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Abstract. In this research, the Ω-hypercyclic and Ω-transitive behavior are studied within the framework
of linear strongly continuous semigroups. We give sufficient constraints on the spectrum of an operator to
yield a Ω-hypercyclic semigroup. Also, we establish necessary and sufficient conditions on the semigroup
to be Ω-transitive.

1. Introduction and preliminary

In this study, X will be used to represent a complex topological vector space over the field K, and
the set of all continuous linear operators on X will be denoted by B(X). Operator refers to a continuous
linear operator acting on X in the following. A pair (X,T) made up of an operator T on X and a complex
topological vector space X is known as a linear dynamical system. The most studied property in a linear
dynamical system (X,T) is its hypercyclic nature.

An operator T ∈ B(X) is said to be hypercyclic if there is a vector x ∈ X, called a hypercyclic vector for T,
whose orbit beneath T;

O(T, x) := {Tnx : n ∈N},

is dense in X. The operator T is said to be supercyclic if there is a vector x ∈ X, called supercyclic, whose
projective orbit under T;

K.O(T, x) := {λTnx : λ ∈ K,n ∈N},

is dense in X. These definitions were extended to C0-semigroups of bounded linear operators, see [17, 22]
Recent years have seen a significant amount of research focused on these aspects of the dynamical

system (X,T). For a discussion of the study findings in this area, we direct the reader to two books [4, 13]
and the paper [16]. An operator T on a separable Banach space is hypercyclic if and only if it is topologically
transitive, and this means that for every two nonempty and open subsets U,V of X, there is n ∈N such that

TnU ∩ V , ∅.

This can be demonstrated using Baire’s theorem [12, Theorem 1.2]. T is said to be recurrent if, for each
nonempty open subset U of X, there exists n ∈N, such that

TnU ∩U , ∅.
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This definition was extended to C0-semigroups by M. Moosapoor in her paper [22].
In recent times, many researchers have delved into innovative ideas within the realm of linear dynamics.

For instance, Moosapoor [21] introduced the concept of subspace-recurrent operators, while in another work
[23], she proposed significant criteria related to subspace supercyclicity. Furthermore, her exploration in
[20] scrutinized the subspace diskcyclic behavior within the framework of C0-semigroups. The secend and
the third authors of this paper study the super-recurrence of operators in [1], the subspece-super recurrence
of operators in [6], and the supercyclicity of a set of operators in [2]. is a source of dynamics examples for
classical operators.

The purpose of this paper is to study strongly continuous semigroups of operators in Banach spaces
and the concept of Faber-hypercyclicity.

Recalling that a strongly continuous semigroup (also known as a C0-semigroup) of operators in B(X) is
a one-parameter family T = {Tt}t≥0 of continuous linear operators in B(X) such that

• T0 = I;
• TtTs = Tt+s, for all t, s ≥ 0,
• limt→s Ttx = Tsx, for all s ≥ 0, x ∈ X.

A C0-semigroup T = {Tt}t≥0 is considered hypercyclic if

O(T , x) := {Ttx : t ≥ 0}

is dense in X for some x ∈ X.
In this case, x is called a hypercyclic vector for the semigroup T .
Hypercyclic semigroups can only exist in separable Banach spaces because, for any hypercyclic vector

x, {Ttx : t ∈ Q, t ≥ 0} is a dense subset of X due to the strong continuity of the semigroup, see [15].
Desch, Schappacher, and Webb initiated the study of hypercyclic semigroups in [10].
Based on a study of the point spectra of the semigroup generator, they provided a sufficient criterion for

a semigroup’s hypercyclicity. Additionally, they described hypercyclic translation semigroups defined on
weighted spaces of continuous or integrable functions on the real line. For more examples and properties of
hypercyclic strongly continuous semigroups, see [7, 9, 11, 15, 25]. The importance of studying the dynamics
of C0-semigroups is their connection with the invariant subspace problem of Hilbert spaces see [5, 12, 14, 26]
and also their relationship with partial differential equations, see [18, p. 297] and [19, p. 339].

To begin with, note that the unit diskDor the unit circleT are involved in numerous results in the spectral
theory of hypercyclic operators. Since the iterates Tn coincide with FDn (T), where FDn (z) = zn represents the
basic Taylor polynomials associated to D, Badea and Grivaux in [3] observed that the explanation for this
frequent occurrence is that the unit disk is hidden in the definition of a hypercyclic operator. They then
introduced the concept of Ω-hypercyclicity.

Let Ω be an open, non-empty connected subset of C, having a rectifiable boundary ∂Ω and a compact
closure symbolized byΩ. The Taylor polynomials of the disk naturally generalize to the Faber polynomials
FΩn associated with the domain Ω.

Faber polynomials are essential in many complicated approximation problems, as well as the theory of
univalent functions in complex analysis. The Faber polynomials are the subject of extensive literature.

In the following, Ω will be considered a bounded domain of the complex plane, with a closed Jordan
curve serving as its boundary ∂Ω = C and its complement Ω

c
being simply connected in the extended

complex plane C ∪ {∞}. According to the Riemann mapping theorem, there is a unique function

ψ : D
c
→ Ω

c

that is meromorphic outside D and that maps D
c

conformally and univalently onto Ω
c
. It is such that

ψ(∞) = ∞ and ψ′(∞) > 0. For |w| > 1, the Laurent expansion of ψ takes the following form:

ψ(w) = aw + d0 + d1/w + d2/w2 + · · ·
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in which a > 0. For any ψ, the inverse function ϕ maps Ω
c

conformally and univalently on D
c
. ϕ has a

Laurent expansion of the form

ϕ(z) = (1/a)z + b0 + b1/z + b2/z2 + · · ·

in a neighborhood of∞.
The polynomial component of the Laurent expansion of ϕ(z)n at infinity for n ≥ 1 is the n-th Faber

polynomial FΩn of the domain Ω. FΩ0 is identically equal to 1. Instead of writing FΩn , we typically write Fn
when there is no chance of misunderstanding.

For examples of Faber polynomials, see [8].
When a bounded operator T on X has a vector x such that

{FΩn (T)x : n ≥ 0}

is dense in X, it is called Ω-hypercyclic. Such a vector is a Ω-hypercyclic vector for T, while the set of
such vectors is denoted by HCΩ(T). When for every two non-empty open subsets U,V ⊂ X we can find an
integer n such that

FΩn (T)U ∩ V , ∅,

then T is said to be Ω-transitive, for a general overview about these two notions see [3].
The majority of findings in the spectral theory of hypercyclic operators pertaining to the unit disk or

circle, as it turns out, have analogs for Ω-hypercyclic operators that deal with the corresponding open
domain Ω or its boundary.

For instance, in [3], Badea and Grivaux demonstrated that in the case of a Ω-hypercyclic operator
T ∈ B(X), whereΩ is a UB-domain, the point spectrum σp(T∗) of its adjoint is empty. Also it was shown that
if the boundary ofΩ is a rectifiable Jordan curve, then every connected component of the spectrum σ(T) of
T meets the boundary of Ω.

Recall that a domain Ω is considered to be UB-domain if the Faber polynomials of Ω are uniformly
bounded on Ω.

They also adapted the Godefroy-Shapiro Criterion to provide the following results: If Ω is a bounded
domain with a rectifiable Jordan curve as its boundary and T ∈ B(X) a bounded operator on X, then T is
Ω-hypercyclic if the two vector spaces that follow are dense in X:

X1 = span{ker(T − zI) : z ∈ Ω
c
} and X2 = span{ker(T − zI) : z ∈ Ω}.

They then produced a number of instances of Ω-hypercyclic operators using this criterion:

• For the adjoint of the multiplication operator Mϕ, induced by ϕ ∈ H∞(D) acting on Hardy space, they
showed that for M∗

ϕ to be Ω-hypercyclic it must and is enough that ϕ(D) reach the boundary of Ω.

• For the backward shift B on ℓp, 1 ≤ p < +∞, or c0, they proved that wB is Ω-hypercyclic for every
complex number w with |w| > d(0, ∂Ω).

Here, we studyΩ-transitivity andΩ-hypercyclicity in the framework of strongly continuous semigroups
of bounded linear operators in Banach spaces. One can consider Ω-hypercyclicity and Ω-transitivity
behavior in strongly continuous linear semigroups as the continuous-time counterpart of the previously
discussed discrete-time case.

2. Ω-Hypercyclic semigroups

In the rest of the paper, let T = (Tt)t≥0 be a strongly continuous linear semigroup on a separable Banach
space X.
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Definition 2.1. We say that a semigroup T ⊂ B(X) is Ω-hypercyclic if there exists some x ∈ X for which the set

{FΩn (Tt)x : n ∈N, t ≥ 0},

is dense in X. Such vector x is called a Ω-hypercyclic vector for T or a just Ω-hypercyclic vector. The set of all
Ω-hypercyclic vectors for T will be denoted by HCΩ(T ).

Example 2.2. Take Ω = D. Then each hypercyclic semigroup is Ω-hypercyclic.

We denote by T ′ the set of all elements of B(X) that commute with every element of T .

Proposition 2.3. Let T ⊂ B(X) be aΩ-hypercyclic strongly continuous linear semigroup on X and T ∈ B(X) be an
operator with dense range. If T ∈ T ′, then Tx ∈ HCΩ(T ) for all x ∈ HCΩ(T ) with Tx , 0.

Proof. Since x ∈ HCΩ(T ), we have that

{FΩn (Tt)x : n ∈N, t ≥ 0} = X.

Then,

X = T({FΩn (Tt)x : n ∈N, t ≥ 0})

⊂ T({FΩn (Tt)x : n ∈N, t ≥ 0})

= T({FΩn (Tt)x : n ∈N, t ≥ 0})

= {FΩn (Tt)Tx : n ∈N, t ≥ 0},

since T ∈ T ′. Hence, Tx is Ω-hypercyclic for T .

Corollary 2.4. Let T ⊂ B(X) be a Ω-hypercyclic strongly continuous linear semigroup on X. If x ∈ HCΩ(T ), then
ax ∈ HCΩ(T ) for all a ∈ C\{0}.

Proof. Let a ∈ C\{0} and take T = aI, where I is identity operator of X. We have that T ∈ T ′. Then we apply
Proposition 2.3 to conclude.

Definition 2.5. [24] Let T = (Tt)t≥0 and S = (St)t≥0 be two strongly continuous linear semigroup on X. S and T
are called similar if there exists an isomorphism P on X such that

Tt = P−1StP, for all t ≥ 0.

Proposition 2.6. Let S and T be two similar strongly continuous linear semigroups on X. If S is Ω-hypercyclic,
then T is also Ω-hypercyclic.

Proof. Let y ∈ X be an arbitrary element. For x = Py ∈ X and ε > 0, there exist x0 ∈ X, n ∈N and t ≥ 0 such
that

∥FΩn (St)x0 − x∥ ≤ εM−1,

where M = ∥P−1
∥. Then, if y0 = P−1x0 we have

∥FΩn (Tt)y0 − y∥ ≤M∥FΩn (St)x0 − x∥ < ε.

By A, we denote the infinitesimal generator of T . We will consider the following subsets of X:
X0 := {x ∈ X : limn→∞ limt→∞ FΩn (Tt)x = 0}.
X∞ := {x ∈ X : for each ε > 0 there exist some w ∈ X,n ∈ N and some t > 0 with ∥w∥ < ε and ∥FΩn (Tt)w −
x∥ < ε}.
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Proposition 2.7. Assume that T and S are two C0-semigroups acting on X and Y respectively. If the direct sum of
T and S is Ω-hypercyclic on X ⊕ Y, then T and S are Ω-hypercyclic on X and Y respectively.

Proof. Let x ⊕ y be an Ω-hypercyclic vector for T ⊕ S. Note that

{FΩn (Tt ⊕ St)(x ⊕ y) : n ∈N, t ≥ 0} ⊆ {FΩn (Tt)x : n ∈N, t ≥ 0} ⊕ {FΩn (St)y : n ∈N, t ≥ 0}.

This implies that x and y are Ω-hypercyclic vectors for T and S respectively.

Definition 2.8. A semigroup T ⊂ B(X) is Ω-transitive, if for every two non empty open subsets U,V of X, there
exists an integer n and a nonnegative real number t such that

FΩn (Tt)U ∩ V , ∅.

Theorem 2.9. The following assertions are equivalent:

1. HCΩ(T ) dense in X;
2. T is Ω-transitive.

Proof. (1)⇒ (2) : Let U,V be two nonempty open subsets of X, since HCΩ(T ) dense, we have that

HCΩ(T ) ∩U , ∅.

Let x ∈ U such that {FΩn (Tt)x : n ∈ N, t ≥ 0} is dense in X. Thus, {FΩn (Tt)x : n ∈ N, t ≥ 0} intersects V, then
there are n ∈ N and a t ≥ 0 such that FΩn (Tt)x ∈ V, but x ∈ U, which implies that FΩn (Tt)x ∈ Fn(Tt)U ∩ V.
Hence, T is really Ω-transitive.
(2)⇒ (1) : Let (Un)n∈N be a basis of open subsets of X. Then,

HCΩ(T ) = ∩i∈N ∪n∈N ∪t≥0FΩn (Tt)−1(Ui).

Since T is supposed to be Ω-transitive, for every V a nonempty open set, there exist an integer n and a
positive number t such that FΩn (Tt)V∩Ui , ∅, for every i ∈N. Thus each open set Wi := ∪n∈N∪t≥0FΩn (Tt)−1(Ui)
is dense in X, it follows by the Baire category theorem that ∩i∈NWi = HCΩ(T ) is dense in X.

Theorem 2.10. The following assertions are equivalent:

1. T is Ω-transitive;
2. For each x, y ∈ X, there exist sequences {xk} in X, {nk} inN and {tk} in R+ such that

xk → x and FΩnk
(Ttk )xk → y.

3. For each x, y ∈ X, and for W a neighborhood of the origin, there exist sequences z ∈ X, n ∈N and t ∈ R+ such
that

x − z ∈W and FΩn (Tt)z − y ∈W.

Proof. (1)⇒ (2) : Let x, y ∈ X. For all k ≥ 1, let Uk = B(y, 1
k ) and Vk = B(z, 1

k ). Then Uk and Vk are nonempty
open subsets of X. Since is Ω-transitive, there exist {nk} ⊂ N and {tk} ⊂ [0,+∞) with FΩnk

(Ttk )(Uk) ∩ Vk , ∅.
Let xk ∈ Uk such that FΩnk

(Ttk )xk ∈ Vk, then

∥xk − x∥ <
1
k

and ∥Fnk (Ttk )xk − y∥ <
1
k
,

which implies that
xk → x and FΩnk

(Ttk )xk → y.

(2)→ (3) : Let x, y ∈ X, then there exists sequences {xk} in X and {nk} inN and {tk} of R+ such that

xk − x→ 0 and FΩnk
(Ttk )(xk) − y→ 0.
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If W is a neighborhood of 0, then there exists N ∈N, such that xk−x ∈W and FΩnk
(Ttk )(xk)−y ∈W for all k ≥ N.

(3)→ (1) : Let U and V be two nonempty open subsets of X. Then there exist x, y ∈ X such that x ∈ U and
y ∈ V. Since for all k ≥ 1, Wk = B(0, 1

k ) is neighborhood of 0, there exist zk ∈ X and {nk ∈N and tk ∈ R+ such
that

∥FΩnk
(Ttk )zk − y∥ <

1
k

and ∥zk − x∥ <
1
k
.

This implies that zk → x and FΩnk
(Ttk )zk → y. Then there exists N ∈ N such that zk ∈ U ∩ FΩnk

(Ttk )V, for all
k ≥N.

Theorem 2.11. The following assertions are equivalent:
1. T is Ω-hypercyclic;
2. for all y ∈ X, z ∈ X and all ε > 0 there exist some v ∈ X, n ∈ N and some t > 0 such that ∥y − v∥ < ε and
∥z − FΩn (Tt)v∥ < ε;

3. for all ε > 0 there exists a dense subset D ⊂ X such that for all z ∈ D there exists a dense subset D′ ⊂ X such
that for all y ∈ D′ there exist v ∈ X, n ∈N and t > 0 such that ∥y − v∥ < ε and ∥z − FΩn (Tt)v∥ < ε.

Proof. (1) ⇒ (2) : Let y, z ∈ X, and ε > 0, then U := B(x, ε) and V := B(y, ε) are two nonempty open sets.
Since T is Ω-transitive there exist n ∈N and t ≥ 0 such that FΩn (Tt)U ∩ V , ∅. Thus, there is v ∈ X such that
v ∈ U and FΩn (Tt)v ∈ V, which means that

∥y − v∥ < ε and ∥z − Fn(Tt)v∥ < ε.

(2) ⇒ (1) : Let {z1, z2, z3, ...} be a dense sequence in X. We shall construct sequences {y1, y2, y3, ...} ⊂ X,
{n1,n2,n3, ...} ⊂N and {t1, t2, t3, ...} ⊂ [0,+∞) inductively:

• let y1 = z1, n1 = t1 = 0;

• for i > 1 we find yi,ni and ti such that

∥yi − yi−1∥ ≤
2−i

sup{∥FΩn j
(Tt j )∥ : j < i}

, (1)

∥zi − FΩni
(Tti )yi∥ ≤ 2−i. (2)

In particular, 1 implies ∥yi − yi−1∥ ≤ 2−i, so that the sequence yi has a limit x. Applying 2 and once again 1,
we infer that

∥zi − FΩni
(Tti )x∥ ≤ ∥zi − Fni (Tti )yi∥ + ∥Fni (Tti )∥∥yi − x∥

≤ ∥zi − FΩni
(Tti )yi∥ +

∞∑
j=i+1

∥FΩni
(Tti )∥∥y j − y j−1∥

≤ 2−i +

∞∑
j=i+1

2− j = 2−i+1.

Given z ∈ X and ε > 0 there are arbitrarily large n such that ∥zi − z∥ < ε/2. Choosing n large enough such
that 2−i+1 < ε/2, we obtain

∥FΩni
(Tti )x − z∥ ≤ ∥z − zi∥ + ∥zi − FΩni

(Tti )x∥ < ε.

Therefore, {FΩn (Tt)x : n ∈N, t ≥ 0} is dense.
(2)⇒ (3) : Put D = D′ = X.
(3) ⇒ (2) : Let ε > 0 and z ∈ X. Pick z̃ ∈ D such that ∥z − z̃∥ < ε/2. Then specify D′ according to (3) with
z̃ instead of z and ε/2 instead of ε. For y ∈ X pick ỹ ∈ D′ with ∥ỹ − y∥ < ε/2. Finally, we choose n, t and v
according to (3) with ε/2, ỹ, z̃ instead of ε, y, z and obtain

∥FΩn (Tt)v − z∥ ≤ ∥FΩn (Tt)v − z̃∥ + ∥z̃ − z∥ < ε,

∥v − y∥ ≤ ∥v − ỹ∥ + ∥ỹ − y∥ < ε.
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Theorem 2.12. If both X∞ and X0 are both dense in X, then T is Ω-hypercyclic.

Proof. We use Theorem 2.11 (3) with D = X∞ and D′ = X0. Let z ∈ X∞ and y ∈ X0. Then for each ε > 0 there
are arbitrarily large n ∈N, t > 0 and w ∈ X such that

∥FΩn (Tt)w − z∥ <
ε
2

and ∥w∥ < ε.

Since y ∈ X0, for sufficiently large n and t we have ∥FΩn (Tt)y∥ < ε/2. We put v = y + w, then

∥z − FΩn (Tt)v∥ ≤ ∥z − FΩn (Tt)w∥ + ∥FΩn (Tt)y∥ < ε,

∥y − v∥ = ∥w∥ < ε.

The following necessary condition on the spectrum of the generator A : D(A)→ X was provided by Desch,
Schappacher, and Webb [10] for the semigroup to be hypercyclic:

(DSW) For some open subset U of the point spectrum σp(A) of A intersecting the imaginary axis, there
exist eigenvectors xλ corresponding to λ ∈ U such that for each ϕ ∈ X\{0} the mapping Fϕ(λ) = ϕ(xλ) is
holomorphic on U and does not vanish identically.

Theorem 2.13. A strongly continuous semigroupT on a separable Banach space is hypercyclic whenever its generator
A satisfies (DSW).

Kalmes [15] showed that if the (DSW) is satisfied, then every operator Tt ∈ T is hypercyclic. In the following,
we extend this result and give an explanation to why exactly the imaginary axis appeared in [10, Theorem
3.1].

Theorem 2.14. Let A be the infinitesimal generator of T . Let U be an open subset of σp(A), the point spectrum of
A, such that U ∩ {λ ∈ C : eλt0 ∈ ∂Ω} , ∅ for some t0 > 0, and for each λ ∈ U let xλ be a nonzero eigenvector. For
each ϕ ∈ X∗ we define a function Fϕ : U → C by Fϕ(λ) = ⟨ϕ, xλ⟩. Assume that for each ϕ ∈ X∗ the function Fϕ is
analytic and that Fϕ does not vanish identically on U unless ϕ = 0. Then T is Ω-hypercyclic.

Proof. We start with the statement, if V ⊂ U is a non-empty open subset admitting a cluster point in U, then
the set

YV := {xλ : λ ∈ V}

is dense in X. Indeed, if ϕ ∈ X′ is such that ϕ(xλ) = 0 for every λ ∈ V, then Fϕ(λ) = 0, it follows that the
holomorphic function Fϕ vanishes identically on U, since V has accumulation points in U. By hypothesis,
this implies ϕ is null so that from the Hahn-Banach theorem, we obtain the density of YV in X.

Now we shall show that X1 := sev{ker(T − zI) : z ∈ Ω} and X2 := sev{ker(T − zI) : z ∈ Ω
c
} are dense. Put

ϕ(z) = ez.t0 . Let V1 be an open subset of {λ ∈ U : ϕ(λ) ∈ Ω} which admits a cluster point in U, and V2 be an
open subset of {λ ∈ U : ϕ(λ) ∈ Ω

c
}which admits a cluster point in U, this is possible by the open mapping

theorem for the analytic function ϕ. The set YV1 is a subset of X1 and YV2 is a subset of X2. As YV1 and YV2

are dense, so are X1 and X2. Then the operator Tt0 is Ω-hypercyclic, which implies the Ω-hypercyclicity of
T as a C0-semigroup.

3. Questions

1. Does the converse of Proposition 2.7 hold? In other words, does the direct sum of twoΩ-hypercyclic
strongly continuous semigroups remain Ω-hypercyclic?

2. Is Ω-hypercyclicity of a strongly continuous semigroup, implies that any of its operators is Ω-
hypercyclic?
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