Filomat 38:25 (2024), 8849–8860 https://doi.org/10.2298/FIL2425849K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A note on the Browder's theorem and a Cline's formula for generalized Drazin- q -meromorphic inverses

Ankit Kumara,[∗] **, Manu Rohilla^b , Rattan Lal^a**

^aDepartment of Mathematics, Punjab Engineering College (Deemed to be University), Chandigarh-160012, India ^bDepartment of Mathematics, J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana-121006, India

Abstract. In this paper, we give a new characterization of Browder's theorem by means of the generalized Drazin-q-meromorphic Weyl spectrum and the generalized Drazin-q-meromorphic spectrum. Also, for operators *A* and *B* satisfying $A^k B^k A^k = A^{k+1}$ for some positive integer *k*, we generalize Cline's formula to the case of generalized Drazin-q-meromorphic invertibility.

1. Introduction and Preliminaries

Throughout this paper, let $\mathbb N$ and $\mathbb C$ denote the set of natural numbers and complex numbers, respectively. Let *B*(*X*) denote the Banach algebra of all bounded linear operators acting on a complex Banach space *X*. For $T \in B(X)$, we denote the adjoint of *T*, null space of *T*, range of *T* and spectrum of *T* by T^* , *N*(*T*), *R*(*T*) and σ (*T*), respectively. For a subset *A* of **C**, the set of interior points of *A* and the set of accumulation points of *A* are denoted by $int(A)$ and acc(*A*), respectively. For $T \in B(X)$, let $\alpha(T)$ be the nullity of *T*, defined as the dimension of *N*(*T*) and β(*T*) be the deficiency of *T*, defined as codimension of *R*(*T*). An operator $T \in B(X)$ is called a lower semi-Fredholm operator if $\beta(T) < \infty$. An operator $T \in B(X)$ is called an upper semi-Fredholm operator if $\alpha(T) < \infty$ and $\overline{R}(T)$ is closed. The class of all lower semi-Fredholm operators (upper semi-Fredholm operators, respectively) is denoted by ϕ−(*X*) (ϕ+(*X*), respectively). An operator *T* is called semi-Fredholm if it is upper or lower semi-Fredholm. For a semi-Fredholm operator *T* ∈ *B*(*X*), the index of *T* is defined by ind (*T*) = α (*T*)− β (*T*). The class of all Fredholm operators is defined by ϕ(*X*) = ϕ+(*X*)∩ϕ−(*X*). The class of all lower semi-Weyl operators (upper semi-Weyl operators, respectively) is defined by $W_-(X) = \{T \in \phi_-(X) : \text{ind}(T) \geq 0\}$ ($W_+(X) = \{T \in \phi_+(X) : \text{ind}(T) \leq 0\}$, respectively). An operator $T \in B(X)$ is said to be Weyl if $T \in \phi(X)$ and ind $(T) = 0$. The spectra for *upper semi-Fredholm operator*, *lower semi-Fredholm operator*, *Fredholm operator*, *upper semi-Weyl operator*, *lower semi-Weyl operator* and *Weyl*

Keywords. g-meromorphic operators, generalized Drazin-g-meromorphic invertible, Cline's formula.

²⁰²⁰ *Mathematics Subject Classification*. Primary 47A10; Secondary 47A53.

Received: 09 December 2023; Revised: 26 April 2024; Accepted: 28 April 2024

Communicated by Snežana Č. Živković-Zlatanović

^{*} Corresponding author: Ankit Kumar

Email addresses: ankitkumar@pec.edu.in (Ankit Kumar), manurohilla25994@gmail.com (Manu Rohilla),

rattanlal@pec.edu.in (Rattan Lal)

operator are defined by

 $\sigma_{uf}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not upper semi-Fredholm}}$, $\sigma_{1f}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not lower semi-Fredholm}}$, $\sigma_f(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not Fredholm}}$, $\sigma_{uw}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not upper semi-Weyl}}$, $\sigma_{lw}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not lower semi-Weyl}}$, $\sigma_w(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not Weyl}},$ respectively.

A bounded linear operator *T* is said to be bounded below if *R*(*T*) is closed and *T* is injective. The *approximate point* and *surjective spectra* are defined by

 $\sigma_a(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not bounded below}}$, $\sigma_s(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not surjective}}$, respectively.

For an operator $T \in B(X)$, the ascent $p(T)$ is the smallest non negative integer p such that $N(T^p) = N(T^{p+1})$. If no such integer exists, we set $p(T) = \infty$. For an operator $T \in B(X)$, the descent $q(T)$ is the smallest non negative integer *q* such that $R(T^q) = R(T^{q+1})$. If no such integer exists, we set $q(T) = \infty$. By [1, Theorem 1.20] we know that if both $p(T)$ and $q(T)$ are finite, then $p(T) = q(T)$.

An operator $T \in B(X)$ is said to have the single-valued extension property (SVEP) at $\mu_0 \in \mathbb{C}$ if for every neighborhood *U* of μ_0 the only analytic function *f* : *U* → *X* satisfying $(\mu I - T)f(\mu) = 0$ is the function *f* = 0. An operator *T* is said to have SVEP if *T* has SVEP at every $\mu \in \mathbb{C}$. It is known that if $p(\mu I - T)$ is finite, then *T* has SVEP at μ and if $q(\mu I - T)$ is finite, then T^* has SVEP at μ .

An operator $T \in B(X)$ is said to be Drazin invertible if there exist $S \in B(X)$ and a positive integer *n* such that

$$
ST = TS, T^{n+1}S = T^n \text{ and } STS = S.
$$

By [1, Theorem 1.132] *T* is Drazin invertible if and only if $p(T) = q(T) < \infty$. An operator $T \in B(X)$ is said to be left Drazin invertible if $p(T) < \infty$ and $R(T^{p+1})$ is closed. An operator $T \in B(X)$ is said to be lower semi-Browder if it is a lower semi-Fredholm and $q(T) < \infty$. An operator $T \in B(X)$ is said to be right Drazin invertible if $q(T) < ∞$ and $R(T^q)$ is closed. An operator $T ∈ B(X)$ is said to be upper semi-Browder if it is an upper semi-Fredholm and $p(T) < \infty$. We say that an operator $T \in B(X)$ is Browder if it is lower semi-Browder and upper semi-Browder. The spectra for *lower semi-Browder operator*, *upper semi-Browder operator* and *Browder operator* are defined by

 $\sigma_{lb}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not lower semi-Browder}}$, $\sigma_{ub}(T)$: = { $\lambda \in \mathbb{C}$: $\lambda I - T$ is not upper semi-Browder}, $\sigma_b(T)$: = { $\lambda \in \mathbb{C}$: $\lambda I - T$ is not Browder}, respectively.

Clearly, every Browder operator is Drazin invertible.

An operator $T \in B(X)$ is said to be semi-regular if $R(T)$ is closed and $N(T) \subset R(T^n)$ for every $n \in \mathbb{N}$. An operator $T \in B(X)$ is said to be nilpotent if $T^n = 0$ for some $n \in \mathbb{N}$. An operator $T \in B(X)$ is said to be quasi-nilpotent if $\lambda I - T$ is invertible for all $\lambda \in \mathbb{C} \setminus \{0\}$. An operator $T \in B(X)$ is said to be Riesz if $\lambda I - T$ is Browder for all $\lambda \in \mathbb{C} \setminus \{0\}$. An operator $T \in B(X)$ is said to be meromorphic if $\lambda I - T$ is Drazin invertible for all $\lambda \in \mathbb{C} \setminus \{0\}$. Clearly, every Riesz operator is meromorphic.

A subspace *M* of *X* is said to be *T*-*invariant* if *T*(*M*) ⊂ *M*. For a *T*-invariant subspace *M* of *X*, we define $T_M : M \to M$ by $T_M(x) = T(x)$, $x \in M$. We say that *T* is completely reduced by the pair (M, N) (denoted by $(M, N) \in Red(T)$ if *M* and *N* are two closed *T*-invariant subspaces of *X* such that $X = M \oplus N$.

An operator *T* is said to possess a *generalized Kato decomposition* (*GKD*) if there exists a pair (*M*, *N*) ∈ *Red*(*T*) such that T_M is semi-regular and T_N is quasi-nilpotent. Here, if we assume that T_N to be nilpotent, then T is said to be of Kato type. An operator is said to possess a *Kato-Riesz decomposition* (*GKRD*), if there exists a pair (M, N) ∈ *Red*(*T*) such that *T_M* is semi-regular and *T_N* is Riesz (see [20]). Živković-Zlatanović and Duggal [22] introduced the notion of generalized Kato-meromorphic decomposition. An operator *T* ∈ *B*(*X*) is said to possess a *generalized Kato-meromorphic decomposition* (*GKMD*), if there exists a pair (*M*, *N*) ∈ *Red*(*T*) such that T_M is semi-regular and T_N is meromorphic. Zivković-Zlatanović[19] generalized Kato- q -meromorphic decomposition and introduced the notion of g -meromorphic operators. An operator $T \in B(X)$ is called g-meromorphic if every nonzero spectral point is an isolated point. Clearly, every meromorphic operator is g -meromorphic. An operator $T \in B(X)$ is said to possess a *generalized Kato-g-meromorphic decomposition* (*GK*(g *M*)*D*), if there exists a pair (*M*, *N*) \in *Red*(*T*) such that T_M is semi-regular and T_N is g -meromorphic. For *T* ∈ *B*(*X*), the *generalized Kato spectrum*, *generalized Kato Riesz spectrum*, *generalized Kato meromorphic spectrum* and *generalized Kato-*1*-meromorphic spectrum* are defined by

 $\sigma_{\alpha KD}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ does not admit a GKD}}$ $\sigma_{\alpha KRD}(T)$: = { $\lambda \in \mathbb{C}$: $\lambda I - T$ does not admit a GKRD}, $\sigma_{qKMD}(T)$: = { $\lambda \in \mathbb{C}$: $\lambda I - T$ does not admit a GKMD}, $\sigma_{qK(qM)}(T)$: = { $\lambda \in \mathbb{C} : \lambda I - T$ does not admit a GK(gM)D}, respectively.

For $T \in B(X)$ and a non negative integer *n*, define $T_{[n]}$ to be the restriction of T to $T^n(X)$. If for some non negative integer *n*, the range space $Tⁿ(X)$ is closed and $T_{[n]}$ is Fredholm (an upper semi Fredholm, a lower semi Fredholm, an upper semi Browder, a lower semi Browder, Browder, respectively) then *T* is said to be B-Fredholm (an upper semi B-Fredholm, a lower semi B-Fredholm, an upper semi B-Browder, a lower semi B-Browder, B-Browder, respectively). For a semi B-Fredholm operator *T* (see [8]), the index of *T* is defined as index of *T*[*n*] . The spectra for *upper semi B-Fredholm operator*, *lower semi B-Fredholm operator*, *B-Fredholm operator*, *upper semi B-Browder operator*, *lower semi B-Browder operator* and *B-Browder operator* are defined by

 $\sigma_{usbf}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not upper semi B-Fredholm}}$, $\sigma_{lsbf}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not lower semi B-Fredholm}}$ $\sigma_{bf}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not B-Fredholm}}$, $\sigma_{usbb}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not upper semi B-Browder}}$, $\sigma_{lsbb}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not lower semi B-Browder}}$, $\sigma_{bb}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not B-Browder}}$, respectively.

By [1, Theorem 3.47] we know that an operator $T \in B(X)$ is upper semi B-Browder (lower semi B-Browder, B-Browder, respectively) if and only if *T* is left Drazin invertible (right Drazin invertible, Drazin invertible, respectively).

An operator $T \in B(X)$ is said to be an upper semi B-Weyl (a lower semi B-Weyl, respectively) if it is an upper semi B-Fredholm (a lower semi B-Fredholm, respectively) having ind $(T) \le 0$ (ind $(T) \ge 0$, respectively). An operator $T \in B(X)$ is said to be B-Weyl if ind $(T) = 0$ and T is B-Fredholm. The spectra for *upper semi B-Weyl operator*, *lower semi B-Weyl operator* and *B-Weyl operator* are defined by

 $\sigma_{usbw}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not upper semi B-Weyl}},$ $\sigma_{lsbw}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not lower semi B-Weyl}}$ $\sigma_{bw}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not B-Weyl}},$ respectively.

By [8, Theorem 2.7], it is known that $T \in B(X)$ is B-Fredholm (B-Weyl, respectively) if there exists $(M, N) \in$ *Red*(*T*) such that T_M is Fredholm (Weyl, respectively) and T_N is nilpotent.

An operator $T \in B(X)$ is called Drazin invertible if there exists a pair $(M, N) \in Red(T)$ such that T_M is invertible and T_N is nilpotent. This definition aligns with the assertion that there exists $S \in B(X)$ such that *TS* = *ST*, *STS* = *S* and *TST* − *T* is nilpotent. Koliha [17] replaced the third condition with *TST* − *T* is quasinilpotent and generalized this concept. An operator is called generalized Drazin invertible if there exist a pair (*M*, *N*) \in *Red*(*T*) such that T_M is invertible and T_N is quasi-nilpotent. Cvetković and Živković-Zlatanović [11] introduced the concept of operators which are direct sum of a quasi-nilpotent and a bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl). An operator *T* ∈ *B*(*X*) is said to be generalized Drazin bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl, respectively) if there exists a pair $(M, N) \in Red(T)$ such that T_M is bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl, respectively) and *T^N* is quasi-nilpotent. The *generalized Drazin*, *generalized Drazin bounded below*, *generalized Drazin surjective spectra*, *generalized Drazin lower (upper) semi-Fredholm*, *generalized Drazin Fredholm*, *generalized Drazin upper (lower) semi-Weyl* and *generalized Drazin Weyl spectra* are defined by

 $\sigma_{qD}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin invertible}}$, $\sigma_{aD} \tau(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin bounded below}}$, $\sigma_{aDQ}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin surjective}}$ $\sigma_{gD\phi_+}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin upper semi-Fredholm}},$ $\sigma_{gD\phi_{-}}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin lower semi-Fredholm}},$ $\sigma_{qD\phi}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin Fredholm}}$ $\sigma_{gDW_+}(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin upper semi-Weyl} \},$ σ_{gDW} ₋ $(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin lower semi-Weyl}}$, $\sigma_{aDW}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin Weyl}, respectively.}$

By [11], it is known that

 $\sigma_{gD\phi}(T) = \sigma_{gD\phi+}(T) \cup \sigma_{gD\phi-}(T)$, $\sigma_{gKD}(T) \subset \sigma_{gD\phi_+}(T) \subset \sigma_{gDW_+}(T) \subset \sigma_{gD\mathcal{J}}(T)$, $\sigma_{gKD}(T) \subset \sigma_{gD\phi}$ _− $(T) \subset \sigma_{gDW}$ _− $(T) \subset \sigma_{gDQ}(T)$, $\sigma_{qKD}(T) \subset \sigma_{qD\phi}(T) \subset \sigma_{qDW} \subset \sigma_{qD}(T)$.

Recently, Živković-Zlatanović and Cvetković [20] introduced the notion of generalized Drazin-Riesz invertible operators by substituting the third condition with *TST* − *T* is Riesz. They established that an operator $T \in B(X)$ is generalized Drazin-Riesz invertible if and only if there exists a pair $(M, N) \in Red(T)$ such that T_M is invertible and T_N is Riesz. An operator $T \in B(X)$ is said to be generalized Drazin-Riesz bounded below (surjective, upper (lower) semi-Fredholm, upper (lower) semi-Weyl, Weyl, respectively) if there exists a pair $(M, N) \in Red(T)$ such that T_M is bounded below (surjective, upper (lower) semi-Fredholm, upper (lower) semi-Weyl, Weyl, respectively) and *T^N* is Riesz. The *generalized Drazin-Riesz bounded below*, *generalized Drazin-Riesz surjective*, *generalized Drazin-Riesz invertible*, *generalized Drazin-Riesz upper (lower) semi-Fredholm*, *generalized Drazin-Riesz Fredholm*, *generalized Drazin-Riesz upper (lower) semi-Weyl* and *generalized Drazin-Riesz Weyl spectra* are defined by

 $\sigma_{\text{dDRT}}(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz bounded below} \},$ $\sigma_{aDRQ}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz surjective}}$ $\sigma_{aDR}(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz invertible} \},\$ $\sigma_{gDR\phi_+}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz upper semi-Fredholm}},$ σ¹*DR*ϕ[−] (*T*) := {λ ∈ C : λ*I* − *T* is not generalized Drazin-Riesz lower semi-Fredholm}, $\sigma_{qDR\phi}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz Fredholm}\},\$ $\sigma_{gDRW_+}(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz upper semi-Weyl} \},$ $\sigma_{gDRW_{-}}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz lower semi-Weyl}},$ $\sigma_{qDRW}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-Riesz Weyl}, respectively.}$

Recently, Živković-Zlatanović and Duggal [22] replaced the third condition with *TST* − *T* is meromorphic and introduced the notion of generalized Drazin-meromorphic invertible operators. They established that an operator $T \in B(X)$ is generalized Drazin-meromorphic invertible if and only if there exists a pair (M, N) ∈ *Red*(*T*) such that T_M is invertible and T_N is meromorphic. An operator $T \in B(X)$ is said to be generalized Drazin-meromorphic bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl, respectively) if there exists a pair $(M, N) \in Red(T)$ such that T_M is bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl respectively) and *T^N* is meromorphic. The *generalized Drazin-meromorphic bounded below*, *generalized Drazin-meromorphic surjective*, *generalized Drazin-meromorphic invertible spectra*, *generalized Drazin-meromorphic upper (lower) semi-Fredholm*, *generalized Drazin-meromorphic Fredholm*, *generalized Drazin-meromorphic upper (lower) semi-Weyl* and *generalized Drazin-meromorphic Weyl spectra* are defined by

 $\sigma_{aDM}(\mathcal{T}) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-meromorphic bounded below} \},$

 $\sigma_{aDMO}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-meromorphic surjective}},$

 $\sigma_{aDM}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-meromorphic invertible}}$,

 $\sigma_{gDM\phi_+}(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-meromorphic upper semi-Fredholm} \},$

σ1*DM*ϕ[−] (*T*) := {λ ∈ C : λ*I* − *T* is not generalized Drazin-meromorphic lower semi-Fredholm},

 $\sigma_{aDM\phi}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-meromorphic Fredholm}}$,

 $\sigma_{gDMW_+}(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-meromorphic upper semi-Weyl} \},$

σ¹*DMW*[−] (*T*) := {λ ∈ C : λ*I* − *T* is not generalized Drazin-meromorphic lower semi-Weyl},

 $\sigma_{aDMW}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-meromorphic Weyl}, respectively.}$

Also, Zivković-Zlatanović [19] introduced the notion of generalized Drazin-g-meromorphic invertible operators by substituting the third condition with *TST* − *T* is 1-meromorphic. They established that an operator *T* ∈ *B*(*X*) is generalized Drazin-*g*-meromorphic invertible if and only if there exists a pair (*M*, *N*) ∈ *Red*(*T*) such that T_M is invertible and T_N is *g*-meromorphic. An operator $T \in B(X)$ is said to be generalized Drazin-q-meromorphic bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl, respectively) if there exists a pair $(M, N) \in Red(T)$ such that T_M is bounded below (surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower) semi-Weyl, Weyl, respectively) and T_N is 1-meromorphic. The *generalized Drazin-*1*-meromorphic bounded below*, *generalized Drazin-*1*-meromorphic surjective*, *generalized Drazin-*1*-meromorphic invertible*, *generalized Drazin-*1*-meromorphic lower (upper) semi-Fredholm*, *generalized Drazin-*1*-meromorphic Fredholm*, *generalized Drazin-*1*-meromorphic lower (upper) semi-Weyl* and *generalized Drazin-*1*-meromorphic Weyl spectra* are defined by

 $\sigma_{aD(aM)}$ $\tau(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}q-meronorphic bounded below}$, $\sigma_{qD(qM)Q}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}q\text{-meromorphic surjective}},$ $\sigma_{aD(aM)}(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}q\text{-meromorphic invertible} \},$ $\sigma_{gD(gM)\phi_+}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g\text{-meromorphic upper semi-Fredholm}\},\$ σ¹*D*(1*M*)ϕ[−] (*T*) := {λ ∈ C : λ*I* − *T* is not generalized Drazin-1-meromorphic lower semi-Fredholm}, $\sigma_{aD(aM)\phi}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}q\text{-meromorphic Fredholm}}$ $\sigma_{gD(gM)W_+}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g-\text{meromorphic upper semi-Weyl}},$ $\sigma_{gD(gM)W_{-}}(T) := {\lambda \in \mathbb{C} : \lambda I - T \text{ is not generalized Drazin-}g-\text{meromorphic lower semi-Weyl}},$ $\sigma_{qD(qM)W}(T) := \{ \lambda \in \mathbb{C} : \lambda I - T$ is not generalized Drazin-g-meromorphic Weyl}, respectively.

By [19, 20, 22], it is known that

 $\sigma_{gD*\phi}(T) = \sigma_{gD*\phi_+}(T) \cup \sigma_{gD*\phi_-}(T)$, $\sigma_{gK^*}(T) \subset \sigma_{gD^*\varphi_+}(T) \subset \sigma_{gD^*W_+}(T) \subset \sigma_{gD^*J}(T)$, $\sigma_{gK^*}(T) \subset \sigma_{gD^*\phi^-}(T) \subset \sigma_{gD^*W^-}(T) \subset \sigma_{gD^*Q}(T)$, $\sigma_{qK*}(T) \subset \sigma_{qD*0}(T) \subset \sigma_{qD*W} \subset \sigma_{qD*}(T)$,

where ∗ stands for Riesz or meromorphic or q-meromorphic operators.

Recall that an operator *T* satisfies Browder's theorem if $\sigma_b(T) = \sigma_w(T)$ and generalized Browder's theorem if $\sigma_{bb}(T) = \sigma_{bw}(T)$. Amouch et al. [6] and Karmouni and Tajmouati [16] provided a novel characterization of Browder's theorem using the spectra derived from Drazin invertibilty and Fredholm theory. Gupta and Kumar [14] gave a new characterization of generalized Browder's theorem by taking equality between the generalized Drazin-meromorphic spectrum and the generalized Drazin-meromorphic Weyl spectrum. Motivated by them, we give a new characterization of operators satisfying Browder's theorem. We prove that an operator *T* satisfies Browder's theorem if and only if $\sigma_{qD(qM)W}(T) = \sigma_{qD(qM)}(T)$. In the last section, for operators A and B satisfying $A^k B^k A^k = A^{k+1}$ for some positive integer *k*, we generalize Cline's formula to the case of generalized Drazin-q-meromorphic invertibility.

2. Main Results

In this section, we will utilize the following result:

Theorem 2.1. [19, Theorem 3.7] *Let* $T \in B(X)$ *, then* T *is generalized Drazin-q-meromorphic upper semi-Weyl* (gen*eralized Drazin-*1*-meromorphic lower semi-Weyl, generalized Drazin-*1*-meromorphic upper semi-Fredholm, generalized Drazin-*1*-meromorphic lower semi-Fredholm, generalized Drazin-*1*-meromorphic Weyl, respectively) if and only* f T admits a GK(gM)D and 0 ∉ $\mathrm{acc}\sigma_{gDW_+}(T)$ ($\mathrm{acc}\sigma_{gDW_-}(T)$, $\mathrm{acc}\sigma_{gD\phi_+}(T)$, $\mathrm{acc}\sigma_{gD\psi_+}(T)$, $\mathrm{acc}\sigma_{gDW}(T)$, $\mathrm{respectively}$).

Theorem 2.2. [11, Theorem 3.4] *Let T* ∈ *B*(*X*)*, then T is generalized Drazin upper semi-Weyl (generalized Drazin lower semi-Weyl, generalized Drazin upper semi-Fredholm, generalized Drazin lower semi-Fredholm, generalized Drazin Weyl, respectively) if and only if T admits a GKD and* $0 \notin \text{acc}(\sigma_{uv}(T))$ *(* $\text{acc}(\sigma_{uv}(T))$ *,* $\text{acc}(\sigma_{uv}(T))$ *,* $\text{acc}(\sigma_{uv}(T))$ *,* $\text{acc}(\sigma_{uv}(T))$ accσ*w*(*T*)*, respectively).*

The following example illustrates that the inclusions $\sigma_{gD(gM)W_{-}}(T) \subset \sigma_{gD(gM)Q}(T)$ and $\sigma_{gD(gM)W_+}(T) \subset \sigma_{gD(gM)\mathcal{J}}(T)$ can be proper.

Example 2.3. [20, Example 3.3] Let $X = c(\mathbb{N})$, $c_0(\mathbb{N})$, $l^p(\mathbb{N})$ ($p \ge 1$) or $l^{\infty}(\mathbb{N})$. Let *U* and *V* be the forward and the backward unilateral shifts on *X*, respectively. Let $T = U \oplus V$. Then $\sigma_a(T) = \sigma_s(T) = D$, where D denotes the closed unit disc. Therefore, $0 \in \text{int} \sigma_a(T)$ and $0 \in \text{int} \sigma_s(T)$. Thus, by [19, Theorems 3.13 and 3.14] $0 \in \sigma_{gD(gM)\mathcal{J}}(T)$ and $0 \in \sigma_{gD(gM)Q}(T)$. Since $0 \notin \sigma_{gDRW_+}(T)$ and we know that $\sigma_{gD(gM)W_+}(T) \subset \sigma_{gDRW_+}(T)$, $0 \notin \sigma_{gD(gM)W_+}(T)$. Thus, $0 \in \sigma_{gD(gM)J}(T) \setminus \sigma_{gD(gM)W_+}(T)$. Similarly, $0 \in \sigma_{gD(gM)Q}(T) \setminus \sigma_{gD(gM)W_-}(T)$.

In the following results we obtain necessary and sufficient conditions to get equality.

Proposition 2.4. Let $T \in B(X)$, then $\sigma_{gD(gM)\mathcal{J}}(T) = \sigma_{gD(gM)W_+}(T)$ if and only if T has SVEP at every $\lambda \notin$ $\sigma_{gD(gM)W_+}(T)$.

Proof. Assume that $\sigma_{gD(gM)\mathcal{J}}(T) = \sigma_{gD(gM)W_+}(T)$. Let $\lambda \notin \sigma_{gD(gM)W_+}(T)$, then $\lambda I - T$ is generalized Drazin-1-meromorphic bounded below. Therefore, by [19, Theorem 3.13] *T* has SVEP at λ. Conversely, assume that *T* has SVEP at every $\lambda \notin \sigma_{gD(gM)W_+}(T)$. It is sufficient to show that $\sigma_{gD(gM)\mathcal{J}}(T) \subset \sigma_{gD(gM)W_+}(T)$. Let $\lambda \notin$ $\sigma_{gD(gM)W_+}(T)$ which implies that $\lambda I - T$ is generalized Drazin-g-meromorphic upper semi-Weyl. Therefore, *by* Theorem 2.1 *λI* − *T* admits a *GK(gM)D*. Thus, there exists (M, N) ∈ *Red(* $λI$ − *T*) such that $(λI – T)$ *M* is semi-regular and $(\lambda I - T)_N$ is g -meromorphic. Since *T* has SVEP at every $\lambda \notin \sigma_{gD(gM)W_+}(T)$, $(\lambda I - T)$ has SVEP at 0. As SVEP at a point is transmitted to the restrictions on closed invariant subspaces, $(\lambda I - T)_{M}$ has SVEP at 0. Therefore, by [1, Theorem 2.91] $(\lambda I - T)_{M}$ is bounded below. Thus, by [19, Theorem 3.13] we have *λI* − *T* is generalized Drazin-*g*-meromorphic bounded below. Hence, $\lambda \notin \sigma_{qD(qM)\mathcal{J}}(T)$. □

Proposition 2.5. Let $T \in B(X)$, then $\sigma_{gD(gM)Q}(T) = \sigma_{gD(gM)W}$ ⁻(*T*) *if and only if* T^* *has SVEP at every* $\lambda \notin$ $\sigma_{gD(gM)W_{-}}(T)$.

Proof. Assume that $\sigma_{gD(gM)Q}(T) = \sigma_{gD(gM)W_{-}}(T)$. Let $\lambda \notin \sigma_{gD(gM)W_{-}}(T)$, then $\lambda I - T$ is generalized Drazin-1-meromorphic surjective. Therefore, by [19, Theorem 3.14] *T* [∗] has SVEP at λ. Conversely, assume that *T*^{*} has SVEP at every $λ \notin σ_{gD(gM)W[−]}(T)$. It is sufficient to show that $σ_{gD(gM)Q}(T) ⊂ σ_{gD(gM)W[−]}(T)$. Let

λ < σ1*D*(1*M*)*W*[−] (*T*) which implies that λ*I* −*T* is generalized Drazin-1-meromorphic lower semi-Weyl. Then by Theorem 2.1 λI − *T* admits a *GK*(*gM*)*D* and $\lambda \notin acc_{gDW_{-}}(T)$. Since T^* has SVEP at every $\lambda \notin \sigma_{gD(gM)W_{-}}(T)$ and $\sigma_{gD(gM)W_{-}}(T) \subset \sigma_{lw}(T)$ then T^* has SVEP at every $\lambda \notin \sigma_{lw}(T) = \sigma_{uw}(T^*)$. Therefore, by [1, Theorem 5.27] we have $\sigma_{lw}(T) = \sigma_{uw}(T^*) = \sigma_{ub}(T^*) = \sigma_{lb}(T)$. Now we prove that $\sigma_{gDW}(T) = \sigma_{gDQ}(T)$. Clearly, $\sigma_{gDW}(T) \subset \sigma_{gDQ}(T)$. Let $\mu \notin \sigma_{gDW}$ (*T*), then by Theorem 2.2, we have $\mu I - T$ has GKD and $\mu \notin acc \sigma_{lw}(T) = acc \sigma_{lb}(T)$. Therefore, by [11, Theorem 3.7] $\mu \notin \sigma_{gDQ}(T)$. Thus, $\sigma_{gDW_{-}}(T) = \sigma_{gDQ}(T)$. This implies that $\lambda \notin \text{acc}\sigma_{gDQ}(T)$. Therefore, by [19, Theorem 3.14] $\lambda I - T$ is generalized Drazin-g-meromorprhic surjective and it follows that $\lambda \notin \sigma_{qD(qM)Q}(T)$. \Box

Corollary 2.6. Let $T \in B(X)$, then $\sigma_{qD(qM)}(T) = \sigma_{qD(qM)W}(T)$ if and only if T and T^{*} have SVEP at every $\lambda \notin$ $\sigma_{qD(qM)W}(T)$.

Proof. Suppose that $\sigma_{gD(gM)}(T) = \sigma_{gD(gM)W}(T)$. Let $\lambda \notin \sigma_{gD(gM)W}(T)$, then $\lambda I - T$ is generalized Drazin-gmeromorphic invertible. Therefore, by [19, Theorem 3.10] *T* and *T*^{*} have SVEP at *λ*. Conversely, let $\lambda \notin \sigma_{gD(gM)W}(T) = \sigma_{gD(gM)W_+}(T) \cup \sigma_{gD(gM)W_-}(T)$. Then by proofs of Proposition 2.4 and Proposition 2.5 we have $\lambda \notin \sigma_{qD(qM),\mathcal{T}}(T) \cup \sigma_{qD(qM),Q}(T) = \sigma_{qD(qM)}(T).$

Theorem 2.7. *Let* $T \in B(X)$ *, then following statements are equivalent:*

(ii) T or *T*^{*} *have SVEP* at every $\lambda \notin \sigma_{qD(qM)W}(T)$ *.*

Proof. Suppose that *T* has SVEP at every $\lambda \notin \sigma_{qD(qM)W}(T)$. It is sufficient to prove that $\sigma_{qD(qM)}(T) \subset T$ $\sigma_{gD(gM)W}(T)$. Let $\lambda \notin \sigma_{gD(gM)W}(T)$ then $\lambda I - T$ admits a $GK(gM)D$ and $\lambda \notin \text{acc}\sigma_{gDW}(T)$. Since $\sigma_{gD(gM)W}(T) \subset$ σ*w*(*T*), *T* has SVEP at every λ < σ*w*(*T*). Therefore, by [1, Theorem 5.4] we have σ*w*(*T*) = σ*b*(*T*). Now we prove $\sigma_{aDW}(T) = \sigma_{aD}(T)$. Clearly, $\sigma_{aDW}(T) \subset \sigma_{aD}(T)$. Let $\mu \notin \sigma_{aDW}(T)$, then by Theorem 2.2, we have $\mu I - T$ has GKD and $\mu \notin acc_{\sigma}(\mathcal{T}) = acc_{\sigma}(\mathcal{T})$. Therefore, by [11, Theorem 3.9] $\mu \notin \sigma_{gD}(\mathcal{T})$. Thus, $\sigma_{gDW}(\mathcal{T}) = \sigma_{gD}(\mathcal{T})$. This implies that $\lambda \notin \text{acc}(\sigma_{qD}(T))$. Therefore, by [19, Theorem 3.10] $\lambda I - T$ is generalized Drazin-*g*-meromorphic invertible.

Now suppose that *T*^{*} has SVEP at every $\lambda \notin \sigma_{gD(gM)W}(T)$. Since $\sigma_{gD}(T) = \sigma_{gD}(T^*)$ and $\sigma_{gDW}(T) = \sigma_{gDW}(T^*)$ we have $\sigma_{qD(qM)}(T) = \sigma_{qD(qM)W}(T)$. The converse is an immediate consequence of Corollary 2.6. \Box

Recall that an operator $T \in B(X)$ is said to satisfy generalized a-Browder's theorem if $\sigma_{usbb}(T) = \sigma_{usbw}(T)$. An operator $T \in B(X)$ satisfies a-Browder's theorem if $\sigma_{ub}(T) = \sigma_{uw}(T)$. By [4, Theorem 2.2] we know that a-Browder's theorem is equivalent to generalized a-Browder's theorem.

Theorem 2.8. *Let* $T \in B(X)$ *, then the following holds:*

(i) a-Browder's theorem holds for T if and only if $\sigma_{gD(gM)\mathcal{J}}(T) = \sigma_{gD(gM)W_+}(T)$ *<i>,*

(*ii*) a-Browder's theorem holds for T^* if and only if $\sigma_{gD(gM)Q}(T) = \sigma_{gD(gM)W-}(T)$,

(iii) Browder's theorem holds for T if and only if $\sigma_{qD(qM)}(T) = \sigma_{qD(qM)W}(T)$ *.*

Proof. (i) Suppose that a-Browder's theorem holds for *T* which implies that $\sigma_{uw}(T) = \sigma_{ub}(T)$. Then by proof of Proposition 2.5, we have $\sigma_{gDf}(T) = \sigma_{gDW_+}(T)$. It is sufficient to prove that $\sigma_{gD(gM)f}(T) \subset \sigma_{gD(gM)W_+}(T)$. Let $\lambda \notin \sigma_{gD(gM)W_+}(T)$, then $\lambda I - \dot{T}$ is generalized Drazin-g-meromorphic upper semi-Weyl. By Theorem 2.1 it follows that $\lambda I - T$ admits a $GK(gM)D$ and $\lambda \notin acc \sigma_{gDW_+}(T)$. This gives $\lambda \notin acc \sigma_{gDJ}(T)$. Therefore, by [19, Theorem 3.13] $\lambda I - T$ is generalized Drazin-q-meromorphic bounded below which gives $\lambda \notin \sigma_{qD(qM)} T(T)$. Conversely, suppose that $\sigma_{gD(gM)\mathcal{J}}(T) = \sigma_{gD(gM)W_+}(T)$. Using Proposition 2.4 we deduce that *T* has SVEP at every $\lambda \notin \sigma_{gD(gM)W_+}(T)$. Since $\sigma_{gD(gM)W_+}(T) \subset \sigma_{uw}(T)$, *T* has SVEP at every $\lambda \notin \sigma_{uw}(T)$. By [1, Theorem 5.27] *T* satisfies a-Browder's theorem.

(ii) Suppose that a-Browder's theorem holds for T^* which implies that $\sigma_{lb}(T) = \sigma_{lw}(T)$. By proof of Proposition 2.5, we have $\sigma_{gDQ}(T) = \sigma_{gDW}(T)$. It is sufficient to prove that $\sigma_{gD(gM)Q}(T) \subset \sigma_{gD(gM)W}$ ⁻(*T*). Let $\lambda \notin \sigma_{gD(gM)W_{-}}(T)$, then $\lambda I - T$ is generalized Drazin-g-meromorphic lower semi-Weyl. By Theorem 2.1 it follows that $\lambda I - T$ admits a $GK(gM)D$ and $\lambda \notin acc_{gDW_{-}}(T)$. This gives $\lambda \notin acc_{gDQ}(T)$. Therefore, by [19, Theorem 3.14] $\lambda I - T$ is generalized Drazin-q-meromorphic surjective which gives $\lambda \notin \sigma_{qD(qM)Q}(T)$. Conversely, suppose that $\sigma_{gD(gM)Q}(T) = \sigma_{gD(gM)W}$ ⁻(*T*). Using Proposition 2.5 we deduce that *T*^{*} has SVEP at every $\lambda \notin \sigma_{gD(gM)W_{-}}(T)$. Since $\sigma_{gD(gM)W_{-}}(T) \subset \sigma_{lw}(T)$, T^* has SVEP at every $\lambda \notin \sigma_{lw}(T) = \sigma_{uw}(T^*)$. Therefore,

 (i) $\sigma_{aD(aM)}(T) = \sigma_{aD(aM)W}(T)$

a-Browder's theorem holds for *T* ∗ .

(iii) Suppose that Browder's theorem holds for *T* which implies that $\sigma_b(T) = \sigma_w(T)$. Then by proof of Theorem 2.7, we have $\sigma_{qD}(T) = \sigma_{qDW}(T)$. It is sufficient to prove that $\sigma_{qD(qM)}(T) \subset \sigma_{qD(qM)W}(T)$. Let $\lambda \notin \sigma_{aD(aM)}(T)$, then $\lambda I - T$ is generalized Drazin-q-meromorphic Weyl. By Theorem 2.1 it follows that *λI* − *T* admits a *GK*(*qM*)*D* and $λ \notin acc_{σDW}(T)$. This gives $λ \notin acc_{σD}(T)$. Therefore, by [19, Theorem 3.10] *λI*−*T* is generalized Drazin-*g*-meromorphic invertible which gives $\lambda \notin \sigma_{qD(qM)}(T)$. Conversely, suppose that $\sigma_{gD(gM)}(\widetilde{T}) = \sigma_{gD(gM)W}(T)$. Using Corollary 2.6 we deduce that \widetilde{T} and T^* have SVEP at every $\lambda \notin \sigma_{gD(gM)W}(\widetilde{T})$. \sin ce $\sigma_{gD(gM)W}(T) \subset \sigma_w(T)$, *T* and *T** have SVEP at every $\lambda \notin \sigma_w(T)$. Therefore, by [1, Theorem 5.4] Browder's theorem holds for T . \Box

Using Theorem 2.8, [2, Theorem 2.3], [4, Theorem 2.1], [5, Proposition 2.2], [16, Theorem 2.6] and [14, Theorem 2.8] we have the following theorem:

Theorem 2.9. *Let* $T \in B(X)$ *, then the following statements are equivalent:*

(i) Browder's theorem holds for T, (ii) Browder's theorem holds for T[∗] *, (iii)* T has SVEP at every $\lambda \notin \sigma_w(T)$, *(iv)* T^* *has SVEP at every* $\lambda \notin \sigma_w(T)$ *, (v) T* has *SVEP* at every $λ$ ∉ $σ_{bw}(T)$ *, (vi) generalized Browder's theorem holds for T, (vii) T* or T^* *has SVEP at every* $\lambda \notin \sigma_{qDRW}(T)$ *,* $(\text{viii}) \sigma_{aDR}(T) = \sigma_{aDRW}(T)$ *(ix) T* or *T*^{*} *has SVEP at every* $\lambda \notin \sigma_{qDMW}(T)$ *, (x) T* or *T*^{*} has *SVEP* at every $\lambda \notin \sigma_{qD(qM)W}(T)$ *,* $(\overline{xi}) \sigma_{aDM}(T) = \sigma_{aDMW}(T)$ $(\tilde{x}$ *ii*) $\sigma_{qD}(T) = \sigma_{qDW}(T)$, $(\tilde{x}$ *iii*) $\sigma_{qD(qM)}(T) = \sigma_{qD(qM)W}(T)$.

Using [4, Theorem 2.2], [16, Theorem 2.7] and [14, Theorem 2.9] a similar result for a-Browder's theorem can be stated as follows:

Theorem 2.10. *Let* $T \in B(X)$ *, then the following statements are equivalent: (i) a-Browder's theorem holds for T, (ii) generalized a-Browder's theorem holds for T,* (iii) T has SVEP at every $\lambda \notin \sigma_{gDRW_+}(T)$, $(i\upsilon) \sigma_{gDRJ}(T) = \sigma_{gDRW_+}(T)$ *,* $f(v)$ T has SVEP at every $\lambda \notin \sigma_{gDMW_+}(T)$, (vi) T has SVEP at every $\lambda \notin \sigma_{gD(gM)W_+}(T)$, $(\textit{vii}) \sigma_{gDMJ}(T) = \sigma_{gDMW_{+}}(T)$ *,* $(\text{viii}) \sigma_{gD(gM)} \mathcal{J}(T) = \sigma_{gD(gM)W_+}(T)$.

Lemma 2.11. *Let* $T \in B(X)$ *, then* $(i) \sigma_{uf}(T) = \sigma_{ub}(T) \Leftrightarrow \sigma_{gD\phi_+}(T) = \sigma_{gD\mathcal{J}}(T)$ *,* $(iii) \sigma_{lf}(T) = \sigma_{lb}(T) \Leftrightarrow \sigma_{gD\phi} (T) = \sigma_{gDQ}(T)$.

Proof. (i) Let $\sigma_{ub}(T) = \sigma_{uf}(T)$. It is sufficient to show that $\sigma_{gD\mathcal{J}}(T) \subset \sigma_{gD\phi_+}(T)$. Let $\lambda \notin \sigma_{gD\phi_+}(T)$. Then $\lambda I - T$ is generalized Drazin upper semi-Fredholm. Then by Theorem 2.2, $\lambda I - T$ admits a *GKD* and $\lambda \notin acc_{u_f}(T)$ which implies that $\lambda \notin \text{acc}_{\mu}(T)$. Then by Theorem [11, Theorem 3.6], we have $\lambda \notin \sigma_{qD,f}(T)$. Coversely, let $\sigma_{gD\phi_+}(T) = \sigma_{gD\mathcal{J}}(T)$. It is sufficient to show that $\sigma_{ub}(T) \subset \sigma_{uf}(T)$. Let $\lambda \notin \sigma_{uf}(T)$. Then $\lambda \notin \sigma_{gD\phi_+}(T) = \sigma_{gD\mathcal{J}}(T)$. This implies that $\lambda \notin acc_{av}(T)$. Then by [1, Remark 2.11], we have *T* has SVEP at λ . This gives $p(\lambda I - T) < \infty$. Thus, $\lambda \notin \sigma_{ub}(T)$.

(ii) Using a similar argument as above we can get the desired result. \square

The following example demonstrates that the inclusions $\sigma_{gD(gM)\phi_+}(T) \subset \sigma_{gD(gM)\mathcal{J}}(T)$, $\sigma_{gD(gM)\phi_{-}}(T) \subset \sigma_{gD(gM)Q}(T)$ and $\sigma_{gD(gM)\phi}(T) \subset \sigma_{gD(gM)}(T)$ can be proper:

Example 2.12. Let $X = c(\mathbb{N})$, $c_0(\mathbb{N})$, $l^p(\mathbb{N})$ ($p \ge 1$) or $l^{\infty}(\mathbb{N})$. Let *U* and *V* be the forward and the backward unilateral shifts on *X*, respectively. Then $\sigma(U) = \sigma(V) = D$, where D denotes the closed unit disc, $\sigma_a(U) = D$ σ*s*(*V*) = ∂D and by [21, Theorem 4.2], we have σ*f*(*U*) = σ*f*(*V*) = ∂D. Therefore, by [19, Theorem 4.13], $\sigma_{gK(gM)}(U) = \sigma_{gD(gM)\phi_+}(U) = \sigma_{gD(gM)\mathcal{J}}(U) = \partial \mathbb{D}$ which gives $\sigma_{gD(gM)\phi_-}(U) = \sigma_{gD(gM)\phi}(U) = \partial \mathbb{D}$. Also, by [19, C orollary 4.1], we have $\sigma_{gD(gM)Q}(\tilde{U}) = \sigma_{gD(gM)}(U) = D$. Hence, the inclusions $\sigma_{gD(gM)\phi_{-}}(U) \subset \sigma_{gD(gM)Q}(U)$ and $\sigma_{gD(gM)\phi}(U)$ ⊂ $\sigma_{gD(gM)}(U)$ are proper. Also, by [19, Theorem 4.14], $\sigma_{gK(gM)}(V) = \sigma_{gD(gM)\phi}(V) = \sigma_{gD(gM)Q}(V)$ = ∂ D which gives $\sigma_{gD(gM)\phi_+}(V) = \sigma_{gD(gM)\phi}(V) = \partial$ D. By [19, Corollary 4.1], we have $\sigma_{gD(gM)\mathcal{J}}(V) = \sigma_{gD(gM)}(V) =$ D. Hence, the inclusion $\sigma_{gD(gM)\phi_+}(\check{V}) \subset \sigma_{gD(gM)\mathcal{J}}(V)$ is proper.

In the following results we obtain necessary and sufficient conditions to get equality.

Theorem 2.13. *Let* $T \in B(X)$ *, then the following statements are equivalent:*

 $(i) \sigma_{gD\phi_+}(T) = \sigma_{gD\mathcal{J}}(T)$ *,* (iii) T has SVEP at every $\lambda \notin \sigma_{gD\phi_+}(T)$, (iii) T has SVEP at every $\lambda \notin \sigma_{gD(gM)\phi_+}(T)$, $(i\sigma) \sigma_{gD(gM)} \mathcal{J}(T) = \sigma_{gD(gM)\phi_+}(T).$

Proof. (i) \Leftrightarrow (ii) Suppose that $\sigma_{gD\phi_{+}}(T) = \sigma_{gD\mathcal{J}}(T)$. Let $\lambda \notin \sigma_{gD\phi_{+}}(T)$, then $\lambda \notin \sigma_{gD\mathcal{J}}(T)$ which gives *T* has SVEP at λ . Now suppose that *T* has SVEP at every $\lambda \notin \sigma_{gD\phi+}$ (*T*) which gives *T* has SVEP at every $\lambda \notin \sigma_{uf}(T)$. This implies that $\sigma_{uf}(T) = \sigma_{ub}(T)$. Thus by Lemma 2.11, we have $\sigma_{gD\phi_+}(T) = \sigma_{gD\mathcal{J}}(T)$.

(iii) \Leftrightarrow (iv) Suppose that *T* has SVEP at every $\lambda \notin \sigma_{gD(gM)\phi_+}(T)$ which implies that $\lambda I - T$ is generalized Drazin-g-meromorphic upper semi-Fredholm. It is sufficient to show that $\sigma_{gD(gM)\mathcal{J}}(T) \subset \sigma_{gD(gM)\phi_+}(T)$. Let λ < σ¹*D*(1*M*)ϕ⁺ (*T*), then by Theorem 2.1 there exists (*M*, *N*) ∈ *Red*(λ*I*−*T*) such that (λ*I*−*T*)*^M* is semi-regular and $(\lambda I - T)$ ^N is q-meromorphic. Since *T* has SVEP at λ , $(\lambda I - T)$ ^M has SVEP at 0. Therefore, by [1, Theorem 2.91] $(\lambda I - T)$ _{*M*} is bounded below. Thus, $\lambda \notin \sigma_{gD(gM)\mathcal{J}}(T)$. Conversely, suppose that $\sigma_{gD(gM)\mathcal{J}}(T) = \sigma_{gD(gM)\phi_+}(T)$. Let $\lambda \notin \sigma_{gD(gM)\phi_+}(T)$, then $\lambda I - T$ is generalized Drazin-g-meromorphic bounded below. Therefore, by [19, Theorem 3.13] it follows that *T* has SVEP at λ .

(i) \Leftrightarrow (iv) Suppose that $\sigma_{gD\phi_{+}}(T) = \sigma_{gD\mathcal{J}}(T)$. It is sufficient to prove that $\sigma_{gD(gM)\mathcal{J}}(T) \subset \sigma_{gD(gM)\phi_{+}}(T)$. Let $\lambda \notin \sigma_{gD(gM)\phi_+}(T)$, then $\lambda I - T$ is generalized Drazin-g-meromorphic upper semi-Fredholm. By Theorem 2.1 it follows that λI − *T* admits a *GK(gM)D* and $\lambda \notin acc_{gD\phi^+}(T)$. This gives $\lambda \notin acc_{gD\mathcal{J}}(T)$. Therefore, by [19, Theorem 3.13] $\lambda I - T$ is generalized Drazin-g-meromorphic bounded below which gives $\lambda \notin \sigma_{gD(gM)\mathcal{J}}(T)$. Conversely, suppose that $\sigma_{gD(gM)\mathcal{J}}(T) = \sigma_{gD(gM)\phi_+}(T)$. Then by (iv) \Rightarrow (iii) *T* has SVEP at ev- $\alpha \notin \sigma_{gD(gM)\phi_{+}}(T)$. Since $\sigma_{gD(gM)\phi_{+}}(T) \subset \sigma_{uf}(T)$, *T* has SVEP at every $\lambda \notin \sigma_{uf}(T)$. Therefore, $\sigma_{uf}(T) = \sigma_{ub}(T)$. Thus, by Lemma 2.11 $\sigma_{gD\phi_+}(T) = \sigma_{gD\mathcal{J}}(T)$.

Theorem 2.14. *Let* $T \in B(X)$ *, then the following statements are equivalent:*

 (i) $\sigma_{gD\phi}$ _− (T) = $\sigma_{gDQ}(T)$ *,* (iii) T^* *has SVEP at every* $\lambda \notin \sigma_{gD\phi}$ (*T*)*,* (iii) T^* *has SVEP at every* $\lambda \notin \sigma_{gD(gM)\phi_{-}}(T)$ *,* $(i\sigma) \sigma_{gD(gM)Q}(T) = \sigma_{gD(gM)\phi_{-}}(T)$ *.*

Proof. (i) \Leftrightarrow (ii) Suppose that $\sigma_{gD\phi}$ −(*T*) = $\sigma_{gDQ}(T)$. Let $\lambda \notin \sigma_{gD\phi}$ −(*T*), then $\lambda \notin \sigma_{gDQ}(T)$ which gives *T*[∗] has SVEP at every $\lambda \notin \sigma_{gD\phi_{-}}(T)$. Now suppose that T^* has SVEP at every $\lambda \notin \sigma_{gD\phi_{-}}(T)$ which gives T^* has SVEP at every $\lambda \notin \sigma_{lf}(T)$. This implies that $\sigma_{lf}(T) = \sigma_{lb}(T)$. Thus by Lemma 2.11, we have $\sigma_{gD\phi}(T) = \sigma_{gDQ}(T)$. (iii) ⇔ (iv) Suppose that T^* has SVEP at every $\lambda \notin \sigma_{gD(gM)\phi}(T)$ which implies that $\lambda I - T$ is generalized Drazin-g-meromorphic lower semi-Fredholm. It is sufficient to show that $\sigma_{gD(gM)Q}(T) \subset \sigma_{gD(gM)\phi_{-}}(T)$. Let λ < σ¹*D*(1*M*)ϕ[−] (*T*). By Theorem 2.1 it follows that λ*I* − *T* admits a *GK*(1*M*)*D* and λ < accσ¹*D*ϕ[−] (*T*). Since $σ_{gD(gM)φ₋(T) ⊂ σ_{lf}(T)}$, T^* has SVEP at every $λ \notin σ_{lf}(T)$. Therefore, we have $σ_{lf}(T) = σ_{lb}(T)$. Thus, by Lemma 2.11 $\sigma_{gD\phi}$ (*T*) = $\sigma_{gDQ}(T)$ which implies that $λ \notin acc \sigma_{gDQ}(T)$. Hence, $λ \notin \sigma_{gD(gM)Q}(T)$. Conversely, suppose that $\sigma_{gD(gM)Q}(T) = \sigma_{gD(gM)\phi_{-}}(T)$. Let $\lambda \notin \sigma_{gD(gM)\phi_{-}}(T)$, then $\lambda I - T$ is generalized Drazin-g-meromorphic surjective. Therefore, by [19, Theorem 3.14] it follows that *T*[∗] has SVEP at *λ*.

(i) ⇔ (iv) Suppose that $\sigma_{gD\phi}$ _−(*T*) = $\sigma_{gDQ}(T)$. It is sufficient to prove that $\sigma_{gD(gM)Q}(T) \subset \sigma_{gD(gM)\phi}$ _−(*T*). Let $\lambda \notin \sigma_{gD(gM)\phi}$ ₋(*T*), then λI – *T* is generalized Drazin-*g*-meromorphic lower semi-Fredholm. By Theorem 2.1 it follows that λI − *T* admits a *GK*(*gM*)*D* and $\lambda \notin acc \sigma_{gDφ_-(}(\tilde{T})$. This gives $\lambda \notin acc \sigma_{gDQ}(T)$. Therefore, by [19, Theorem 3.14] *λI* − *T* is generalized Drazin-*q*-meromorphic surjective which gives $λ \notin σ_{qD(qM)Q}(T)$. Conversely, suppose that $\sigma_{gD(gM)Q}(T) = \sigma_{gD(gM)\phi_{-}}(T)$. Then by (iv) \Rightarrow (iii) T^* has SVEP at every $\lambda \notin$ $\sigma_{gD(gM)\phi_{-}}(T)$. Since $\sigma_{gD(gM)\phi_{-}}(T)$ ⊂ $\sigma_{lf}(T)$, *T*^{*} has SVEP at every $\lambda \notin \sigma_{lf}(T)$. Therefore, $\sigma_{lf}(T) = \sigma_{lb}(T)$. Thus, by Lemma 2.11 σ1*D*ϕ[−] (*T*) = σ1*D*^Q(*T*).

Using [16, Corollary 2.10], [14, Corollary 2.14] and Theorems 2.13, 2.14 we have the following result:

Corollary 2.15. *Let* $T \in B(X)$ *, then the following statements are equivalent:* (i) $\sigma_f(T) = \sigma_b(T)$, *(ii) T* and *T*^{*} *have SVEP* at every $\lambda \notin \sigma_f(T)$ *,* $(iii) \sigma_{bf}(T) = \sigma_{bb}(T)$, *(iv) T* and *T*^{*} *have SVEP* at every $\lambda \notin \sigma_{bf}(T)$ *, (v)* $\sigma_{qD}(T) = \sigma_{qD\phi}(T)$, *(vi) T* and *T*^{*} *have SVEP at every* $\lambda \notin \sigma_{aD\phi}(T)$ *,* $(\text{viii}) \sigma_{aDR}(T) = \sigma_{aDR\phi}(T)$, *(viii)* T and T^{*} have SVEP at every $\lambda \notin \sigma_{qDR\phi}(T)$, $(ix) \sigma_{qDM}(T) = \sigma_{qDM\phi}(T)$, *(x) T* and T^* have SVEP at every $\lambda \notin \sigma_{aDM\phi}(T)$, $(\tilde{x}i) \sigma_{qD(qM)}(T) = \sigma_{qD(qM)\phi}(T)$, *(xii) T* and *T*^{*} *have SVEP at every* $\lambda \notin \sigma_{qD(qM)\phi}(T)$ *.*

3. Cline's Formula for the generalized Drazin-q-meromorphic invertibility

For a ring *R* with identity, Drazin[12] introduced the concept of Drazin inverses in a ring. An element *a* ∈ *R* is said to be *Drazin invertible* if there exist an element *b* ∈ *R* and *r* ∈ N such that

$$
ab = ba, bab = b, a^{r+1}b = a^r.
$$

If such *b* exists then it is unique and is called *Drazin inverse* of *a* and denoted by a^D . For $a, b \in R$, Cline [10] proved that if *ab* is Drazin invertible, then *ba* is Drazin invertible and $(ba)^D = b((ab)^D)^2a$. Recently, Gupta and Kumar [13] generalized Cline's formula for Drazin inverses in a ring with identity to the case when $a^k b^k a^k = a^{k+1}$ for some $k \in \mathbb{N}$ and obtained the following result:

Theorem 3.1. ([13, Theorem 2.10]) Let R be a ring with identity and suppose that $a^kb^ka^k = a^{k+1}$ for some $k \in \mathbb{N}$. Then a is Drazin invertible if and only if $b^k a^k$ is Drazin invertible. Moreover, $(b^k a^k)^D = b^k (a^D)^2 a^k$ and $a^D =$ $a^k (b^k a^k)^D)^{k+1}$.

Recently, Karmouni and Tajmouati [15] investigated for bounded linear operators *A*, *B*,*C* satisfying the operator equation *ABA* = *ACA* and obtained that *AC* is generalized Drazin-Riesz invertible if and only if *BA* is generalized Drazin-Riesz invertible. Also, they generalized Cline's formula to the case of generalized Drazin-Riesz invertibility. Gupta and Kumar [14] established Cline's formula for the generalized Drazinmeromorphic invertibility for bounded linear operators *A* and *B* under the condition $A^kB^kA^k = A^{k+1}$. In this section, we establish Cline's formula for the generalized Drazin-q-meromorphic invertibility for bounded linear operators A and B under the condition $A^kB^kA^k = A^{k+1}$. By the proofs of [13, Proposition 2.1, Theorems 2.4, 2.5 and 2.8] and [7, Theorem 3] we can deduce the following result:

Proposition 3.2. Let $A, B \in B(X)$ satisfies $A^k B^k A^k = A^{k+1}$ for some $k \in \mathbb{N}$, then A is g-meromorphic if and only if *B*^k A ^{*k*} *is g*-meromorphic.

Theorem 3.3. *Suppose that* $A, B \in B(X)$ *and* $A^k B^k A^k = A^{k+1}$ *for some* $k ∈ \mathbb{N}$ *. Then* A *is generalized Drazin-gmeromorphic invertible if and only if B^kA k is generalized Drazin-*1*-meromorphic invertible.*

 $TA = AT$, $TAT = T$ and $ATA - A$ is g -meromorphic.

Let $S = B^k T^2 A^k$. Then

$$
(B^{k}A^{k})S = (B^{k}A^{k})(B^{k}T^{2}A^{k}) = B^{k}(A^{k}B^{k}A^{k})T^{2} = B^{k}A^{k+1}T^{2} = B^{k}A^{k}T
$$

and

$$
S(B^{k}A^{k}) = (B^{k}T^{2}A^{k})(B^{k}A^{k}) = B^{k}T^{2}A^{k+1} = B^{k}A^{k}T.
$$

Therefore, $S(B^kA^k) = (B^kA^k)S$. Now

$$
S(B^{k}A^{k})S = B^{k}T^{2}A^{k}(B^{k}A^{k})B^{k}T^{2}A^{k} = (B^{k}T^{2}A^{k})(B^{k}A^{k}T) = B^{k}T^{2}A^{k+1}T = B^{k}T^{2}A^{k} = S.
$$

Let *Q* = *I* − *AT*, then *Q* is a bounded projection commuting with *A* which gives Q^n = *Q* for all $n \in \mathbb{N}$. Also, observe that *k*+1

$$
(QA)^{k}B^{k}(QA)^{k} = Q^{k}A^{k}B^{k}Q^{k}A^{k} = Q^{k}A^{k+1}Q^{k} = Q^{k+1}A^{k+1} = (QA)^{k+1}
$$

and

$$
B^{k}A^{k} - (B^{k}A^{k})^{2}S = B^{k}A^{k} - (B^{k}A^{k})^{2}B^{k}T^{2}A^{k} = B^{k}A^{k} - B^{k}(A^{k}B^{k}A^{k})B^{k}T^{2}A^{k}
$$

= $B^{k}A^{k} - B^{k}A^{k+2}T^{2} = B^{k}(I - A^{2}T^{2})A^{k} = B^{k}(I - AT)A^{k}$
= $B^{k}QA^{k} = B^{k}Q^{k}A^{k} = B^{k}(QA)^{k}$.

Since QA is g-meromorphic and $(QA)^k B^k (QA)^k = (QA)^{k+1}$, by Proposition 3.2 $B^k A^k - (B^k A^k)^2 S$ is g-meromorphic.

Conversely, let $B^k A^k$ be generalized Drazin-g-meromorphic invertible. Then there exists $T' \in B(X)$ such that

$$
T'B^kA^k = B^kA^kT'
$$
, $T'B^kA^kT' = T'$ and $B^kA^kT'B^kA^k - B^kA^k$ is *g*-meromorphic.

Let $S' = A^k T'^{k+1}$. Then

$$
S'A = A^k T^{\prime k+1} A = A^k T^{\prime k+2} B^k A^k A = A^k T^{\prime k+2} B^k A^{k+1} = A^k T^{\prime k+2} (B^k A^k)^2 = A^k T^{\prime k}
$$

and

$$
AS' = A^{k+1}T'^{k+1} = A^kT'^k.
$$

Consider

$$
AS' = (A^k T'^{k+1} A) A^k T'^{k+1} = (A^k T'^k) A^k T'^{k+1} = A^k v^{k+1} B^k A^{2k} T'^{k+1} = A^k T'^{k+1} (B^k A^k)^{k+1}
$$

= $S^{k+1} = A^k T'^{k+1} = S'.$

We assert that

$$
(A - A^2S')^n = (A^n - A^{n+1}S')
$$
 for all $n \in \mathbb{N}$.

We prove it by induction. Clearly, the result holds for $n = 1$. Suppose that it is true for $n = m$. Consider

$$
(A - A2S')m+1 = (A - A2S')(A - A2S')m
$$

= (A - A²S')(A^p – A^{m+1}S')
= A^{m+1} – A^{m+2}S' – A^{m+2}S' + A^{m+3}S'²
= A^{m+1} – A^{m+2}S'.

Also,

$$
B^{k}(A - A^{2}S')^{k} = B^{k}(A^{k} - A^{k+1}S') = B^{k}A^{k} - B^{k}A^{k-1}A^{2}S' = B^{k}A^{k} - B^{k}A^{k-1}A^{k}T'^{k-1}
$$

$$
= B^{k}A^{k} - B^{k}A^{2k-1}T'^{k-1} = B^{k}A^{k} - (B^{k}A^{k})^{k}T'^{k-1} = B^{k}A^{k} - (B^{k}A^{k})^{2}S'.
$$

Consider

$$
(A - A2S')kBk(A - A2S')k = (Ak - Ak+1S')Bk(Ak - Ak+1S')
$$

= A^kB^kA^k - A^{k+1}S'B^kA^k - A^kB^kA^kB^kA^kS' + A^{k+1}(B^kA^k)²S'²
= A^{k+1} - A^{k+2}S' = (A - A²S')^{k+1}.

Since $B^k(A - A^2S')^k = B^kA^k - (B^kA^k)^2T'$ is g-meromorphic, using Proposition 3.2 we deduce that $A - A^2S'$ is g -meromorphic. \square

Acknowledgement

The authors are grateful to the referees for their valuable comments and suggestions.

References

- [1] P. Aiena, *Fredholm and local spectral theory II, with application to Weyl-type theorems*, Lecture Notes in Mathematics, 2235, Springer, Cham, 2018.
- [2] P. Aiena and M. T. Biondi, Browder's theorems through localized SVEP, Mediterr. J. Math. **2** (2005), no. 2, 137–151.
- [3] P. Aiena, M. T. Biondi and C. Carpintero, On Drazin invertibility, Proc. Amer. Math. Soc. **136** (2008), no. 8, 2839–2848.
- [4] M. Amouch and H. Zguitti, On the equivalence of Browder's and generalized Browder's theorem, Glasg. Math. J. **48** (2006), no. 1, 179–185.
- [5] M. Amouch and H. Zguitti, A note on the Browder's and Weyl's theorem, Acta Math. Sin. (Engl. Ser.) **24** (2008), no. 12, 2015–2020. [6] M. Amouch, M. Karmouni and A. Tajmouati, Spectra originated from Fredholm theory and Browder's theorem, Commun.
- Korean Math. Soc. **33** (2018), no. 3, 853–869.
- [7] B.A. Barnes, Common operator properties of the linear operators *RS* and *SR*, Proc. Amer. Math. Soc. **126** (1998), no. 4, 1055–1061.
- [8] M. Berkani, On a class of quasi-Fredholm operators, Integral Equations Operator Theory **34** (1999), no. 2, 244–249.
- [9] E. Boasso, Isolated spectral points and Koliha-Drazin invertible elements in quotient Banach algebras and homomorphism ranges, Math. Proc. R. Ir. Acad. **115A** (2015), no. 2, 15 pp.
- [10] R. E. Cline, An application of representation for the generalized inverse of a matrix, MRC Technical Report, **592** (1965), 506–514.
- [11] M. D. Cvetković and S. Živković-Zlatanović, Generalized Kato decomposition and essential spectra, Complex Anal. Oper. Theory **11** (2017), 1425–1449.
- [12] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly **65** (1958), no. 7, 506–514.
- [13] A. Gupta and A. Kumar, Common spectral properties of linear operators A and B satisfying $A^k B^k A^k = A^{k+1}$ and $B^k A^k B^k = B^{k+1}$, Asian-Eur. J. Math. **12** (2019), no. 5, 1950084, 18 pp.
- [14] A. Gupta and A. Kumar, A new characterization of Generalized Browder's theorem and a Cline's formula for generalized Drazin-meromorphic inverses, Filomat **33** (2019), no. 19, 6335–6345.
- [15] M. Karmouni and A. Tajmouati, A Cline's formula for the generalized Drazin-Riesz inverses, Funct. Anal. Approx. Comput. **10** (2018), no. 1, 35–39.
- [16] M. Karmouni and A. Tajmouati, A new characterization of Browder's theorem, Filomat **32** (2018), no. 14, 4865–4873.
- [17] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. **38** (1996), no. 3, 367–381.
- [18] H. Zariouh and H. Zguitti, On pseudo B-Weyl operators and generalized Drazin invertibility for operator matrices, Linear Multilinear Algebra **64** (2016), no. 7, 1245–1257.
- [19] S. Živković-Zlatanović, Generalized Drazin-g-meromorphic invertible operators and generalized Kato-g-meromorphic decomposition, Filomat **36** (2022), no. 8, 2813–2827.
- [20] S. Živković-Zlatanović and M. D. Cvetković, Generalized Kato-Riesz decomposition and generalized Drazin-Riesz invertible operators, Linear Multilinear Algebra **65** (2017), no. 6, 1171–1193.
- [21] S. Živković-Zlatanović, D.S. Djordjević and R.E. Harte, Polynomially Riesz perturbations, J. Math. Anal. Appl. 408 (2013), 442–451.
- [22] S. Živković-Zlatanović and B. P. Duggal, Generalized Kato-meromorphic decomposition, generalized Drazin-meromorphic invertible operators and single-valued extension property, Banach J. Math. Anal. **14** (2020), no. 3, 894–914.