σ1DMW+ (T),
(viii) σ1D(1M)J (T) = σ1D(1M)W+ (T).

Lemma 2.11. Let T ∈ B(X), then
(i) σu f (T) = σub(T)⇔ σ1Dϕ+ (T) = σ1DJ (T),
(ii) σl f (T) = σlb(T)⇔ σ1Dϕ− (T) = σ1DQ(T).

Proof. (i) Let σub(T) = σu f (T). It is sufficient to show that σ1DJ (T) ⊂ σ1Dϕ+ (T). Let λ < σ1Dϕ+ (T). Then λI − T
is generalized Drazin upper semi-Fredholm. Then by Theorem 2.2, λI − T admits a GKD and λ < accσu f (T)
which implies that λ < accσub(T). Then by Theorem [11, Theorem 3.6], we have λ < σ1DJ (T). Coversely, let
σ1Dϕ+ (T) = σ1DJ (T). It is sufficient to show that σub(T) ⊂ σu f (T). Let λ < σu f (T). Then λ < σ1Dϕ+ (T) = σ1DJ (T).
This implies that λ < accσap(T). Then by [1, Remark 2.11], we have T has SVEP at λ. This gives p(λI−T) < ∞.
Thus, λ < σub(T).

(ii) Using a similar argument as above we can get the desired result.
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The following example demonstrates that the inclusions σ1D(1M)ϕ+ (T) ⊂ σ1D(1M)J (T),
σ1D(1M)ϕ− (T) ⊂ σ1D(1M)Q(T) and σ1D(1M)ϕ(T) ⊂ σ1D(1M)(T) can be proper:

Example 2.12. Let X = c(N), c0(N), lp(N) (p ≥ 1) or l∞(N). Let U and V be the forward and the backward
unilateral shifts on X, respectively. Then σ(U) = σ(V) = D, where D denotes the closed unit disc, σa(U) =
σs(V) = ∂D and by [21, Theorem 4.2], we have σ f (U) = σ f (V) = ∂D. Therefore, by [19, Theorem 4.13],
σ1K(1M)(U) = σ1D(1M)ϕ+ (U) = σ1D(1M)J (U) = ∂D which gives σ1D(1M)ϕ− (U)=σ1D(1M)ϕ(U)=∂D. Also, by [19,
Corollary 4.1], we have σ1D(1M)Q(U) = σ1D(1M)(U) = D. Hence, the inclusions σ1D(1M)ϕ− (U) ⊂ σ1D(1M)Q(U) and
σ1D(1M)ϕ(U) ⊂ σ1D(1M)(U) are proper. Also, by [19, Theorem 4.14], σ1K(1M)(V) = σ1D(1M)ϕ− (V) = σ1D(1M)Q(V) =
∂Dwhich gives σ1D(1M)ϕ+ (V) = σ1D(1M)ϕ(V) = ∂D. By [19, Corollary 4.1], we have σ1D(1M)J (V) = σ1D(1M)(V) =
D. Hence, the inclusion σ1D(1M)ϕ+ (V) ⊂ σ1D(1M)J (V) is proper.

In the following results we obtain necessary and sufficient conditions to get equality.

Theorem 2.13. Let T ∈ B(X), then the following statements are equivalent:
(i) σ1Dϕ+ (T) = σ1DJ (T),
(ii) T has SVEP at every λ < σ1Dϕ+ (T),
(iii) T has SVEP at every λ < σ1D(1M)ϕ+ (T),
(iv) σ1D(1M)J (T) = σ1D(1M)ϕ+ (T).

Proof. (i) ⇔ (ii) Suppose that σ1Dϕ+ (T) = σ1DJ (T). Let λ < σ1Dϕ+ (T), then λ < σ1DJ (T) which gives T has
SVEP at λ. Now suppose that T has SVEP at every λ < σ1Dϕ+ (T) which gives T has SVEP at every λ < σu f (T).
This implies that σu f (T) = σub(T). Thus by Lemma 2.11, we have σ1Dϕ+ (T) = σ1DJ (T).
(iii) ⇔ (iv) Suppose that T has SVEP at every λ < σ1D(1M)ϕ+ (T) which implies that λI − T is generalized
Drazin-1-meromorphic upper semi-Fredholm. It is sufficient to show that σ1D(1M)J (T) ⊂ σ1D(1M)ϕ+ (T). Let
λ < σ1D(1M)ϕ+ (T), then by Theorem 2.1 there exists (M,N) ∈ Red(λI−T) such that (λI−T)M is semi-regular and
(λI−T)N is 1-meromorphic. Since T has SVEP at λ, (λI−T)M has SVEP at 0. Therefore, by [1, Theorem 2.91]
(λI − T)M is bounded below. Thus, λ < σ1D(1M)J (T). Conversely, suppose that σ1D(1M)J (T) = σ1D(1M)ϕ+ (T).
Let λ < σ1D(1M)ϕ+ (T), then λI − T is generalized Drazin-1-meromorphic bounded below. Therefore, by [19,
Theorem 3.13] it follows that T has SVEP at λ.
(i) ⇔ (iv) Suppose that σ1Dϕ+ (T) = σ1DJ (T). It is sufficient to prove that σ1D(1M)J (T) ⊂ σ1D(1M)ϕ+ (T). Let
λ < σ1D(1M)ϕ+ (T), then λI − T is generalized Drazin-1-meromorphic upper semi-Fredholm. By Theorem
2.1 it follows that λI − T admits a GK(1M)D and λ < accσ1Dϕ+ (T). This gives λ < accσ1DJ (T). There-
fore, by [19, Theorem 3.13] λI − T is generalized Drazin-1-meromorphic bounded below which gives
λ < σ1D(1M)J (T). Conversely, suppose that σ1D(1M)J (T) = σ1D(1M)ϕ+ (T). Then by (iv)⇒ (iii) T has SVEP at ev-
ery λ < σ1D(1M)ϕ+ (T). Since σ1D(1M)ϕ+ (T) ⊂ σu f (T), T has SVEP at every λ < σu f (T). Therefore, σu f (T) = σub(T).
Thus, by Lemma 2.11 σ1Dϕ+ (T) = σ1DJ (T).

Theorem 2.14. Let T ∈ B(X), then the following statements are equivalent:
(i) σ1Dϕ− (T) = σ1DQ(T),
(ii) T∗ has SVEP at every λ < σ1Dϕ− (T),
(iii) T∗ has SVEP at every λ < σ1D(1M)ϕ− (T),
(iv) σ1D(1M)Q(T) = σ1D(1M)ϕ− (T).

Proof. (i) ⇔ (ii) Suppose that σ1Dϕ− (T) = σ1DQ(T). Let λ < σ1Dϕ− (T), then λ < σ1DQ(T) which gives T∗ has
SVEP at every λ < σ1Dϕ− (T). Now suppose that T∗ has SVEP at every λ < σ1Dϕ− (T) which gives T∗ has SVEP
at every λ < σl f (T). This implies that σl f (T) = σlb(T). Thus by Lemma 2.11, we have σ1Dϕ− (T) = σ1DQ(T).
(iii) ⇔ (iv) Suppose that T∗ has SVEP at every λ < σ1D(1M)ϕ− (T) which implies that λI − T is generalized
Drazin-1-meromorphic lower semi-Fredholm. It is sufficient to show that σ1D(1M)Q(T) ⊂ σ1D(1M)ϕ− (T). Let
λ < σ1D(1M)ϕ− (T). By Theorem 2.1 it follows that λI − T admits a GK(1M)D and λ < accσ1Dϕ− (T). Since
σ1D(1M)ϕ− (T) ⊂ σl f (T), T∗ has SVEP at every λ < σl f (T). Therefore, we have σl f (T) = σlb(T). Thus, by Lemma
2.11 σ1Dϕ− (T) = σ1DQ(T) which implies that λ < accσ1DQ(T). Hence, λ < σ1D(1M)Q(T). Conversely, suppose
that σ1D(1M)Q(T) = σ1D(1M)ϕ− (T). Let λ < σ1D(1M)ϕ− (T), then λI − T is generalized Drazin-1-meromorphic
surjective. Therefore, by [19, Theorem 3.14] it follows that T∗ has SVEP at λ.
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(i) ⇔ (iv) Suppose that σ1Dϕ− (T) = σ1DQ(T). It is sufficient to prove that σ1D(1M)Q(T) ⊂ σ1D(1M)ϕ− (T). Let
λ < σ1D(1M)ϕ− (T), then λI − T is generalized Drazin-1-meromorphic lower semi-Fredholm. By Theorem
2.1 it follows that λI − T admits a GK(1M)D and λ < accσ1Dϕ− (T). This gives λ < accσ1DQ(T). Therefore,
by [19, Theorem 3.14] λI − T is generalized Drazin-1-meromorphic surjective which gives λ < σ1D(1M)Q(T).
Conversely, suppose that σ1D(1M)Q(T) = σ1D(1M)ϕ− (T). Then by (iv) ⇒ (iii) T∗ has SVEP at every λ <
σ1D(1M)ϕ− (T). Since σ1D(1M)ϕ− (T) ⊂ σl f (T), T∗ has SVEP at every λ < σl f (T). Therefore, σl f (T) = σlb(T). Thus,
by Lemma 2.11 σ1Dϕ− (T) = σ1DQ(T).

Using [16, Corollary 2.10], [14, Corollary 2.14] and Theorems 2.13, 2.14 we have the following result:

Corollary 2.15. Let T ∈ B(X), then the following statements are equivalent:
(i) σ f (T) = σb(T),
(ii) T and T∗ have SVEP at every λ < σ f (T),
(iii) σb f (T) = σbb(T),
(iv) T and T∗ have SVEP at every λ < σb f (T),
(v) σ1D(T) = σ1Dϕ(T),
(vi) T and T∗ have SVEP at every λ < σ1Dϕ(T),
(viii) σ1DR(T) = σ1DRϕ(T),
(viii) T and T∗ have SVEP at every λ < σ1DRϕ(T),
(ix) σ1DM(T) = σ1DMϕ(T),
(x) T and T∗ have SVEP at every λ < σ1DMϕ(T),
(xi) σ1D(1M)(T) = σ1D(1M)ϕ(T),
(xii) T and T∗ have SVEP at every λ < σ1D(1M)ϕ(T).

3. Cline’s Formula for the generalized Drazin-1-meromorphic invertibility

For a ring R with identity, Drazin[12] introduced the concept of Drazin inverses in a ring. An element
a ∈ R is said to be Drazin invertible if there exist an element b ∈ R and r ∈N such that

ab = ba, bab = b, ar+1b = ar.

If such b exists then it is unique and is called Drazin inverse of a and denoted by aD. For a, b ∈ R, Cline [10]
proved that if ab is Drazin invertible, then ba is Drazin invertible and (ba)D = b((ab)D)2a. Recently, Gupta
and Kumar [13] generalized Cline’s formula for Drazin inverses in a ring with identity to the case when
akbkak = ak+1 for some k ∈N and obtained the following result:

Theorem 3.1. ([13, Theorem 2.10]) Let R be a ring with identity and suppose that akbkak = ak+1 for some k ∈ N.
Then a is Drazin invertible if and only if bkak is Drazin invertible. Moreover, (bkak)D = bk(aD)2ak and aD =
ak(bkak)D)k+1.

Recently, Karmouni and Tajmouati [15] investigated for bounded linear operators A,B,C satisfying the
operator equation ABA = ACA and obtained that AC is generalized Drazin-Riesz invertible if and only if
BA is generalized Drazin-Riesz invertible. Also, they generalized Cline’s formula to the case of generalized
Drazin-Riesz invertibility. Gupta and Kumar [14] established Cline’s formula for the generalized Drazin-
meromorphic invertibility for bounded linear operators A and B under the condition AkBkAk = Ak+1. In this
section, we establish Cline’s formula for the generalized Drazin-1-meromorphic invertibility for bounded
linear operators A and B under the condition AkBkAk = Ak+1. By the proofs of [13, Proposition 2.1, Theorems
2.4, 2.5 and 2.8] and [7, Theorem 3] we can deduce the following result:

Proposition 3.2. Let A,B ∈ B(X) satisfies AkBkAk = Ak+1 for some k ∈ N, then A is 1-meromorphic if and only if
BkAk is 1-meromorphic.

Theorem 3.3. Suppose that A,B ∈ B(X) and AkBkAk = Ak+1 for some k ∈ N. Then A is generalized Drazin-1-
meromorphic invertible if and only if BkAk is generalized Drazin-1-meromorphic invertible.
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Proof. Let A be generalized Drazin-1-meromorphic invertible, then there exists T ∈ B(X) such that

TA = AT, TAT = T and ATA − A is 1-meromorphic.

Let S = BkT2Ak. Then

(BkAk)S = (BkAk)(BkT2Ak) = Bk(AkBkAk)T2 = BkAk+1T2 = BkAkT

and
S(BkAk) = (BkT2Ak)(BkAk) = BkT2Ak+1 = BkAkT.

Therefore, S(BkAk) = (BkAk)S. Now

S(BkAk)S = BkT2Ak(BkAk)BkT2Ak = (BkT2Ak)(BkAkT) = BkT2Ak+1T = BkT2Ak = S.

Let Q = I −AT, then Q is a bounded projection commuting with A which gives Qn = Q for all n ∈N. Also,
observe that

(QA)kBk(QA)k = QkAkBkQkAk = QkAk+1Qk = Qk+1Ak+1 = (QA)k+1

and

BkAk
− (BkAk)2S = BkAk

− (BkAk)2BkT2AK = BkAk
− Bk(AkBkAk)BkT2Ak

= BkAk
− BkAk+2T2 = Bk(I − A2T2)Ak = Bk(I − AT)Ak

= BkQAk = BkQkAk = Bk(QA)k.

Since QA is1-meromorphic and(QA)kBk(QA)k = (QA)k+1, by Proposition 3.2 BkAk
−(BkAk)2S is1-meromorphic.

Conversely, let BkAk be generalized Drazin-1-meromorphic invertible. Then there exists T′ ∈ B(X) such
that

T′BkAk = BkAkT′, T′BkAkT′ = T′ and BkAkT′BkAk
− BkAk is 1-meromorphic.

Let S′ = AkT′k+1. Then

S′A = AkT′k+1A = AkT′k+2BkAkA = AkT′k+2BkAk+1 = AkT′k+2(BkAk)2 = AkT′k

and
AS′ = Ak+1T′k+1 = AkT′k.

Consider

AS′ = (AkT′k+1A)AkT′k+1 = (AkT′k)AkT′k+1 = Akvk+1BkA2kT′k+1 = AkT′k+1(BkAk)k+1

= Sk+1 = AkT′k+1 = S′.

We assert that
(A − A2S′)n = (An

− An+1S′) for all n ∈N.

We prove it by induction. Clearly, the result holds for n = 1. Suppose that it is true for n = m. Consider

(A − A2S′)m+1 = (A − A2S′)(A − A2S′)m

= (A − A2S′)(Ap
− Am+1S′)

= Am+1
− Am+2S′ − Am+2S′ + Am+3S′2

= Am+1
− Am+2S′.

Also,

Bk(A − A2S′)k = Bk(Ak
− Ak+1S′) = BkAk

− BkAk−1A2S′ = BkAk
− BkAk−1AkT′k−1

= BkAk
− BkA2k−1T′k−1 = BkAk

− (BkAk)kT′k−1 = BkAk
− (BkAk)2S′.
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Consider

(A − A2S′)kBk(A − A2S′)k = (Ak
− Ak+1S′)Bk(Ak

− Ak+1S′)

= AkBkAk
− Ak+1S′BkAk

− AkBkAkBkAkS′ + Ak+1(BkAk)2S′2

= Ak+1
− Ak+2S′ = (A − A2S′)k+1.

Since Bk(A − A2S′)k = BkAk
− (BkAk)2T′ is 1-meromorphic, using Proposition 3.2 we deduce that A − A2S′ is

1-meromorphic.
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