Filomat 38:25 (2024), 8849–8860 https://doi.org/10.2298/FIL2425849K



Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# A note on the Browder's theorem and a Cline's formula for generalized Drazin-g-meromorphic inverses

## Ankit Kumar<sup>a,\*</sup>, Manu Rohilla<sup>b</sup>, Rattan Lal<sup>a</sup>

<sup>a</sup>Department of Mathematics, Punjab Engineering College (Deemed to be University), Chandigarh-160012, India <sup>b</sup>Department of Mathematics, J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana-121006, India

**Abstract.** In this paper, we give a new characterization of Browder's theorem by means of the generalized Drazin-*g*-meromorphic Weyl spectrum and the generalized Drazin-*g*-meromorphic spectrum. Also, for operators *A* and *B* satisfying  $A^k B^k A^k = A^{k+1}$  for some positive integer *k*, we generalize Cline's formula to the case of generalized Drazin-*g*-meromorphic invertibility.

## 1. Introduction and Preliminaries

Throughout this paper, let  $\mathbb{N}$  and  $\mathbb{C}$  denote the set of natural numbers and complex numbers, respectively. Let B(X) denote the Banach algebra of all bounded linear operators acting on a complex Banach space X. For  $T \in B(X)$ , we denote the adjoint of T, null space of T, range of T and spectrum of T by  $T^*$ , N(T), R(T) and  $\sigma(T)$ , respectively. For a subset A of  $\mathbb{C}$ , the set of interior points of A and the set of accumulation points of A are denoted by int(A) and acc(A), respectively. For  $T \in B(X)$ , let  $\alpha(T)$  be the nullity of T, defined as the dimension of N(T) and  $\beta(T)$  be the deficiency of T, defined as codimension of R(T). An operator  $T \in B(X)$  is called a lower semi-Fredholm operator if  $\beta(T) < \infty$ . An operator  $T \in B(X)$  is called a lower semi-Fredholm operator if  $\beta(T) < \infty$ . An operator  $T \in B(X)$  is called nupper semi-Fredholm operators, respectively) is denoted by  $\phi_{-}(X)$  ( $\phi_{+}(X)$ , respectively). An operator T is called semi-Fredholm if it is upper or lower semi-Fredholm. For a semi-Fredholm operator  $T \in B(X)$ , the index of T is defined by ind  $(T) = \alpha(T) - \beta(T)$ . The class of all Fredholm operators, respectively) is defined by  $W_{-}(X) = \{T \in \phi_{-}(X) : \text{ind } (T) \ge 0\}$  ( $W_{+}(X) = \{T \in \phi_{+}(X) : \text{ind } (T) \le 0\}$ , respectively). An operator  $T \in B(X)$  is said to be Weyl if  $T \in \phi(X)$  and ind (T) = 0. The spectra for *upper semi-Fredholm operator*, *lower semi-Fredholm operator*, *lower semi-Fredholm operator*, and Weyl operator.

Keywords. g-meromorphic operators, generalized Drazin-g-meromorphic invertible, Cline's formula.

- Received: 09 December 2023; Revised: 26 April 2024; Accepted: 28 April 2024
- Communicated by Snežana Č. Živković-Zlatanović

<sup>2020</sup> Mathematics Subject Classification. Primary 47A10; Secondary 47A53.

<sup>\*</sup> Corresponding author: Ankit Kumar

Email addresses: ankitkumar@pec.edu.in (Ankit Kumar), manurohilla25994@gmail.com (Manu Rohilla),

rattanlal@pec.edu.in(Rattan Lal)

operator are defined by

$$\begin{split} &\sigma_{uf}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not upper semi-Fredholm} \},\\ &\sigma_{lf}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not lower semi-Fredholm} \},\\ &\sigma_f(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not Fredholm} \},\\ &\sigma_{uw}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not upper semi-Weyl} \},\\ &\sigma_{lw}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not lower semi-Weyl} \},\\ &\sigma_w(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not Weyl} \},\\ &\sigma_w(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not Weyl} \},\\ \end{split}$$

A bounded linear operator T is said to be bounded below if R(T) is closed and T is injective. The *approximate point* and *surjective spectra* are defined by

 $\sigma_a(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not bounded below}\},\$  $\sigma_s(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not surjective}\}, \text{ respectively.}$ 

For an operator  $T \in B(X)$ , the ascent p(T) is the smallest non negative integer p such that  $N(T^p) = N(T^{p+1})$ . If no such integer exists, we set  $p(T) = \infty$ . For an operator  $T \in B(X)$ , the descent q(T) is the smallest non negative integer q such that  $R(T^q) = R(T^{q+1})$ . If no such integer exists, we set  $q(T) = \infty$ . By [1, Theorem 1.20] we know that if both p(T) and q(T) are finite, then p(T) = q(T).

An operator  $T \in B(X)$  is said to have the single-valued extension property (SVEP) at  $\mu_0 \in \mathbb{C}$  if for every neighborhood U of  $\mu_0$  the only analytic function  $f : U \to X$  satisfying  $(\mu I - T)f(\mu) = 0$  is the function f = 0. An operator T is said to have SVEP if T has SVEP at every  $\mu \in \mathbb{C}$ . It is known that if  $p(\mu I - T)$  is finite, then T has SVEP at  $\mu$  and if  $q(\mu I - T)$  is finite, then  $T^*$  has SVEP at  $\mu$ .

An operator  $T \in B(X)$  is said to be Drazin invertible if there exist  $S \in B(X)$  and a positive integer *n* such that

$$ST = TS$$
,  $T^{n+1}S = T^n$  and  $STS = S$ .

By [1, Theorem 1.132] *T* is Drazin invertible if and only if  $p(T) = q(T) < \infty$ . An operator  $T \in B(X)$  is said to be left Drazin invertible if  $p(T) < \infty$  and  $R(T^{p+1})$  is closed. An operator  $T \in B(X)$  is said to be lower semi-Browder if it is a lower semi-Fredholm and  $q(T) < \infty$ . An operator  $T \in B(X)$  is said to be right Drazin invertible if  $q(T) < \infty$  and  $R(T^q)$  is closed. An operator  $T \in B(X)$  is said to be upper semi-Browder if it is an upper semi-Fredholm and  $p(T) < \infty$ . We say that an operator  $T \in B(X)$  is Browder if it is lower semi-Browder and upper semi-Browder. The spectra for *lower semi-Browder operator*, *upper semi-Browder operator* and *Browder operator* are defined by

 $\sigma_{lb}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not lower semi-Browder}\},\$  $\sigma_{ub}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not upper semi-Browder}\},\$  $\sigma_b(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not Browder}\}, \text{ respectively.}$ 

Clearly, every Browder operator is Drazin invertible.

An operator  $T \in B(X)$  is said to be semi-regular if R(T) is closed and  $N(T) \subset R(T^n)$  for every  $n \in \mathbb{N}$ . An operator  $T \in B(X)$  is said to be nilpotent if  $T^n = 0$  for some  $n \in \mathbb{N}$ . An operator  $T \in B(X)$  is said to be quasi-nilpotent if  $\lambda I - T$  is invertible for all  $\lambda \in \mathbb{C} \setminus \{0\}$ . An operator  $T \in B(X)$  is said to be Riesz if  $\lambda I - T$  is Browder for all  $\lambda \in \mathbb{C} \setminus \{0\}$ . An operator  $T \in B(X)$  is said to be represented by the result of  $X = C \setminus \{0\}$ . An operator  $T \in B(X)$  is said to be Riesz if  $\lambda I - T$  is Browder for all  $\lambda \in \mathbb{C} \setminus \{0\}$ . An operator  $T \in B(X)$  is said to be meromorphic if  $\lambda I - T$  is Drazin invertible for all  $\lambda \in \mathbb{C} \setminus \{0\}$ . Clearly, every Riesz operator is meromorphic.

A subspace *M* of *X* is said to be *T*-invariant if  $T(M) \subset M$ . For a *T*-invariant subspace *M* of *X*, we define  $T_M : M \to M$  by  $T_M(x) = T(x), x \in M$ . We say that *T* is completely reduced by the pair (M, N) (denoted by  $(M, N) \in Red(T)$ ) if *M* and *N* are two closed *T*-invariant subspaces of *X* such that  $X = M \oplus N$ .

An operator *T* is said to possess a *generalized Kato decomposition* (*GKD*) if there exists a pair (*M*, *N*)  $\in$  *Red*(*T*) such that  $T_M$  is semi-regular and  $T_N$  is quasi-nilpotent. Here, if we assume that  $T_N$  to be nilpotent, then *T* is said to be of Kato type. An operator is said to possess a *Kato-Riesz decomposition* (*GKRD*), if there exists a pair (*M*, *N*)  $\in$  *Red*(*T*) such that  $T_M$  is semi-regular and  $T_N$  is Riesz (see [20]). Živković-Zlatanović and Duggal

[22] introduced the notion of generalized Kato-meromorphic decomposition. An operator  $T \in B(X)$  is said to possess a generalized Kato-meromorphic decomposition (GKMD), if there exists a pair (M, N)  $\in Red(T)$  such that  $T_M$  is semi-regular and  $T_N$  is meromorphic. Živković-Zlatanović[19] generalized Kato-g-meromorphic decomposition and introduced the notion of g-meromorphic operators. An operator  $T \in B(X)$  is called g-meromorphic if every nonzero spectral point is an isolated point. Clearly, every meromorphic operator is g-meromorphic. An operator  $T \in B(X)$  is said to possess a generalized Kato-g-meromorphic decomposition (GK(gM)D), if there exists a pair (M, N)  $\in Red(T)$  such that  $T_M$  is semi-regular and  $T_N$  is g-meromorphic. For  $T \in B(X)$ , the generalized Kato spectrum, generalized Kato Riesz spectrum, generalized Kato meromorphic spectrum and generalized Kato-g-meromorphic spectrum are defined by

$$\begin{split} \sigma_{gKD}(T) &:= \{\lambda \in \mathbb{C} : \lambda I - T \text{ does not admit a GKD} \}, \\ \sigma_{gKRD}(T) &:= \{\lambda \in \mathbb{C} : \lambda I - T \text{ does not admit a GKRD} \}, \\ \sigma_{gKMD}(T) &:= \{\lambda \in \mathbb{C} : \lambda I - T \text{ does not admit a GKMD} \}, \\ \sigma_{gK(qM)}(T) &:= \{\lambda \in \mathbb{C} : \lambda I - T \text{ does not admit a GK(gM)D} \}, \text{ respectively.} \end{split}$$

For  $T \in B(X)$  and a non negative integer n, define  $T_{[n]}$  to be the restriction of T to  $T^n(X)$ . If for some non negative integer n, the range space  $T^n(X)$  is closed and  $T_{[n]}$  is Fredholm (an upper semi Fredholm, a lower semi Fredholm, an upper semi Browder, a lower semi Browder, Browder, respectively) then T is said to be B-Fredholm (an upper semi B-Fredholm, a lower semi B-Fredholm, an upper semi B-Browder, a lower semi B-Browder, B-Browder, respectively). For a semi B-Fredholm operator T (see [8]), the index of T is defined as index of  $T_{[n]}$ . The spectra for *upper semi B-Fredholm operator*, *lower semi B-Fredholm operator*, *B-Fredholm operator*, *an B-Browder operator*, are defined by

 $\sigma_{usbf}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not upper semi B-Fredholm}\},\$   $\sigma_{lsbf}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not lower semi B-Fredholm}\},\$   $\sigma_{bf}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not B-Fredholm}\},\$   $\sigma_{usbb}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not upper semi B-Browder}\},\$   $\sigma_{lsbb}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not lower semi B-Browder}\},\$   $\sigma_{bb}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not B-Browder}\},\$   $\sigma_{bb}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not B-Browder}\},\$  $\sigma_{bb}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not B-Browder}\},\$ 

By [1, Theorem 3.47] we know that an operator  $T \in B(X)$  is upper semi B-Browder (lower semi B-Browder, B-Browder, respectively) if and only if T is left Drazin invertible (right Drazin invertible, Drazin invertible, respectively).

An operator  $T \in B(X)$  is said to be an upper semi B-Weyl (a lower semi B-Weyl, respectively) if it is an upper semi B-Fredholm (a lower semi B-Fredholm, respectively) having ind  $(T) \le 0$  (ind  $(T) \ge 0$ , respectively). An operator  $T \in B(X)$  is said to be B-Weyl if ind (T) = 0 and T is B-Fredholm. The spectra for *upper semi B-Weyl operator*, *lower semi B-Weyl operator* and *B-Weyl operator* are defined by

 $\sigma_{usbw}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not upper semi B-Weyl}\},\\ \sigma_{lsbw}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not lower semi B-Weyl}\},\\ \sigma_{bw}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not B-Weyl}\}, \text{ respectively.}$ 

By [8, Theorem 2.7], it is known that  $T \in B(X)$  is B-Fredholm (B-Weyl, respectively) if there exists  $(M, N) \in Red(T)$  such that  $T_M$  is Fredholm (Weyl, respectively) and  $T_N$  is nilpotent.

An operator  $T \in B(X)$  is called Drazin invertible if there exists a pair  $(M, N) \in Red(T)$  such that  $T_M$  is invertible and  $T_N$  is nilpotent. This definition aligns with the assertion that there exists  $S \in B(X)$  such that TS = ST, STS = S and TST - T is nilpotent. Koliha [17] replaced the third condition with TST - T is quasinilpotent and generalized this concept. An operator is called generalized Drazin invertible if there exist a pair  $(M, N) \in Red(T)$  such that  $T_M$  is invertible and  $T_N$  is quasi-nilpotent. Cvetković and Živković-Zlatanović [11] introduced the concept of operators which are direct sum of a quasi-nilpotent and a bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl). An operator  $T \in B(X)$  is said to be generalized Drazin bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl, respectively) if there exists a pair  $(M, N) \in Red(T)$  such that  $T_M$  is bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl, respectively) and  $T_N$  is quasi-nilpotent. The generalized Drazin, generalized Drazin bounded below, generalized Drazin surjective spectra, generalized Drazin lower (upper) semi-Fredholm, generalized Drazin Fredholm, generalized Drazin upper (lower) semi-Weyl and generalized Drazin Weyl spectra are defined by

$$\begin{split} &\sigma_{gD}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin invertible}\}, \\ &\sigma_{gD\mathcal{J}}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin bounded below}\}, \\ &\sigma_{gDQ}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin surjective}\}, \\ &\sigma_{gD\varphi_+}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin upper semi-Fredholm}\}, \\ &\sigma_{gD\varphi_-}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin lower semi-Fredholm}\}, \\ &\sigma_{gD\varphi_-}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin lower semi-Fredholm}\}, \\ &\sigma_{gD\psi_+}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin upper semi-Weyl}\}, \\ &\sigma_{gDW_+}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin lower semi-Weyl}\}, \\ &\sigma_{gDW_-}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin lower semi-Weyl}\}, \\ &\sigma_{gDW}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin lower semi-Weyl}\}, \\ &\sigma_{gDW}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin lower semi-Weyl}\}, \\ &\sigma_{gDW}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin lower semi-Weyl}\}, \\ &\sigma_{gDW}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin lower semi-Weyl}\}, \\ &\sigma_{gDW}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin lower semi-Weyl}\}, \\ &\sigma_{gDW}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin lower semi-Weyl}\}, \\ &\sigma_{gDW}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin lower semi-Weyl}\}, \\ &\sigma_{gDW}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin lower semi-Weyl}\}, \\ &\sigma_{gDW}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin Weyl}\}, \\ &\sigma_{gDW}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin Weyl}\}, \\ &\sigma_{gDW}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin Weyl}\}, \\ &\sigma_{gDW}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin Weyl}\}, \\ &\sigma_{gDW}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin Weyl}\}, \\ &\sigma_{gDW}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin Weyl}\}, \\ &\sigma_{gDW}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin Weyl}\}, \\ &\sigma_{gDW}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin W$$

### By [11], it is known that

$$\begin{split} \sigma_{gD\phi}(T) &= \sigma_{gD\phi_{+}}(T) \cup \sigma_{gD\phi_{-}}(T), \\ \sigma_{gKD}(T) &\subset \sigma_{gD\phi_{+}}(T) \subset \sigma_{gDW_{+}}(T) \subset \sigma_{gD\mathcal{J}}(T), \\ \sigma_{gKD}(T) &\subset \sigma_{gD\phi_{-}}(T) \subset \sigma_{gDW_{-}}(T) \subset \sigma_{gDQ}(T), \\ \sigma_{gKD}(T) &\subset \sigma_{gD\phi}(T) \subset \sigma_{gDW} \subset \sigma_{gD}(T). \end{split}$$

Recently, Živković-Zlatanović and Cvetković [20] introduced the notion of generalized Drazin-Riesz invertible operators by substituting the third condition with TST - T is Riesz. They established that an operator  $T \in B(X)$  is generalized Drazin-Riesz invertible if and only if there exists a pair  $(M, N) \in Red(T)$  such that  $T_M$  is invertible and  $T_N$  is Riesz. An operator  $T \in B(X)$  is said to be generalized Drazin-Riesz bounded below (surjective, upper (lower) semi-Fredholm, upper (lower) semi-Weyl, Weyl, respectively) if there exists a pair  $(M, N) \in Red(T)$  such that  $T_M$  is bounded below (surjective, upper (lower) semi-Fredholm, generalized Drazin-Riesz bounded below, semi-Fredholm, upper (lower) semi-Fredholm, generalized Drazin-Riesz upper (lower) semi-Fredholm, generalized Drazin-Riesz upper (lower) semi-Fredholm, generalized Drazin-Riesz upper (lower) semi-Weyl and generalized Drazin-Riesz Weyl spectra are defined by

$$\begin{split} &\sigma_{gDR\mathcal{J}}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz bounded below}\}, \\ &\sigma_{gDRQ}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz surjective}\}, \\ &\sigma_{gDR}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz invertible}\}, \\ &\sigma_{gDR\phi_+}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz upper semi-Fredholm}\}, \\ &\sigma_{gDR\phi_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz lower semi-Fredholm}\}, \\ &\sigma_{gDR\phi}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz lower semi-Fredholm}\}, \\ &\sigma_{gDR\phi}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz Inverse semi-Weyl}\}, \\ &\sigma_{gDRW_+}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz lower semi-Weyl}\}, \\ &\sigma_{gDRW_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz lower semi-Weyl}\}, \\ &\sigma_{gDRW_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz lower semi-Weyl}\}, \\ &\sigma_{gDRW_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz lower semi-Weyl}\}, \\ &\sigma_{gDRW_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz lower semi-Weyl}\}, \\ &\sigma_{gDRW_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz lower semi-Weyl}\}, \\ &\sigma_{gDRW_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz lower semi-Weyl}\}, \\ &\sigma_{gDRW_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz lower semi-Weyl}\}, \\ &\sigma_{gDRW_+}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz lower semi-Weyl}\}, \\ &\sigma_{gDRW_+}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz Weyl}\}, \\ &\sigma_{gDRW_+}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz lower semi-Weyl}\}, \\ &\sigma_{gDRW_+}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz Weyl}\}, \\ &\sigma_{gDRW_+}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz Weyl}\}, \\ &\sigma_{gDRW_+}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz Weyl}\}, \\ &\sigma_{gDRW_+}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz Weyl}\}, \\ &\sigma_{gDRW_+}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalize$$

Recently, Żivković-Zlatanović and Duggal [22] replaced the third condition with TST - T is meromorphic and introduced the notion of generalized Drazin-meromorphic invertible operators. They established that an operator  $T \in B(X)$  is generalized Drazin-meromorphic invertible if and only if there exists a pair  $(M, N) \in Red(T)$  such that  $T_M$  is invertible and  $T_N$  is meromorphic. An operator  $T \in B(X)$  is said to be generalized Drazin-meromorphic bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl, respectively) if there exists a pair  $(M, N) \in Red(T)$  such that  $T_M$  is bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl respectively) and  $T_N$  is meromorphic. The generalized Drazin-meromorphic bounded below, generalized Drazin-meromorphic surjective, generalized Drazin-meromorphic invertible spectra, generalized Drazin-meromorphic upper (lower) semi-Fredholm, generalized Drazin-meromorphic Fredholm, generalized Drazin-meromorphic upper (lower) semi-Weyl and generalized Drazin-meromorphic Weyl spectra are defined by

 $\sigma_{qDMT}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-meromorphic bounded below}\},\$ 

 $\sigma_{qDMQ}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-meromorphic surjective}\},\$ 

 $\sigma_{qDM}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-meromorphic invertible}\},\$ 

 $\sigma_{qDM\phi_+}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-meromorphic upper semi-Fredholm}\},\$ 

 $\sigma_{qDM\phi_{-}}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-meromorphic lower semi-Fredholm}\},\$ 

 $\sigma_{gDM\phi}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-meromorphic Fredholm}\},\$ 

 $\sigma_{gDMW_+}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-meromorphic upper semi-Weyl}\},\$ 

 $\sigma_{gDMW_{-}}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-meromorphic lower semi-Weyl}\},\$ 

 $\sigma_{qDMW}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-meromorphic Weyl}\}, respectively.$ 

Also, Živković-Zlatanović [19] introduced the notion of generalized Drazin-*g*-meromorphic invertible operators by substituting the third condition with TST - T is *g*-meromorphic. They established that an operator  $T \in B(X)$  is generalized Drazin-*g*-meromorphic invertible if and only if there exists a pair  $(M, N) \in Red(T)$ such that  $T_M$  is invertible and  $T_N$  is *g*-meromorphic. An operator  $T \in B(X)$  is said to be generalized Drazin-*g*-meromorphic bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl, respectively) if there exists a pair  $(M, N) \in Red(T)$  such that  $T_M$  is bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, weyl, respectively) and  $T_N$  is *g*-meromorphic. The *generalized Drazin-g-meromorphic bounded below*, *generalized Drazin-g-meromorphic surjective*, *generalized Drazin-g-meromorphic invertible*, *generalized Drazin-g-meromorphic lower (upper) semi-Fredholm*, *generalized Drazin-g-meromorphic Fredholm*, *generalized Drazin-g-meromorphic lower (upper) semi-Fredholm*, *generalized Drazin-g-meromorphic Fredholm*, *generalized Drazin-g-meromorphic lower (upper) semi-Weyl* and *generalized Drazin-g-meromorphic Weyl spectra* are defined by

$$\begin{split} &\sigma_{gD(gM)\mathcal{J}}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic bounded below}\},\\ &\sigma_{gD(gM)Q}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic surjective}\},\\ &\sigma_{gD(gM)Q}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic invertible}\},\\ &\sigma_{gD(gM)\varphi_+}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic upper semi-Fredholm}\},\\ &\sigma_{gD(gM)\varphi_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic lower semi-Fredholm}\},\\ &\sigma_{gD(gM)\varphi_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic lower semi-Fredholm}\},\\ &\sigma_{gD(gM)\varphi_+}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic upper semi-Weyl}\},\\ &\sigma_{gD(gM)W_+}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic lower semi-Weyl}\},\\ &\sigma_{gD(gM)W_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic lower semi-Weyl}\},\\ &\sigma_{gD(gM)W_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic lower semi-Weyl}\},\\ &\sigma_{gD(gM)W_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic lower semi-Weyl}\},\\ &\sigma_{gD(gM)W_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic lower semi-Weyl}\},\\ &\sigma_{gD(gM)W_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic lower semi-Weyl}\},\\ &\sigma_{gD(gM)W_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic lower semi-Weyl}\},\\ &\sigma_{gD(gM)W_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic lower semi-Weyl}\},\\ &\sigma_{gD(gM)W_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic lower semi-Weyl}\},\\ &\sigma_{gD(gM)W_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic lower semi-Weyl}\},\\ &\sigma_{gD(gM)W_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic Weyl}\},\\ &\sigma_{gD(gM)W_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic Weyl}\},\\ &\sigma_{gD(gM)W_-}(T) \coloneqq \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not gen$$

By [19, 20, 22], it is known that

$$\begin{split} \sigma_{gD*\phi}(T) &= \sigma_{gD*\phi_{+}}(T) \cup \sigma_{gD*\phi_{-}}(T), \\ \sigma_{gK*}(T) &\subset \sigma_{gD*\phi_{+}}(T) \subset \sigma_{gD*W_{+}}(T) \subset \sigma_{gD*\mathcal{J}}(T), \\ \sigma_{gK*}(T) &\subset \sigma_{gD*\phi_{-}}(T) \subset \sigma_{gD*W_{-}}(T) \subset \sigma_{gD*\mathcal{Q}}(T), \\ \sigma_{qK*}(T) &\subset \sigma_{aD*\phi}(T) \subset \sigma_{aD*W} \subset \sigma_{qD*}(T), \end{split}$$

where \* stands for Riesz or meromorphic or *g*-meromorphic operators.

Recall that an operator *T* satisfies Browder's theorem if  $\sigma_b(T) = \sigma_w(T)$  and generalized Browder's theorem if  $\sigma_{bb}(T) = \sigma_{bw}(T)$ . Amouch et al. [6] and Karmouni and Tajmouati [16] provided a novel characterization of Browder's theorem using the spectra derived from Drazin invertibility and Fredholm theory. Gupta and Kumar [14] gave a new characterization of generalized Browder's theorem by taking equality between the generalized Drazin-meromorphic spectrum and the generalized Drazin-meromorphic Weyl spectrum. Motivated by them, we give a new characterization of operators satisfying Browder's theorem. We prove that an operator *T* satisfies Browder's theorem if and only if  $\sigma_{gD(gM)W}(T) = \sigma_{gD(gM)}(T)$ . In the last section, for operators *A* and *B* satisfying  $A^k B^k A^k = A^{k+1}$  for some positive integer *k*, we generalize Cline's formula to the case of generalized Drazin-*g*-meromorphic invertibility.

#### 2. Main Results

In this section, we will utilize the following result:

**Theorem 2.1.** [19, Theorem 3.7] Let  $T \in B(X)$ , then T is generalized Drazin-g-meromorphic upper semi-Weyl (generalized Drazin-g-meromorphic lower semi-Weyl, generalized Drazin-g-meromorphic upper semi-Fredholm, generalized Drazin-g-meromorphic lower semi-Fredholm, generalized Drazin-g-meromorphic Weyl, respectively) if and only if T admits a GK(gM)D and  $0 \notin \operatorname{accc}_{gDW_+}(T)$  ( $\operatorname{accc}_{gDW_-}(T)$ ,  $\operatorname{accc}_{gD\phi_+}(T)$ ,  $\operatorname{accc}_{gD\phi_-}(T)$ ,  $\operatorname{accc}_{gDW}(T)$ , respectively).

**Theorem 2.2.** [11, Theorem 3.4] Let  $T \in B(X)$ , then T is generalized Drazin upper semi-Weyl (generalized Drazin lower semi-Weyl, generalized Drazin upper semi-Fredholm, generalized Drazin lower semi-Fredholm, generalized Drazin Weyl, respectively) if and only if T admits a GKD and  $0 \notin \operatorname{acc}_{uw}(T)$  ( $\operatorname{acc}_{lw}(T)$ ,  $\operatorname{acc}_{uf}(T)$ ,  $\operatorname{acc}_{lf}(T)$ ,  $\operatorname{acc}_{w}(T)$ , respectively).

The following example illustrates that the inclusions  $\sigma_{gD(gM)W_-}(T) \subset \sigma_{gD(gM)Q}(T)$  and  $\sigma_{gD(gM)W_+}(T) \subset \sigma_{gD(gM)\mathcal{J}}(T)$  can be proper.

**Example 2.3.** [20, Example 3.3] Let  $X = c(\mathbb{N})$ ,  $c_0(\mathbb{N})$ ,  $l^p(\mathbb{N})$  ( $p \ge 1$ ) or  $l^{\infty}(\mathbb{N})$ . Let U and V be the forward and the backward unilateral shifts on X, respectively. Let  $T = U \oplus V$ . Then  $\sigma_a(T) = \sigma_s(T) = \mathbb{D}$ , where  $\mathbb{D}$  denotes the closed unit disc. Therefore,  $0 \in \operatorname{int}\sigma_a(T)$  and  $0 \in \operatorname{int}\sigma_s(T)$ . Thus, by [19, Theorems 3.13 and 3.14]  $0 \in \sigma_{gD(gM)\mathcal{J}}(T)$  and  $0 \in \sigma_{gD(gM)\mathcal{Q}}(T)$ . Since  $0 \notin \sigma_{gDRW_+}(T)$  and we know that  $\sigma_{gD(gM)W_+}(T) \subset \sigma_{gDRW_+}(T)$ ,  $0 \notin \sigma_{gD(gM)W_+}(T)$ . Thus,  $0 \in \sigma_{gD(gM)\mathcal{J}}(T) \setminus \sigma_{gD(gM)W_+}(T)$ . Similarly,  $0 \in \sigma_{gD(gM)\mathcal{Q}}(T) \setminus \sigma_{gD(gM)W_-}(T)$ .

In the following results we obtain necessary and sufficient conditions to get equality.

**Proposition 2.4.** Let  $T \in B(X)$ , then  $\sigma_{gD(gM)\mathcal{J}}(T) = \sigma_{gD(gM)W_+}(T)$  if and only if T has SVEP at every  $\lambda \notin \sigma_{qD(gM)W_+}(T)$ .

*Proof.* Assume that  $\sigma_{gD(gM)\mathcal{J}}(T) = \sigma_{gD(gM)W_+}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)W_+}(T)$ , then  $\lambda I - T$  is generalized Drazin*g*-meromorphic bounded below. Therefore, by [19, Theorem 3.13] *T* has SVEP at  $\lambda$ . Conversely, assume that *T* has SVEP at every  $\lambda \notin \sigma_{gD(gM)W_+}(T)$ . It is sufficient to show that  $\sigma_{gD(gM)\mathcal{J}}(T) \subset \sigma_{gD(gM)W_+}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)W_+}(T)$  which implies that  $\lambda I - T$  is generalized Drazin-*g*-meromorphic upper semi-Weyl. Therefore, by Theorem 2.1  $\lambda I - T$  admits a GK(gM)D. Thus, there exists  $(M, N) \in Red(\lambda I - T)$  such that  $(\lambda I - T)_M$  is semi-regular and  $(\lambda I - T)_N$  is *g*-meromorphic. Since *T* has SVEP at every  $\lambda \notin \sigma_{gD(gM)W_+}(T), (\lambda I - T)$  has SVEP at 0. As SVEP at a point is transmitted to the restrictions on closed invariant subspaces,  $(\lambda I - T)_M$  has SVEP at 0. Therefore, by [1, Theorem 2.91]  $(\lambda I - T)_M$  is bounded below. Thus, by [19, Theorem 3.13] we have  $\lambda I - T$  is generalized Drazin-*g*-meromorphic bounded below. Hence,  $\lambda \notin \sigma_{gD(gM)\mathcal{J}}(T)$ .  $\Box$ 

**Proposition 2.5.** Let  $T \in B(X)$ , then  $\sigma_{gD(gM)Q}(T) = \sigma_{gD(gM)W_{-}}(T)$  if and only if  $T^*$  has SVEP at every  $\lambda \notin \sigma_{gD(gM)W_{-}}(T)$ .

*Proof.* Assume that  $\sigma_{gD(gM)Q}(T) = \sigma_{gD(gM)W_{-}}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)W_{-}}(T)$ , then  $\lambda I - T$  is generalized Drazin*g*-meromorphic surjective. Therefore, by [19, Theorem 3.14]  $T^*$  has SVEP at  $\lambda$ . Conversely, assume that  $T^*$  has SVEP at every  $\lambda \notin \sigma_{gD(gM)W_{-}}(T)$ . It is sufficient to show that  $\sigma_{gD(gM)Q}(T) \subset \sigma_{gD(gM)W_{-}}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)W_{-}}(T)$  which implies that  $\lambda I - T$  is generalized Drazin-*g*-meromorphic lower semi-Weyl. Then by Theorem 2.1  $\lambda I - T$  admits a GK(gM)D and  $\lambda \notin \operatorname{acc}\sigma_{gDW_{-}}(T)$ . Since  $T^*$  has SVEP at every  $\lambda \notin \sigma_{gD(gM)W_{-}}(T)$  and  $\sigma_{gD(gM)W_{-}}(T) \subset \sigma_{lw}(T)$  then  $T^*$  has SVEP at every  $\lambda \notin \sigma_{lw}(T) = \sigma_{uw}(T^*)$ . Therefore, by [1, Theorem 5.27] we have  $\sigma_{lw}(T) = \sigma_{uw}(T^*) = \sigma_{ub}(T^*) = \sigma_{lb}(T)$ . Now we prove that  $\sigma_{gDW_{-}}(T) = \sigma_{gDQ}(T)$ . Clearly,  $\sigma_{gDW_{-}}(T) \subset \sigma_{gDQ}(T)$ . Let  $\mu \notin \sigma_{gDW_{-}}(T)$ , then by Theorem 2.2, we have  $\mu I - T$  has GKD and  $\mu \notin \operatorname{acc}\sigma_{lw}(T) = \operatorname{acc}\sigma_{lb}(T)$ . Therefore, by [11, Theorem 3.7]  $\mu \notin \sigma_{gDQ}(T)$ . Thus,  $\sigma_{gDW_{-}}(T) = \sigma_{gDQ}(T)$ . This implies that  $\lambda \notin \operatorname{acc}\sigma_{gDQ}(T)$ . Therefore, by [19, Theorem 3.14]  $\lambda I - T$  is generalized Drazin-*g*-meromorphic surjective and it follows that  $\lambda \notin \sigma_{gD(gM)Q}(T)$ .

**Corollary 2.6.** Let  $T \in B(X)$ , then  $\sigma_{gD(gM)}(T) = \sigma_{gD(gM)W}(T)$  if and only if T and  $T^*$  have SVEP at every  $\lambda \notin \sigma_{qD(gM)W}(T)$ .

*Proof.* Suppose that  $\sigma_{gD(gM)}(T) = \sigma_{gD(gM)W}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)W}(T)$ , then  $\lambda I - T$  is generalized Drazin-*g*-meromorphic invertible. Therefore, by [19, Theorem 3.10] *T* and *T*<sup>\*</sup> have SVEP at  $\lambda$ . Conversely, let  $\lambda \notin \sigma_{gD(gM)W}(T) = \sigma_{gD(gM)W_+}(T) \cup \sigma_{gD(gM)W_-}(T)$ . Then by proofs of Proposition 2.4 and Proposition 2.5 we have  $\lambda \notin \sigma_{gD(gM)J}(T) \cup \sigma_{gD(gM)Q}(T) = \sigma_{gD(gM)}(T)$ .  $\Box$ 

**Theorem 2.7.** Let  $T \in B(X)$ , then following statements are equivalent:

(i)  $\sigma_{gD(gM)}(T) = \sigma_{gD(gM)W}(T),$ 

(ii) T or  $T^*$  have SVEP at every  $\lambda \notin \sigma_{gD(gM)W}(T)$ .

*Proof.* Suppose that *T* has SVEP at every  $\lambda \notin \sigma_{gD(gM)W}(T)$ . It is sufficient to prove that  $\sigma_{gD(gM)}(T) \subset \sigma_{gD(gM)W}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)W}(T)$  then  $\lambda I - T$  admits a GK(gM)D and  $\lambda \notin acc\sigma_{gDW}(T)$ . Since  $\sigma_{gD(gM)W}(T) \subset \sigma_w(T)$ , *T* has SVEP at every  $\lambda \notin \sigma_w(T)$ . Therefore, by [1, Theorem 5.4] we have  $\sigma_w(T) = \sigma_b(T)$ . Now we prove  $\sigma_{gDW}(T) = \sigma_{gD}(T)$ . Clearly,  $\sigma_{gDW}(T) \subset \sigma_{gD}(T)$ . Let  $\mu \notin \sigma_{gDW}(T)$ , then by Theorem 2.2, we have  $\mu I - T$  has GKD and  $\mu \notin acc\sigma_w(T) = acc\sigma_b(T)$ . Therefore, by [11, Theorem 3.9]  $\mu \notin \sigma_{gD}(T)$ . Thus,  $\sigma_{gDW}(T) = \sigma_{gD}(T)$ . This implies that  $\lambda \notin acc\sigma_{gD}(T)$ . Therefore, by [19, Theorem 3.10]  $\lambda I - T$  is generalized Drazin-*g*-meromorphic invertible.

Now suppose that  $T^*$  has SVEP at every  $\lambda \notin \sigma_{gD(gM)W}(T)$ . Since  $\sigma_{gD}(T) = \sigma_{gD}(T^*)$  and  $\sigma_{gDW}(T) = \sigma_{gDW}(T^*)$  we have  $\sigma_{gD(gM)}(T) = \sigma_{gD(gM)W}(T)$ . The converse is an immediate consequence of Corollary 2.6.  $\Box$ 

Recall that an operator  $T \in B(X)$  is said to satisfy generalized a-Browder's theorem if  $\sigma_{usbb}(T) = \sigma_{usbw}(T)$ . An operator  $T \in B(X)$  satisfies a-Browder's theorem if  $\sigma_{ub}(T) = \sigma_{uw}(T)$ . By [4, Theorem 2.2] we know that a-Browder's theorem is equivalent to generalized a-Browder's theorem.

**Theorem 2.8.** Let  $T \in B(X)$ , then the following holds:

(i) a-Browder's theorem holds for T if and only if  $\sigma_{gD(gM)\mathcal{J}}(T) = \sigma_{gD(gM)W_+}(T)$ , (ii) a-Browder's theorem holds for T<sup>\*</sup> if and only if  $\sigma_{gD(gM)Q}(T) = \sigma_{gD(gM)W_-}(T)$ , (iii) Browder's theorem holds for T if and only if  $\sigma_{gD(gM)Q}(T) = \sigma_{gD(gM)W_-}(T)$ ,

(iii) Browder's theorem holds for T if and only if  $\sigma_{gD(gM)}(T) = \sigma_{gD(gM)W}(T)$ .

*Proof.* (i) Suppose that a-Browder's theorem holds for *T* which implies that  $\sigma_{uw}(T) = \sigma_{ub}(T)$ . Then by proof of Proposition 2.5, we have  $\sigma_{gD\mathcal{J}}(T) = \sigma_{gDW_+}(T)$ . It is sufficient to prove that  $\sigma_{gD(gM)\mathcal{J}}(T) \subset \sigma_{gD(gM)W_+}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)W_+}(T)$ , then  $\lambda I - T$  is generalized Drazin-*g*-meromorphic upper semi-Weyl. By Theorem 2.1 it follows that  $\lambda I - T$  admits a GK(gM)D and  $\lambda \notin acc\sigma_{gDW_+}(T)$ . This gives  $\lambda \notin acc\sigma_{gD\mathcal{J}}(T)$ . Therefore, by [19, Theorem 3.13]  $\lambda I - T$  is generalized Drazin-*g*-meromorphic bounded below which gives  $\lambda \notin \sigma_{gD(gM)\mathcal{J}}(T)$ . Conversely, suppose that  $\sigma_{gD(gM)\mathcal{J}}(T) = \sigma_{gD(gM)W_+}(T)$ . Using Proposition 2.4 we deduce that *T* has SVEP at every  $\lambda \notin \sigma_{gD(gM)W_+}(T)$ . Since  $\sigma_{gD(gM)W_+}(T) \subset \sigma_{uw}(T)$ , *T* has SVEP at every  $\lambda \notin \sigma_{uw}(T)$ . By [1, Theorem 5.27] *T* satisfies a-Browder's theorem.

(ii) Suppose that a-Browder's theorem holds for  $T^*$  which implies that  $\sigma_{lb}(T) = \sigma_{lw}(T)$ . By proof of Proposition 2.5, we have  $\sigma_{gDQ}(T) = \sigma_{gDW_-}(T)$ . It is sufficient to prove that  $\sigma_{gD(gM)Q}(T) \subset \sigma_{gD(gM)W_-}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)W_-}(T)$ , then  $\lambda I - T$  is generalized Drazin-*g*-meromorphic lower semi-Weyl. By Theorem 2.1 it follows that  $\lambda I - T$  admits a GK(gM)D and  $\lambda \notin \operatorname{acc}\sigma_{gDW_-}(T)$ . This gives  $\lambda \notin \operatorname{acc}\sigma_{gDQ}(T)$ . Therefore, by [19, Theorem 3.14]  $\lambda I - T$  is generalized Drazin-*g*-meromorphic surjective which gives  $\lambda \notin \sigma_{gD(gM)Q}(T)$ . Conversely, suppose that  $\sigma_{gD(gM)Q}(T) = \sigma_{gD(gM)W_-}(T)$ . Using Proposition 2.5 we deduce that  $T^*$  has SVEP at every  $\lambda \notin \sigma_{gD(gM)W_-}(T)$ . Since  $\sigma_{gD(gM)W_-}(T) \subset \sigma_{lw}(T)$ ,  $T^*$  has SVEP at every  $\lambda \notin \sigma_{lw}(T) = \sigma_{uw}(T^*)$ . Therefore,

a-Browder's theorem holds for  $T^*$ .

(iii) Suppose that Browder's theorem holds for *T* which implies that  $\sigma_b(T) = \sigma_w(T)$ . Then by proof of Theorem 2.7, we have  $\sigma_{gD}(T) = \sigma_{gDW}(T)$ . It is sufficient to prove that  $\sigma_{gD(gM)}(T) \subset \sigma_{gD(gM)W}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)W}(T)$ , then  $\lambda I - T$  is generalized Drazin-*g*-meromorphic Weyl. By Theorem 2.1 it follows that  $\lambda I - T$  admits a GK(gM)D and  $\lambda \notin \operatorname{accc}_{gDW}(T)$ . This gives  $\lambda \notin \operatorname{accc}_{gD}(T)$ . Therefore, by [19, Theorem 3.10]  $\lambda I - T$  is generalized Drazin-*g*-meromorphic which gives  $\lambda \notin \sigma_{gD(gM)}(T)$ . Conversely, suppose that  $\sigma_{gD(gM)}(T) = \sigma_{gD(gM)W}(T)$ . Using Corollary 2.6 we deduce that *T* and *T*\* have SVEP at every  $\lambda \notin \sigma_{gD(gM)W}(T)$ . Since  $\sigma_{gD(gM)W}(T) \subset \sigma_w(T)$ , *T* and *T*\* have SVEP at every  $\lambda \notin \sigma_w(T)$ . Therefore, by [1, Theorem 5.4] Browder's theorem holds for *T*.

Using Theorem 2.8, [2, Theorem 2.3], [4, Theorem 2.1], [5, Proposition 2.2], [16, Theorem 2.6] and [14, Theorem 2.8] we have the following theorem:

**Theorem 2.9.** Let  $T \in B(X)$ , then the following statements are equivalent:

(i) Browder's theorem holds for T, (ii) Browder's theorem holds for T\*, (iii) T has SVEP at every  $\lambda \notin \sigma_w(T)$ , (iv) T\* has SVEP at every  $\lambda \notin \sigma_w(T)$ , (v) T has SVEP at every  $\lambda \notin \sigma_{bw}(T)$ , (v) generalized Browder's theorem holds for T, (vii) T or T\* has SVEP at every  $\lambda \notin \sigma_{gDRW}(T)$ , (viii)  $\sigma_{gDR}(T) = \sigma_{gDRW}(T)$ , (ix) T or T\* has SVEP at every  $\lambda \notin \sigma_{gDMW}(T)$ , (x) T or T\* has SVEP at every  $\lambda \notin \sigma_{gD(gM)W}(T)$ , (xi)  $\sigma_{gDM}(T) = \sigma_{gDMW}(T)$ , (xii)  $\sigma_{gD}(T) = \sigma_{gDW}(T)$ , (xiii)  $\sigma_{gD}(T) = \sigma_{gDW}(T)$ , (xiii)  $\sigma_{gD(gM)}(T) = \sigma_{gD(gM)W}(T)$ .

Using [4, Theorem 2.2], [16, Theorem 2.7] and [14, Theorem 2.9] a similar result for a-Browder's theorem can be stated as follows:

**Theorem 2.10.** Let  $T \in B(X)$ , then the following statements are equivalent: (*i*) *a*-Browder's theorem holds for *T*, (*ii*) generalized *a*-Browder's theorem holds for *T*, (*iii*) *T* has SVEP at every  $\lambda \notin \sigma_{gDRW_{+}}(T)$ , (*iv*)  $\sigma_{gDR\mathcal{T}}(T) = \sigma_{gDRW_{+}}(T)$ , (*v*) *T* has SVEP at every  $\lambda \notin \sigma_{gDMW_{+}}(T)$ , (*vi*) *T* has SVEP at every  $\lambda \notin \sigma_{gD(gM)W_{+}}(T)$ , (*vii*)  $\sigma_{gDM\mathcal{T}}(T) = \sigma_{gDMW_{+}}(T)$ , (*viii*)  $\sigma_{gD(gM)\mathcal{T}}(T) = \sigma_{gD(gM)W_{+}}(T)$ .

**Lemma 2.11.** Let  $T \in B(X)$ , then (i)  $\sigma_{uf}(T) = \sigma_{ub}(T) \Leftrightarrow \sigma_{gD\phi_+}(T) = \sigma_{gD\mathcal{J}}(T)$ , (ii)  $\sigma_{lf}(T) = \sigma_{lb}(T) \Leftrightarrow \sigma_{qD\phi_-}(T) = \sigma_{qDQ}(T)$ .

*Proof.* (i) Let  $\sigma_{ub}(T) = \sigma_{uf}(T)$ . It is sufficient to show that  $\sigma_{gD\mathcal{J}}(T) \subset \sigma_{gD\phi_+}(T)$ . Let  $\lambda \notin \sigma_{gD\phi_+}(T)$ . Then  $\lambda I - T$  is generalized Drazin upper semi-Fredholm. Then by Theorem 2.2,  $\lambda I - T$  admits a *GKD* and  $\lambda \notin \operatorname{acc}_{uf}(T)$  which implies that  $\lambda \notin \operatorname{acc}_{ub}(T)$ . Then by Theorem [11, Theorem 3.6], we have  $\lambda \notin \sigma_{gD\mathcal{J}}(T)$ . Coversely, let  $\sigma_{gD\phi_+}(T) = \sigma_{gD\mathcal{J}}(T)$ . It is sufficient to show that  $\sigma_{ub}(T) \subset \sigma_{uf}(T)$ . Let  $\lambda \notin \sigma_{uf}(T)$ . Then  $\lambda \notin \sigma_{gD\phi_+}(T) = \sigma_{gD\mathcal{J}}(T)$ . This implies that  $\lambda \notin \operatorname{acc}_{ap}(T)$ . Then by [1, Remark 2.11], we have *T* has SVEP at  $\lambda$ . This gives  $p(\lambda I - T) < \infty$ . Thus,  $\lambda \notin \sigma_{ub}(T)$ .

(ii) Using a similar argument as above we can get the desired result.  $\Box$ 

The following example demonstrates that the inclusions  $\sigma_{gD(gM)\phi_+}(T) \subset \sigma_{gD(gM)\mathcal{J}}(T)$ ,  $\sigma_{qD(gM)\phi_-}(T) \subset \sigma_{qD(gM)Q}(T)$  and  $\sigma_{qD(gM)\phi}(T) \subset \sigma_{qD(gM)}(T)$  can be proper:

**Example 2.12.** Let  $X = c(\mathbb{N})$ ,  $c_0(\mathbb{N})$ ,  $l^p(\mathbb{N})$   $(p \ge 1)$  or  $l^{\infty}(\mathbb{N})$ . Let U and V be the forward and the backward unilateral shifts on X, respectively. Then  $\sigma(U) = \sigma(V) = \mathbb{D}$ , where  $\mathbb{D}$  denotes the closed unit disc,  $\sigma_a(U) = \sigma_s(V) = \partial \mathbb{D}$  and by [21, Theorem 4.2], we have  $\sigma_f(U) = \sigma_f(V) = \partial \mathbb{D}$ . Therefore, by [19, Theorem 4.13],  $\sigma_{gK(gM)}(U) = \sigma_{gD(gM)\phi_+}(U) = \sigma_{gD(gM)\mathcal{J}}(U) = \partial \mathbb{D}$  which gives  $\sigma_{gD(gM)\phi_-}(U) = \sigma_{gD(gM)\phi_-}(U) = \partial \mathbb{D}$ . Also, by [19, Corollary 4.1], we have  $\sigma_{gD(gM)Q}(U) = \sigma_{gD(gM)Q}(U) = \mathbb{D}$ . Hence, the inclusions  $\sigma_{gD(gM)\phi_-}(V) = \sigma_{gD(gM)Q}(U)$  and  $\sigma_{gD(gM)\phi}(U) \subset \sigma_{gD(gM)(U)}(U)$  are proper. Also, by [19, Theorem 4.14],  $\sigma_{gK(gM)}(V) = \sigma_{gD(gM)\phi_-}(V) = \sigma_{gD(gM)Q}(V) = \partial \mathbb{D}$  which gives  $\sigma_{gD(gM)\phi_+}(V) = \sigma_{gD(gM)\phi}(V) = \partial \mathbb{D}$ . By [19, Corollary 4.1], we have  $\sigma_{gD(gM)\mathcal{J}}(V) = \sigma_{gD(gM)(U)}(V) = \mathcal{J}$ . By [19, Corollary 4.1], we have  $\sigma_{gD(gM)\mathcal{J}}(V) = \sigma_{gD(gM)(V)}(V) = \mathcal{J}$ . By [19, Corollary 4.1], we have  $\sigma_{gD(gM)\mathcal{J}}(V) = \sigma_{gD(gM)(V)}(V) = \mathcal{J}$ . By [19, Corollary 4.1], we have  $\sigma_{gD(gM)\mathcal{J}}(V) = \sigma_{gD(gM)(V)}(V) = \mathcal{J}$ . By [19, Corollary 4.1], we have  $\sigma_{gD(gM)\mathcal{J}}(V) = \sigma_{gD(gM)(V)}(V) = \mathcal{J}$ . By [19, Corollary 4.1], we have  $\sigma_{gD(gM)\mathcal{J}}(V) = \sigma_{gD(gM)(V)}(V) = \mathcal{J}$ . By [19, Corollary 4.1], we have  $\sigma_{gD(gM)\mathcal{J}}(V) = \sigma_{gD(gM)(V)}(V) = \mathcal{J}$ .

In the following results we obtain necessary and sufficient conditions to get equality.

**Theorem 2.13.** Let  $T \in B(X)$ , then the following statements are equivalent:

(i)  $\sigma_{gD\phi_{+}}(T) = \sigma_{gD\mathcal{J}}(T)$ , (ii) T has SVEP at every  $\lambda \notin \sigma_{gD\phi_{+}}(T)$ , (iii) T has SVEP at every  $\lambda \notin \sigma_{gD(gM)\phi_{+}}(T)$ , (iv)  $\sigma_{qD(gM)\mathcal{J}}(T) = \sigma_{qD(gM)\phi_{+}}(T)$ .

*Proof.* (i)  $\Leftrightarrow$  (ii) Suppose that  $\sigma_{gD\phi_+}(T) = \sigma_{gD\mathcal{J}}(T)$ . Let  $\lambda \notin \sigma_{gD\phi_+}(T)$ , then  $\lambda \notin \sigma_{gD\mathcal{J}}(T)$  which gives *T* has SVEP at  $\lambda$ . Now suppose that *T* has SVEP at every  $\lambda \notin \sigma_{gD\phi_+}(T)$  which gives *T* has SVEP at every  $\lambda \notin \sigma_{uf}(T)$ . This implies that  $\sigma_{uf}(T) = \sigma_{ub}(T)$ . Thus by Lemma 2.11, we have  $\sigma_{gD\phi_+}(T) = \sigma_{gD\mathcal{J}}(T)$ .

(iii)  $\Leftrightarrow$  (iv) Suppose that *T* has SVEP at every  $\lambda \notin \sigma_{gD(gM)\phi_+}(T)$  which implies that  $\lambda I - T$  is generalized Drazin-*g*-meromorphic upper semi-Fredholm. It is sufficient to show that  $\sigma_{gD(gM)\mathcal{J}}(T) \subset \sigma_{gD(gM)\phi_+}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)\phi_+}(T)$ , then by Theorem 2.1 there exists  $(M, N) \in Red(\lambda I - T)$  such that  $(\lambda I - T)_M$  is semi-regular and  $(\lambda I - T)_N$  is *g*-meromorphic. Since *T* has SVEP at  $\lambda$ ,  $(\lambda I - T)_M$  has SVEP at 0. Therefore, by [1, Theorem 2.91]  $(\lambda I - T)_M$  is bounded below. Thus,  $\lambda \notin \sigma_{gD(gM)\mathcal{J}}(T)$ . Conversely, suppose that  $\sigma_{gD(gM)\mathcal{J}}(T) = \sigma_{gD(gM)\phi_+}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)\phi_+}(T)$ , then  $\lambda I - T$  is generalized Drazin-*g*-meromorphic bounded below. Therefore, by [19, Theorem 3.13] it follows that *T* has SVEP at  $\lambda$ .

(i)  $\Leftrightarrow$  (iv) Suppose that  $\sigma_{gD\phi_+}(T) = \sigma_{gD\mathcal{J}}(T)$ . It is sufficient to prove that  $\sigma_{gD(gM)\mathcal{J}}(T) \subset \sigma_{gD(gM)\phi_+}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)\phi_+}(T)$ , then  $\lambda I - T$  is generalized Drazin-*g*-meromorphic upper semi-Fredholm. By Theorem 2.1 it follows that  $\lambda I - T$  admits a GK(gM)D and  $\lambda \notin \operatorname{acc}\sigma_{gD\phi_+}(T)$ . This gives  $\lambda \notin \operatorname{acc}\sigma_{gD\mathcal{J}}(T)$ . Therefore, by [19, Theorem 3.13]  $\lambda I - T$  is generalized Drazin-*g*-meromorphic bounded below which gives  $\lambda \notin \sigma_{gD(gM)\mathcal{J}}(T)$ . Conversely, suppose that  $\sigma_{gD(gM)\mathcal{J}}(T) = \sigma_{gD(gM)\phi_+}(T)$ . Then by (iv)  $\Rightarrow$  (iii) *T* has SVEP at every  $\lambda \notin \sigma_{gD(gM)\phi_+}(T)$ . Since  $\sigma_{gD(gM)\phi_+}(T) \subset \sigma_{uf}(T)$ , *T* has SVEP at every  $\lambda \notin \sigma_{uf}(T)$ . Therefore,  $\sigma_{uf}(T) = \sigma_{ub}(T)$ . Thus, by Lemma 2.11  $\sigma_{gD\phi_+}(T) = \sigma_{gD\mathcal{J}}(T)$ .

**Theorem 2.14.** Let  $T \in B(X)$ , then the following statements are equivalent:

(i)  $\sigma_{gD\phi_{-}}(T) = \sigma_{gDQ}(T)$ , (ii)  $T^*$  has SVEP at every  $\lambda \notin \sigma_{gD\phi_{-}}(T)$ , (iii)  $T^*$  has SVEP at every  $\lambda \notin \sigma_{gD(gM)\phi_{-}}(T)$ , (iv)  $\sigma_{qD(gM)Q}(T) = \sigma_{qD(gM)\phi_{-}}(T)$ .

*Proof.* (i)  $\Leftrightarrow$  (ii) Suppose that  $\sigma_{gD\phi_{-}}(T) = \sigma_{gDQ}(T)$ . Let  $\lambda \notin \sigma_{gD\phi_{-}}(T)$ , then  $\lambda \notin \sigma_{gDQ}(T)$  which gives  $T^*$  has SVEP at every  $\lambda \notin \sigma_{gD\phi_{-}}(T)$ . Now suppose that  $T^*$  has SVEP at every  $\lambda \notin \sigma_{gD\phi_{-}}(T)$  which gives  $T^*$  has SVEP at every  $\lambda \notin \sigma_{gD\phi_{-}}(T)$ . This implies that  $\sigma_{lf}(T) = \sigma_{lb}(T)$ . Thus by Lemma 2.11, we have  $\sigma_{gD\phi_{-}}(T) = \sigma_{gDQ}(T)$ . (iii)  $\Leftrightarrow$  (iv) Suppose that  $T^*$  has SVEP at every  $\lambda \notin \sigma_{gD(gM)\phi_{-}}(T)$  which implies that  $\lambda I - T$  is generalized Drazin-*g*-meromorphic lower semi-Fredholm. It is sufficient to show that  $\sigma_{gD(gM)Q}(T) \subset \sigma_{gD(gM)\phi_{-}}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)\phi_{-}}(T)$ . By Theorem 2.1 it follows that  $\lambda I - T$  admits a GK(gM)D and  $\lambda \notin \operatorname{acc}\sigma_{gD\phi_{-}}(T)$ . Since  $\sigma_{gD(gM)\phi_{-}}(T) \subset \sigma_{lf}(T)$ ,  $T^*$  has SVEP at every  $\lambda \notin \sigma_{lf}(T)$ . Therefore, we have  $\sigma_{lf}(T) = \sigma_{lb}(T)$ . Thus, by Lemma 2.11  $\sigma_{gD\phi_{-}}(T) = \sigma_{gDQ}(T)$  which implies that  $\lambda \notin \sigma_{gD(gM)\phi_{-}}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)\phi_{-}}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)\phi_{-}}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)\phi_{-}}(T)$ . Therefore, we have  $\sigma_{lf}(T) = \sigma_{lb}(T)$ . Thus, by Lemma 2.11  $\sigma_{gD\phi_{-}}(T) = \sigma_{gDQ}(T)$  which implies that  $\lambda \notin \sigma_{gD(gM)\phi_{-}}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)\phi_{-}}(T)$ . Hence,  $\lambda \notin \sigma_{gD(gM)Q}(T)$ . Conversely, suppose that  $\sigma_{gD(gM)Q}(T) = \sigma_{gD(gM)\phi_{-}}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)\phi_{-}}(T)$ , then  $\lambda I - T$  is generalized Drazin-*g*-meromorphic surjective. Therefore, by [19, Theorem 3.14] it follows that  $T^*$  has SVEP at  $\lambda$ . (i)  $\Leftrightarrow$  (iv) Suppose that  $\sigma_{gD\phi_{-}}(T) = \sigma_{gDQ}(T)$ . It is sufficient to prove that  $\sigma_{gD(gM)Q}(T) \subset \sigma_{gD(gM)\phi_{-}}(T)$ . Let  $\lambda \notin \sigma_{gD(gM)\phi_{-}}(T)$ , then  $\lambda I - T$  is generalized Drazin-*g*-meromorphic lower semi-Fredholm. By Theorem 2.1 it follows that  $\lambda I - T$  admits a GK(gM)D and  $\lambda \notin \operatorname{accc}_{gD\phi_{-}}(T)$ . This gives  $\lambda \notin \operatorname{accc}_{gDQ}(T)$ . Therefore, by [19, Theorem 3.14]  $\lambda I - T$  is generalized Drazin-*g*-meromorphic surjective which gives  $\lambda \notin \sigma_{gD(gM)Q}(T)$ . Conversely, suppose that  $\sigma_{gD(gM)Q}(T) = \sigma_{gD(gM)\phi_{-}}(T)$ . Then by (iv)  $\Rightarrow$  (iii)  $T^*$  has SVEP at every  $\lambda \notin \sigma_{gD(gM)Q_{-}}(T)$ . Since  $\sigma_{gD(gM)\phi_{-}}(T) \subset \sigma_{lf}(T)$ ,  $T^*$  has SVEP at every  $\lambda \notin \sigma_{lf}(T)$ . Therefore,  $\sigma_{lf}(T) = \sigma_{lb}(T)$ . Thus, by Lemma 2.11  $\sigma_{qD\phi_{-}}(T) = \sigma_{qDQ}(T)$ .

Using [16, Corollary 2.10], [14, Corollary 2.14] and Theorems 2.13, 2.14 we have the following result:

**Corollary 2.15.** Let  $T \in B(X)$ , then the following statements are equivalent: (i)  $\sigma_f(T) = \sigma_b(T)$ , (ii) T and  $T^*$  have SVEP at every  $\lambda \notin \sigma_f(T)$ , (iii)  $\sigma_{bf}(T) = \sigma_{bb}(T)$ , (iv) T and  $T^*$  have SVEP at every  $\lambda \notin \sigma_{bf}(T)$ , (v)  $\sigma_{gD}(T) = \sigma_{gD\phi}(T)$ , (vi) T and  $T^*$  have SVEP at every  $\lambda \notin \sigma_{gD\phi}(T)$ , (viii)  $\sigma_{gDR}(T) = \sigma_{gDR\phi}(T)$ , (viii) T and  $T^*$  have SVEP at every  $\lambda \notin \sigma_{gDR\phi}(T)$ , (ix)  $\sigma_{gDM}(T) = \sigma_{gDM\phi}(T)$ , (x) T and  $T^*$  have SVEP at every  $\lambda \notin \sigma_{gDM\phi}(T)$ , (xi)  $\sigma_{gD(gM)}(T) = \sigma_{gD(gM)\phi}(T)$ , (xii) T and  $T^*$  have SVEP at every  $\lambda \notin \sigma_{gD(gM)\phi}(T)$ .

#### 3. Cline's Formula for the generalized Drazin-g-meromorphic invertibility

For a ring *R* with identity, Drazin[12] introduced the concept of Drazin inverses in a ring. An element  $a \in R$  is said to be *Drazin invertible* if there exist an element  $b \in R$  and  $r \in \mathbb{N}$  such that

$$ab = ba$$
,  $bab = b$ ,  $a^{r+1}b = a^r$ .

If such *b* exists then it is unique and is called *Drazin inverse* of *a* and denoted by  $a^D$ . For  $a, b \in R$ , Cline [10] proved that if *ab* is Drazin invertible, then *ba* is Drazin invertible and  $(ba)^D = b((ab)^D)^2 a$ . Recently, Gupta and Kumar [13] generalized Cline's formula for Drazin inverses in a ring with identity to the case when  $a^k b^k a^k = a^{k+1}$  for some  $k \in \mathbb{N}$  and obtained the following result:

**Theorem 3.1.** ([13, Theorem 2.10]) Let R be a ring with identity and suppose that  $a^k b^k a^k = a^{k+1}$  for some  $k \in \mathbb{N}$ . Then a is Drazin invertible if and only if  $b^k a^k$  is Drazin invertible. Moreover,  $(b^k a^k)^D = b^k (a^D)^2 a^k$  and  $a^D = a^k (b^k a^k)^D)^{k+1}$ .

Recently, Karmouni and Tajmouati [15] investigated for bounded linear operators *A*, *B*, *C* satisfying the operator equation ABA = ACA and obtained that *AC* is generalized Drazin-Riesz invertible if and only if *BA* is generalized Drazin-Riesz invertible. Also, they generalized Cline's formula to the case of generalized Drazin-Riesz invertibility. Gupta and Kumar [14] established Cline's formula for the generalized Drazin-meromorphic invertibility for bounded linear operators *A* and *B* under the condition  $A^kB^kA^k = A^{k+1}$ . In this section, we establish Cline's formula for the generalized Drazin-*g*-meromorphic invertibility for bounded linear operators *A* and *B* under the condition  $A^kB^kA^k = A^{k+1}$ . In this section, we establish Cline's formula for the generalized Drazin-*g*-meromorphic invertibility for bounded linear operators *A* and *B* under the condition  $A^kB^kA^k = A^{k+1}$ . By the proofs of [13, Proposition 2.1, Theorems 2.4, 2.5 and 2.8] and [7, Theorem 3] we can deduce the following result:

**Proposition 3.2.** Let  $A, B \in B(X)$  satisfies  $A^k B^k A^k = A^{k+1}$  for some  $k \in \mathbb{N}$ , then A is g-meromorphic if and only if  $B^k A^k$  is g-meromorphic.

**Theorem 3.3.** Suppose that  $A, B \in B(X)$  and  $A^k B^k A^k = A^{k+1}$  for some  $k \in \mathbb{N}$ . Then A is generalized Drazin-*g*-meromorphic invertible if and only if  $B^k A^k$  is generalized Drazin-*g*-meromorphic invertible.

*Proof.* Let *A* be generalized Drazin-*g*-meromorphic invertible, then there exists  $T \in B(X)$  such that

TA = AT, TAT = T and ATA - A is *g*-meromorphic.

Let  $S = B^k T^2 A^k$ . Then

$$(B^{k}A^{k})S = (B^{k}A^{k})(B^{k}T^{2}A^{k}) = B^{k}(A^{k}B^{k}A^{k})T^{2} = B^{k}A^{k+1}T^{2} = B^{k}A^{k}T$$

and

$$S(B^{k}A^{k}) = (B^{k}T^{2}A^{k})(B^{k}A^{k}) = B^{k}T^{2}A^{k+1} = B^{k}A^{k}T.$$

Therefore,  $S(B^k A^k) = (B^k A^k)S$ . Now

$$S(B^{k}A^{k})S = B^{k}T^{2}A^{k}(B^{k}A^{k})B^{k}T^{2}A^{k} = (B^{k}T^{2}A^{k})(B^{k}A^{k}T) = B^{k}T^{2}A^{k+1}T = B^{k}T^{2}A^{k} = S^{k}T^{2}A^{k}$$

Let Q = I - AT, then Q is a bounded projection commuting with A which gives  $Q^n = Q$  for all  $n \in \mathbb{N}$ . Also, observe that  $(OA)^k B^k (OA)^k = O^k A^k B^k O^k A^k = O^k A^{k+1} O^k = O^{k+1} A^{k+1} = (OA)^{k+1}$ 

$$(QA)^{k}B^{k}(QA)^{k} = Q^{k}A^{k}B^{k}Q^{k}A^{k} = Q^{k}A^{k+1}Q^{k} = Q^{k+1}A^{k+1} = (QA)^{k+1}A^{k+1} = (QA)^{k+1}A^{k+$$

and

$$B^{k}A^{k} - (B^{k}A^{k})^{2}S = B^{k}A^{k} - (B^{k}A^{k})^{2}B^{k}T^{2}A^{K} = B^{k}A^{k} - B^{k}(A^{k}B^{k}A^{k})B^{k}T^{2}A^{k}$$
  
=  $B^{k}A^{k} - B^{k}A^{k+2}T^{2} = B^{k}(I - A^{2}T^{2})A^{k} = B^{k}(I - AT)A^{k}$   
=  $B^{k}QA^{k} = B^{k}Q^{k}A^{k} = B^{k}(QA)^{k}.$ 

Since QA is *g*-meromorphic and  $(QA)^k B^k (QA)^k = (QA)^{k+1}$ , by Proposition 3.2  $B^k A^k - (B^k A^k)^2 S$  is *g*-meromorphic.

Conversely, let  $B^k A^k$  be generalized Drazin-*g*-meromorphic invertible. Then there exists  $T' \in B(X)$  such that

$$T'B^kA^k = B^kA^kT'$$
,  $T'B^kA^kT' = T'$  and  $B^kA^kT'B^kA^k - B^kA^k$  is *g*-meromorphic.

Let  $S' = A^k T'^{k+1}$ . Then

$$S'A = A^k T'^{k+1} A = A^k T'^{k+2} B^k A^k A = A^k T'^{k+2} B^k A^{k+1} = A^k T'^{k+2} (B^k A^k)^2 = A^k T'^k$$

and

$$AS' = A^{k+1}T'^{k+1} = A^kT'^k.$$

Consider

$$AS' = (A^{k}T'^{k+1}A)A^{k}T'^{k+1} = (A^{k}T'^{k})A^{k}T'^{k+1} = A^{k}v^{k+1}B^{k}A^{2k}T'^{k+1} = A^{k}T'^{k+1}(B^{k}A^{k})^{k+1}$$
  
=  $S^{k+1} = A^{k}T'^{k+1} = S'.$ 

We assert that

$$(A - A^2 S')^n = (A^n - A^{n+1} S') \text{ for all } n \in \mathbb{N}.$$

We prove it by induction. Clearly, the result holds for n = 1. Suppose that it is true for n = m. Consider

$$(A - A^{2}S')^{m+1} = (A - A^{2}S')(A - A^{2}S')^{m}$$
  
=  $(A - A^{2}S')(A^{p} - A^{m+1}S')$   
=  $A^{m+1} - A^{m+2}S' - A^{m+2}S' + A^{m+3}S'^{2}$   
=  $A^{m+1} - A^{m+2}S'$ .

Also,

$$B^{k}(A - A^{2}S')^{k} = B^{k}(A^{k} - A^{k+1}S') = B^{k}A^{k} - B^{k}A^{k-1}A^{2}S' = B^{k}A^{k} - B^{k}A^{k-1}A^{k}T'^{k-1}$$
$$= B^{k}A^{k} - B^{k}A^{2k-1}T'^{k-1} = B^{k}A^{k} - (B^{k}A^{k})^{k}T'^{k-1} = B^{k}A^{k} - (B^{k}A^{k})^{2}S'.$$

Consider

$$(A - A^{2}S')^{k}B^{k}(A - A^{2}S')^{k} = (A^{k} - A^{k+1}S')B^{k}(A^{k} - A^{k+1}S')$$
  
=  $A^{k}B^{k}A^{k} - A^{k+1}S'B^{k}A^{k} - A^{k}B^{k}A^{k}B^{k}A^{k}S' + A^{k+1}(B^{k}A^{k})^{2}S'^{2}$   
=  $A^{k+1} - A^{k+2}S' = (A - A^{2}S')^{k+1}.$ 

Since  $B^k(A - A^2S')^k = B^kA^k - (B^kA^k)^2T'$  is *g*-meromorphic, using Proposition 3.2 we deduce that  $A - A^2S'$  is *g*-meromorphic.  $\Box$ 

#### Acknowledgement

The authors are grateful to the referees for their valuable comments and suggestions.

#### References

- [1] P. Aiena, Fredholm and local spectral theory II, with application to Weyl-type theorems, Lecture Notes in Mathematics, 2235, Springer, Cham, 2018.
- [2] P. Aiena and M. T. Biondi, Browder's theorems through localized SVEP, Mediterr. J. Math. 2 (2005), no. 2, 137–151.
- [3] P. Aiena, M. T. Biondi and C. Carpintero, On Drazin invertibility, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2839–2848.
- [4] M. Amouch and H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasg. Math. J. 48 (2006), no. 1, 179–185.
- [5] M. Amouch and H. Zguitti, A note on the Browder's and Weyl's theorem, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 12, 2015–2020.
  [6] M. Amouch, M. Karmouni and A. Tajmouati, Spectra originated from Fredholm theory and Browder's theorem, Commun.
- Korean Math. Soc. **33** (2018), no. 3, 853–869. [7] B.A. Barnes, Common operator properties of the linear operators *RS* and *SR*, Proc. Amer. Math. Soc. **126** (1998), no. 4, 1055–1061.
- [8] M. Berkani, On a class of quasi-Fredholm operators, Integral Equations Operator Theory 34 (1999), no. 2, 244–249.
- [9] E. Boasso, Isolated spectral points and Koliha-Drazin invertible elements in quotient Banach algebras and homomorphism ranges, Math. Proc. R. Ir. Acad. **115A** (2015), no. 2, 15 pp.
- [10] R. E. Cline, An application of representation for the generalized inverse of a matrix, MRC Technical Report, **592** (1965), 506–514.
- [11] M. D. Cvetković and S. Živković-Zlatanović, Generalized Kato decomposition and essential spectra, Complex Anal. Oper. Theory 11 (2017), 1425–1449.
- [12] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958), no. 7, 506–514.
- [13] A. Gupta and A. Kumar, Common spectral properties of linear operators A and B satisfying  $A^k B^k A^k = A^{k+1}$  and  $B^k A^k B^k = B^{k+1}$ , Asian-Eur. J. Math. **12** (2019), no. 5, 1950084, 18 pp.
- [14] A. Gupta and A. Kumar, A new characterization of Generalized Browder's theorem and a Cline's formula for generalized Drazin-meromorphic inverses, Filomat 33 (2019), no. 19, 6335–6345.
- [15] M. Karmouni and A. Tajmouati, A Cline's formula for the generalized Drazin-Riesz inverses, Funct. Anal. Approx. Comput. 10 (2018), no. 1, 35–39.
- [16] M. Karmouni and A. Tajmouati, A new characterization of Browder's theorem, Filomat 32 (2018), no. 14, 4865–4873.
- [17] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), no. 3, 367-381.
- [18] H. Zariouh and H. Zguitti, On pseudo B-Weyl operators and generalized Drazin invertibility for operator matrices, Linear Multilinear Algebra 64 (2016), no. 7, 1245–1257.
- [19] S. Živković-Zlatanović, Generalized Drazin-g-meromorphic invertible operators and generalized Kato-g-meromorphic decomposition, Filomat 36 (2022), no. 8, 2813–2827.
- [20] S. Živković-Zlatanović and M. D. Cvetković, Generalized Kato-Riesz decomposition and generalized Drazin-Riesz invertible operators, Linear Multilinear Algebra 65 (2017), no. 6, 1171–1193.
- [21] S. Živković-Zlatanović, D.S. Djordjević and R.E. Harte, Polynomially Riesz perturbations, J. Math. Anal. Appl. 408 (2013), 442–451.
- [22] S. Živković-Zlatanović and B. P. Duggal, Generalized Kato-meromorphic decomposition, generalized Drazin-meromorphic invertible operators and single-valued extension property, Banach J. Math. Anal. 14 (2020), no. 3, 894–914.